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Abstract
Emerging manifestations of artificial intelligence (AI) have featured prominently in virtually all industries and facets of our lives.
Within the radiology literature, AI has shown great promise in improving and augmenting radiologist workflow. In pediatric
imaging, while greatest AI inroads have been made in musculoskeletal radiographs, there are certainly opportunities within
thoracoabdominal MRI for AI to add significant value. In this paper, we briefly review non-interpretive and interpretive data
science, with emphasis on potential avenues for advancement in pediatric body MRI based on similar work in adults. The
discussion focuses onMRI image optimization, abdominal organ segmentation, and osseous lesion detection encountered during
body MRI in children.
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Introduction

The field of data science and its applications to radiology are
immense. Overall, data science encompasses areas ranging
from traditional databases to business analytics to artificial
intelligence. For radiologists, data science can be divided into
non-interpretative and interpretive tasks. Non-interpretive
tasks tend to focus more often on operational efficiency and
practice management. We provide an example of non-
interpretive data from our data science team, demonstrating
the dramatic changes in radiology exam volumes that oc-
curred during the coronavirus disease 2019 (COVID-19) pan-
demic for a single academic medical center (Fig. 1). These
data empowered departmental scenario planning and staff

modeling (e.g., shifting radiologist work location and the dis-
tribution of clinical assignments) to adjust for the variance.

When discussing artificial intelligence (AI) in radiology,
however, the focus is primarily on interpretative tasks, as it
is throughout the remaining portions of this manuscript. More
specifically, the focus has been deep learning with
convolutional neural networks (CNNs). A CNN is a subtype
of machine learning with main features including an architec-
ture comprising multiple layers and image-based input data.
Machine learning is the broader subfield of AI that encom-
passes deep learning as well as previously developed technol-
ogies such as support vector machines (SVMs). Further back-
ground discussion of machine learning and deep learning
CNNs is beyond the scope of this discussion, so we included
resources for readers [1–4]. The goal of this manuscript is to
provide a review of pertinent literature to assist in understand-
ing future development of AI for pediatric body MRI.

Challenges

As alluded to in a previous publication, several challenges that
are particularly salient to body MRI in children deserve men-
tion [2]. Large datasets with a variety of data inputs are nec-
essary for robust deep learning development. A 2019 CNN
review of radiology literature indicated that 49% of studies
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had 101–1,000 cases, and 20% had 1,001–10,000 cases [1].
Datasets for pediatric body-MRI-specific applications of this
size are understandably limited. A cooperative approach to
such studies might therefore be needed, with careful attention
to the use of findable, accessible, interoperable and reusable
(FAIR) datasets as well as defined, transparent information-
sharing agreements and intellectual property governance [5,
6].

Another particularly difficult challenge for pediatric radiology
is the need for accurate data labeling to augment the quality of
datasets, combined with a relatively small pool of pediatric radi-
ologists. While one potential solution is utilization of natural
language processing to extract pre-existing inhomogeneous la-
bels incorporated into radiology reports, oversight and verifica-
tion of accuracy by experienced radiologists remains critical.
Incorrectly labeled data learned in the training set would corrupt
the test set and degrade the accuracy of the deep learning model
[2]. These limitations to CNN development in children, particu-
larly the relatively low numbers of cases in pediatric radiology,
are widely recognized [7]. There might also be, unfortunately,
insufficient economic incentives to justify prioritization of AI
development for children. Therefore, strategies must be devel-
oped, including potentially adapting algorithms from adults, to
overcome these obstacles. Conversely, novel ideas and strategies
from pediatric imagers could augment overall AI radiology de-
velopment. Finally, an additional approach that might be partic-
ularly well suited to children is Society for Pediatric Radiology
(SPR)-facilitated multi-institutional collaboration. In this model,
development and investment burden could be shared among
quaternary institutionswith robust research infrastructure focused
on algorithm training with separate smaller children’s hospitals
focused on algorithm testing. This structure would also have the
benefit of ensuring generalizability of algorithm performance.

Developed to date — pediatric
musculoskeletal radiographs classification

The advent of AI within several areas of pediatric radiology is
progressing rapidly. As of September 2020, the areas with
greatest development in peer-reviewed literature were muscu-
loskeletal radiograph classification and segmentation.
Although widespread deployment into clinical pediatric radi-
ology practice remains nascent, these areas have the best po-
tential to initially impact pediatric radiology workflow. More
specifically, having algorithms perform repetitive, time-
intensive activities unburdens radiologists to increase efficien-
cy and allow additional time to perform cognitively demand-
ing responsibilities and facilitate interpersonal collaboration
with colleagues [7].

Five examples developed to date include assessment of
pediatric bone age, Risser stage, elbow fractures, wrist frac-
tures and leg-length discrepancy. Bone age is the most devel-
oped area, having been featured in the imaging literature and
in the Radiological Society of North America (RSNA) Bone
Age Machine Learning Challenge. Based on a dataset of
14,236 radiographs, 105 submissions were uploaded, with
top results giving mean absolute difference (MAD) of just
over 4 months as compared to the reference standard [8].
For Risser stage classification, in 1,830 radiographs per-
formed for adolescent idiopathic scoliosis, the CNNwas com-
parable to slightly better than six expert graders, with 78.0%
versus 74.5% accuracy, respectively. Additionally, the kappa
coefficient for this CNN was 0.72, which exceeded the 0.65
for the human graders (kappa coefficient measures inter-rater
agreement; 0.72 indicates substantial agreement) [9].

A model to determine wrist fractures was built using a
training dataset of 7,356 studies, annotated by radiologists

Fig. 1 Non-interpretive data from
an academic medical center data
science team demonstrate
radiology exam volumes (per day,
per accession number) that
occurred during the coronavirus
disease 2019 (COVID-19)
pandemic. The data source was
radiologists’ dictated reports,
including both children and
adults. CT computed
tomography, DEXA dual energy
X-ray absorptiometry, MR
magnetic resonance, NM nuclear
medicine, PET positron emission
tomography, US ultrasound, XR
radiography
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and subsequently tested on 524 emergency department stud-
ies. A substantial minority of included studies was from pedi-
atric patients (training set was 1,362 children and 5,153
adults). A subgroup analysis of pediatric patients showed a
sensitivity of 92.7% and 93.5%, and a specificity of 76.2%
and 86.4% on anteroposterior and lateral radiographs, respec-
tively [10]. In a pediatric-specific elbow study for classifica-
tion, the accuracy was 88%, with an area under the curve
(AUC) of 0.95 for the model. The model performed best for
supracondylar and lateral condylar fractures but was less suc-
cessful in cases of elbow effusion without fracture, and with
proximal radius and ulna fractures [11]. Leg-length discrep-
ancy (LLD) studies are a common, cognitively simple yet
tedious and labor-intensive portion of radiographic workload
for pediatric radiologists. A deep learning algorithm for auto-
mated segmentation of bilateral lower extremities was devel-
oped using 179 LLD studies randomly divided into training,
validation and testing sets; the algorithm showed high corre-
lation with the radiology reports (full leg-length discrepancy
r=0.92; mean absolute error 0.51 cm). One notable feature of
this study was reporting of the dramatic difference between
mean calculation time for the deep learning method versus
mean time for a radiologist to manually perform the calcula-
tion (1 s vs. 96 s) [12].

The results of these pediatric musculoskeletal-focused
studies are promising, particularly for triaging fracture detec-
tion in settings where pediatric radiology expertise is limited
(e.g., general radiology overnight) or in developing countries
where radiologist availability is restricted. Additionally, al-
though body MRI studies are fundamentally more complex
because of the variety of sequences, acquisition planes and
organ systems involved, these radiograph classification stud-
ies do set the stage for AI image interpretation development in
children.

Developments in body magnetic resonance
imaging

Image optimization

Areas of greatest potential impact to body MRI include image
acquisition and sequence optimization, which are necessary
tasks preceding image interpretation. Because image acquisi-
tion is not isolated to children or adults, advances in either
population should theoretically be generalizable to the other
cohort.While developments often flow from adults to children
because of the generally greater numbers of adult patients and
financial and resource allocation, opportunities might also ex-
ist for pediatric-specific needs to drive innovation. Multiple
examples of improvingMRI image quality are emerging with-
in the literature, including at least one study with significant
pediatric population representation. Chen et al. [13], in an

investigation of 157 patients with a mean age of 11 years,
utilized a deep learning variation network to improve the
MRI image reconstruction speed and quality on single-shot
fast spin-echo sequences. Their results indicated better sharp-
ness and signal-to-noise ratio (SNR) and a decrease in average
reconstruction time per section from 5.60 s to 0.19 s [13].
Another study, by Lv et al. [14], also focused on decreasing
respiratory motion on free-breathing abdominal MRI study in
adult volunteers. The authors compared a respiratory motion
correction technique using a CNN-based approach for image
registration to both non-motion correction and local affine
registration methods [14]. The results indicated that the
CNN achieved the highest SNR and vessel sharpness while
also significantly reducing registration time compared to the
other two approaches [14].

Not only can CNNs be utilized to increase signal-to-noise
ratio and image sharpness, but they might also be employed to
screen for non-diagnostic images, which could help by
alerting the MRI technologists to optimize or repeat sequence
acquisitions without unnecessarily interrupting pediatric radi-
ologist workflow. For evaluation of T2-weighted liver MRI,
Esses et al. [15] showed that a CNN algorithm to screen for
nondiagnostic images had negative predictive values (NPVs)
of 94% and 86% with respect to two human radiologists. This
high NPV could facilitate potential detection of nondiagnostic
sequences for MRI technologist quality review [15].

Examples of improved image quality applicable to body
MRI might also be derived from cardiac and knee MRI tech-
niques. Masutani et al. [16] demonstrated that deep learning
CNNs (specifically single- and multiple-frame SRNet and
UNet architecture) can infer high-frequency spatial details
from low-resolution inputs (super-resolution) for cardiac
MRI. AI techniques in cardiac imaging can be applied to dy-
namic as well as static cardiac MR acquisitions, something
that would be of great value given the higher heart rates en-
countered in the pediatric age group [17]. Recently, an inter-
changeability study was published of knee MRI demonstrat-
ing that a deep learning variation network enabled a 3.5-fold
acceleration in image acquisition compared to fully sampled
data acquisition, while all six radiologist readers judged that
MR sequence quality to be better [18]. The study also showed
that interchangeability of sequences resulted in discordant
clinical opinions of no greater than 4% for any feature [18].
Beyond the direct scope of body MRI, CNNs might also im-
prove filtered back-projection in pediatric CT. MacDougall
et al. [19] showed image noise reduction by 31% when
CNNs were utilized for abdominal CT examinations in 11
children. Improvements to pediatric abdominal CT might in-
directly benefit body MRI quality in children by improving
magnet access in situations where low-dose CT might be a
suitable alternative.

Taken together, this body of literature illustrates that CNN
development for MRI sequence optimization, including
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reduced acquisition time, increased SNR and image sharpness
and identified non-diagnostic MR images and is both feasible
and potentially deployable on the scanner at time of acquisi-
tion. Figure 2 demonstrates an artistic rendering combining
these concepts, which we hope to see developed by the col-
laborative efforts of electrical and computer science engineers,
MRI physicists and radiologists for clinical use.

Segmentation

Segmentation identifies the voxels composing an anatomical
structure of interest, most commonly an organ, portion of an
organ, or pathology such as a tumor. While several segmenta-
tion tasks in body MRI are only geared toward adults (e.g.,
prostate), several other undertakings have potential benefits to
children.Wang et al. [20] published a study assessing feasibility
of a CNNwith a U-Net architecture for segmenting the liver on
both MRI and CT. For the MRI portion, the Dice scores were
0.95 for T1-weightedMRI and 0.92 for T2*-weightedMRI, and
the 95% limits of agreement betweenT1-weightedMRI volume
compared to manual segmentation were −358 mL to 180 mL
[20]. The Dice score is a commonly utilized validation tool for
AI image segmentation algorithms that these authors defined as
“the volume of overlap between segmentations from the CNN
and from the manual labeling divided by the averaged segmen-
tation volume between the two methods” [20]. The authors
concluded that liver segmentation for MRI utilizing a CNN is
feasible and generalizable across multiple modalities and

imaging techniques [20]. Another potential opportunity for au-
tomated segmentation for pediatric radiologists is calculating
renal volumes. Two manuscripts, both in adults, focused on
deep learning for segmenting kidney volumes in the setting of
autosomal-dominant polycystic kidney disease onCT andMRI,
respectively. Sharma et al. [21] utilized a training dataset of 165
CT examinations and a testing set of 79 CT examinations and
found a Dice coefficient of 0.86 comparing automated deep
learning versus manual segmentation. A subsequent MRI-
focused manuscript that compared two semantic CNNs demon-
strated accuracy greater than 85% for both models [22]. Based
on these bodyMRI studies in adults, it is reasonable to conclude
that segmentation tasks on pediatric abdominopelvic MRI ex-
aminations will eventually be assisted by CNNs, potentially
relieving pediatric radiologists and imaging support staff of an-
other time-intensive repetitive task. Literature on the role of
CNNs in segmentation is further supported bywork in the realm
of cardiac MR [23]. Figure 3 demonstrates an artistic rendering
for MRI liver segmentation utilizing a CNN, which we are
optimistic will eventually be commercially available for future
practice. For children, segmentation of liver volumes is very
helpful, particularly in surgical planning for hepatoblastoma
resection with partial hepatectomy. Segmentation of other com-
mon pediatric tumor volumes including Wilms tumor is valu-
able for assessing volumetric treatment response to
chemotherapy.

Once segmented, another potential area of development for
AI is a comprehensive MRI-based liver analysis for the

Fig. 2 Magnetic resonance image
optimization. Artistic rendering
demonstrates the opportunity for
convolutional neural networks
(CNNs) to decrease motion and
increase image sharpness on
abdominopelvic MRI in children.
The first (left) portion shows
motion artifact resulting in
blurriness on a coronal T2-
weighted image. The CNN
schematic (middle) shows white
spheres representing nodes and
blue lines representing
connections between the nodal
layers. The final (right) portion
shows an image with decreased
motion artifact. Underlying
images are conventionally
acquired coronal half-Fourier
acquisition single-shot turbo spin-
echo images in a 17-year-old girl
experiencing claustrophobia at
the time of acquisition. Image
created by Devon Stuart, MA,
CMI, in conjunction withMichael
Moore, MD
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occurrence of liver diseases, especially those related to life-
style, because there is overlap between the adult and pediatric
populations. He et al. [24] has done work showing the ability
of an SVM model applied to clinical and T2 radiomic data to
predict liver stiffness, discussed later, potentially obviating the
need for formal MR elastography to assess liver stiffness in
cases where the prediction of underlying liver disease is low.
Liver fibrosis staging has also been investigated using CNNs
and gadoxetic-enhanced liverMRI with significant correlation
with pathological data [25]. Both of these could allow for the
noninvasive assessment and subsequent monitoring of diffuse
liver disease processes, such as viral hepatitis infections and
steatohepatitis.

Detection

Presently, a paucity of detection-focused body MRI literature
is directly applicable to children. Literature from adults,
though, shows that detection and characterization of liver le-
sions on MRI are developing. Zhen et al. [26] used data from
1,210 people with liver tumors to train a CNN that was then
tested on 210 independent patients. These liver lesions were
placed into seven total categories, with AUC performance
listed in parentheses, including hemangioma (0.94), focal
nodular hyperplasia (0.98), hepatocellular carcinoma (0.92)
and metastatic malignancy (0.89) [26]. An additional CNN
model within this study distinguished malignant from benign
liver pathology with an AUC of 0.95 (95% confidence inter-
val [CI] 0.91 to 0.98) [26]. Another CNN liver lesion study, by

Hamm et al. [27], was trained with 434 lesions and tested with
60 lesions in adults from six separate liver lesions. Overall, the
test set performance on previously unseen cases showed sen-
sitivity of 90% and specificity of 98% (compared to human
radiologists of 82% and 96%, respectively) [27]. Although AI
characterization of abdominal histopathology in children re-
mains to be developed, pediatric radiomic MRI AI is emerg-
ing. For prediction of liver stiffness in children, He et al. [24]
built an AI model using support vector machines with both
clinical and T2-weighted MRI radiomic data, with 27 and 105
features, respectively. The algorithm was trained on data from
225 internal patients, then independently tested on 84 patients.
For the external validation portion, the SVM achieved an
AUC of 0.80 (compared to 0.84 on internal data). These stud-
ies help confirm AI’s potential to assist pediatric radiologists
beyond detection and into additional tissue characterization.

Pediatric radiologists might eventually leverage CNN
models for detection of abnormalities beyond the direct focus
of thoracoabdominal MRI, specifically osseous and whole-
body MRI findings. While much of the deep learning litera-
ture in musculoskeletal imaging [28] is focused on detection
of fractures, cartilaginous abnormalities and meniscal tears,
there is a potential AI growth opportunity for detecting pedi-
atric skeletal abnormalities such asmetastases, diffuse marrow
replacement, hematopoietic marrow conversion as well as
multifocal osteomyelitis. A study of metastatic disease dem-
onstrated detection of all spinal metastases in 26 adults utiliz-
ing a deep Siamese neural network with a rate of 0.21 false-
positives per case with use of an aggregation strategy [29].

Fig. 3 Magnetic resonance
imaging liver segmentation.
Artistic rendering demonstrates
the opportunity for convolutional
neural networks (CNNs) to
efficiently segment abdominal
organs in children. The first (left)
portion shows an axial T2-
weighted half-Fourier acquisition
single-shot turbo spin-echo
image. The CNN schematic
(middle) shows white spheres
representing nodes and blue lines
representing connections between
multiple nodal layers. The final
(right) portion shows liver
segmentation shaded orange.
Underlying images are from a 15-
year-old girl with segmentation
performed manually. Bottom, the
neurons represent a biological
neural network that is often
likened to a CNN. Image created
by Devon Stuart, MA, CMI, in
conjunction with Michael Moore,
MD
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Although less directly applicable to children, a deep learning
model differentiated lung cancer spinal metastatic disease
from other types of metastatic disease with 0.81 accuracy on
dynamic contrast-enhanced MRI, further confirming the po-
tential utility of deep learning for osseous disease [30]. While
CNN detection of additional sites of osseous metastatic dis-
ease remains to be developed, this could be very helpful in
directing pediatric radiologists to areas beyond the primary
examination focus. Figure 4 demonstrates an artistic rendering
of a model for MRI osseous metastasis to the right femur that
requires significant long-term development.

Emerging AI might also assist in predicting treatment re-
sponse, although therapy response literature based on body
MRI remains sparse presently. One MRI-based example is
machine learning models to predict treatment response to
transarterial hepatocellular carcinoma chemotherapy.
Specifically, logistic regression and random forest-type
models utilizing both clinical patient data and baseline pre-
procedural MRI were developed, although accuracy remains
only fair at 78% [31]. Development by pediatric radiologists
of AI for predicting outcomes using a combination of clinical
and MRI data is an additional area for research to help ad-
vance care for the children we treat.

Conclusion

Based on studies and ideas from the radiology literature in
both adults and children, advances in the utilization of

artificial intelligence in pediatric body MRI are anticipated.
Development is most likely to be focused in areas including:
MRI image optimization, lesion detection and solid organs
segmentation in the abdomen including liver and kidneys.
As obstacles in imaging children are conquered, AI is expect-
ed to facilitate improved efficiency by augmenting pediatric
radiologists.
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