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Human psychological (cognitive and affective) dimensions can be assessed using
several methods, such as physiological or performance measurements. To date,
however, few studies have compared different data modalities with regard to their
ability to enable accurate classification of different psychological dimensions. This study
thus compares classification accuracies for four psychological dimensions and two
subjective preferences about computer game difficulty using three data modalities:
physiology, performance, and personality characteristics. Thirty participants played
a computer game at nine difficulty configurations that were implemented via two
difficulty parameters. In each configuration, seven physiological measurements and
two performance variables were recorded. A short questionnaire was filled out to
assess the perceived difficulty, enjoyment, valence, arousal, and the way the participant
would like to modify the two difficulty parameters. Furthermore, participants’ personality
characteristics were assessed using four questionnaires. All combinations of the three
data modalities (physiology, performance, and personality) were used to classify six
dimensions of the short questionnaire into either two, three or many classes using four
classifier types: linear discriminant analysis, support vector machine (SVM), ensemble
decision tree, and multiple linear regression. The classification accuracy varied widely
between the different psychological dimensions; the highest accuracies for two-
class and three-class classification were 97.6 and 84.1%, respectively. Normalized
physiological measurements were the most informative data modality, though current
game difficulty, personality and performance also contributed to classification accuracy;
the best selected features are presented and discussed in the text. The SVM and
multiple linear regression were the most accurate classifiers, with regression being
more effective for normalized physiological data. In the future, we will further examine
the effect of different classification approaches on user experience by detecting the
user’s psychological state and adapting game difficulty in real-time. This will allow us to
obtain a complete picture of the performance of affect-aware systems in both an offline
(classification accuracy) and real-time (effect on user experience) fashion.

Keywords: affective computing, dynamic difficulty adaptation, physiological measurements, task performance,
personality characteristics, psychophysiology
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INTRODUCTION

Affective games are an emerging type of videogame in which
the player’s psychological (cognitive and affective) state is
automatically detected and used as a basis for intelligent
game adaptation (Liu et al., 2009; Chanel et al., 2011). While
“classic” games perform such adaptation purely based on game
performance (e.g., score), this may not obtain adequate insight
into the player’s subjective state. Therefore, affective games
have the potential to achieve more effective adaptation than
“classic” games (Ng et al., 2012) and consequently result in
higher user engagement, immersion and enjoyment (Nagle et al.,
2015; McCrea et al., 2016; Denisova and Cairns, 2018). Such
improvements would be useful not only for entertainment,
but also for serious game applications such as education
(Ip et al., 2016), motor rehabilitation (Koenig et al., 2011;
Rodriguez-Guerrero et al., 2017), and autism intervention
(Zhang et al., 2017b).

In an affective game, the player’s psychological state can
be defined using multiple dimensions: the level of enjoyment,
anxiety, or valence and arousal (Rani et al., 2004; Chanel et al.,
2011; Rivas et al., 2018). Once defined, this psychological state
can then be identified based on different measurements (e.g.,
physiology, behavioral analysis) using different machine learning
(ML) methods (Novak et al., 2012). However, while some studies
have compared the performance of different data modalities
(e.g., physiology vs. task performance), almost all studies have
only examined a single psychological dimension (e.g., only
anxiety or only workload) and only one or a few similar ML
approaches. There is thus only limited knowledge about how to
choose the psychological dimension, data modalities, and ML
approach in order to optimize psychological state estimation and
game adaptation.

The goal of our study is to compare the effectiveness of
different ML methods in recognizing different psychological
dimensions of affective game players based on different data
modalities. We thus first review data modalities (see section
“Data Modalities”) and ML methods (see section “Machine
Learning Methods”) used in affective games, then present
the contribution of our study in more detail (see section
“Contribution of This Study”).

Data Modalities
Three data modalities are commonly used in affective games: task
performance, physiological measurements, and self-assessment
questionnaires. The first two are usually used as inputs to
ML models that assess the level of a specific psychological
dimension while questionnaires are used to obtain reference
self-report levels of this psychological dimension. For example,
ML models may discriminate between low and high anxiety
(Liu et al., 2015), low, medium and high workload (Zhang
et al., 2017a), or low and high enjoyment, with reference
anxiety/workload/enjoyment values provided by questionnaires.
While most applied studies focus on a single psychological
dimension, it is generally acknowledged that a person’s
psychological dimensions can be described using multiple
dimensions simultaneously (e.g., a person can be experiencing

low workload and high enjoyment). In this study, we thus
define a psychological dimension as an ordinal psychological
variable, and examine the ability of different data modalities
to estimate multiple psychological dimensions. Below, the three
data modalities are described in more detail.

Task Performance
Performance is a task-specific concept that is frequently used as
a rough indicator of a person’s psychological state in affective
computing (e.g., Williams, 2018). It varies significantly from
one user to another (Salen and Zimmerman, 2004) and cannot
precisely quantify the complex affects experienced during
a game. Nevertheless, many studies have tried to adapt a
game based on the player’s performance without assessing
their psychological dimensions directly (Tan et al., 2011;
Schadenberg et al., 2017; Bontchev and Georgieva, 2018). Such
adaptation can have positive effects: for example, performance-
based game adaptation improves children’s engagement
(Bontchev and Georgieva, 2018).

Physiological Measures
Physiological measures from the central or peripheral nervous
system can be used to quantitatively estimate psychological
dimensions in a real-time manner (during the task itself) without
the user’s active participation. In affective games, the most
commonly used measures from the central nervous system
are the electroencephalogram (EEG) (Ma et al., 2015), which
records the electrical activity of the brain, and functional
near infrared spectroscopy (Girouard et al., 2010), which
records the hemodynamic activity associated with neural
behavior. Measurements from the peripheral nervous system
are largely associated with autonomic activation and include
the electrocardiogram (ECG) (Rodriguez-Guerrero et al., 2017),
which monitors the electrical activity of the heart (specifically
heart rate), galvanic skin response (GSR) (Nourbakhsh et al.,
2017), which records the activity of the skin’s sweat glands,
skin temperature (ST), respiration rate (Picard et al., 2001),
and others. Physiological measures are quantitative and sensitive
to different kinds of stimuli, but are often affected by noise
(Larson and Taulu, 2018). Most affective computing studies either
use only physiology or only task performance to assess the
psychological dimensions. Although a few studies have compared
these two data modalities (e.g., Liu et al., 2009; Novak et al., 2011),
knowledge about relative performance is limited.

Self-Assessment Questionnaires
Questionnaires are widely used in affective computing to
assess psychological dimensions such as workload (Roscoe
and Ellis, 1990), immersion (Denisova and Cairns, 2018), and
emotion (Bradley and Lang, 1994). Although a self-assessment
questionnaire is a reliable and accurate indicator of psychological
dimensions, it cannot be used in a real-time manner since that
would require pausing the task regularly.

Other types of self-assessment questionnaires can be used
to provide additional information about the person that allows
more accurate classification of psychological dimensions; for
example, a person’s self-assessed personality could help interpret
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their physiological responses. Many questionnaires can be used
for this purpose, including the Learning and Performance
Goal Orientation Measure (Kim and Lee, 2013), behavioral
inhibition/activation scales (Carver and White, 1994), self-
efficiency scale (Hsia et al., 2016) and Big Five personality
measures (Gosling et al., 2003). The most prominent study
on this topic was performed by Johannes and Gaillard (2014),
who combined personality characteristics with physiological
measurements and task performance. However, as personality
characteristics do not change within a game, they cannot be used
as the only input to ML methods.

Machine Learning Methods
Machine learning methods are critical in affective games, as
they allow the input data (physiology, performance etc.) to be
translated into an estimate of the user’s psychological dimensions,
which then serves as the basis for dynamic game adaptation.
In most studies, the input performance/physiological measures
are classified into two, three or more levels of a psychological
dimension. Previous studies have used either supervised ML
methods such as linear discriminant analysis (LDA) (Chanel
et al., 2011), support vector machines (SVM) (Ma et al., 2015),
logistic regression (Perez et al., 2015), and artificial neural
networks (Casson, 2014) or unsupervised ML methods such as
Gaussian mixture models (Lee and Jung, 2006) and k-means
clustering (Kim et al., 2009). The last few years have also seen
an emerging trend of using deep learning in affective computing
(Glorot et al., 2011; Jirayucharoensak et al., 2014) due to its
flexibility and good performance in non-linear classification.
However, deep learning requires a large dataset, which is not
available in most affective game studies.

Machine learning methods for classification (Yannakakis and
Hallam, 2009) or regression (Bontchev and Georgieva, 2018) can
be found in all proposed real-time affective game adaptation
models. However, very few have compared classification and
regression on the same data with regard to their accuracy; one
example was the work of Bailenson et al. (2008).

Contribution of This Study
While most affective game studies use a single input data
modality to classify one or two psychological dimensions, this
study compares the accuracy of three data modalities (physiology,
performance, and personality characteristics) in classification
of four different psychological dimensions (perceived difficulty,
enjoyment, valence, and arousal) and two subjective preferences
about game difficulty (ball speed and paddle size) in a computer-
based game of Pong. Our ultimate goal is to identify robust
ML models that can be used to effectively adapt the difficulty
of an affective game, thus ensuring an optimal game experience
for the player. In this study, however, we limit ourselves to
offline comparison of multiple ML techniques with different
input modalities in order to find the best way to identify each
psychological dimension. The research questions (RQ) are:

• RQ1: Which psychological dimension is the most
sensitive to differences between several difficulty
configurations? Most affective game studies focus on

a single psychological dimension such as enjoyment
or perceived task difficulty (Schadenberg et al., 2017)
without a strong justification. A few studies, however,
have examined different psychological dimensions to
find the one with the highest sensitivity to the task (e.g.,
Baker et al., 2010). We thus hypothesized that multiple
psychological dimensions can be simultaneously classified
with high accuracy.

• RQ2: Which combination of ML methods and different
input data modalities yields the highest classification
accuracy for the different psychological dimensions and
two subjective preferences regarding game difficulty?
Affective games usually utilize only one data modality (e.g.,
performance or physiology) and compare the accuracies of
different classification algorithms. Although some studies
have used personality characteristics as a basis for more
accurate difficulty adaptation (Nagle et al., 2016) and
compared different data modalities with regard to the
accuracy of ML techniques, knowledge about effective
combinations of psychological dimensions, ML methods
and data modalities is limited. We hypothesized that
physiology will result in higher accuracy than performance
or personality characteristics, but the combination of
multiple data modalities will result in the most accurate
classification.

MATERIALS AND METHODS

This section is divided into six subsections that describe
the hardware and study setup, study protocol, physiological
signals, performance variables, personality characteristics, and
classification and its validation.

Study Setup
The computer game used in this study was reused from our
previous arm rehabilitation study (Gorsic et al., 2017). It was
a Pong game consisting of two paddles and a ball on a board
(Figure 1, left). The bottom paddle was controlled by the
participant while the top paddle was controlled by the computer.
If the ball passed one player’s paddle and reached the top or
bottom of the screen, the other player scored a point and the
ball was instantly moved to the middle of the board, where it
remained stationary for a second before moving in a random
direction. The player moved their paddle left and right by tilting
the Bimeo (Kinestica, Slovenia) arm tracking device (Figure 1,
right) left and right with their dominant hand. While originally
intended as a rehabilitation device, the Bimeo was used in order
to obtain precise measurements of participants’ limb motions,
which can serve as an additional input to the classifiers. The
game was played on a 21-inch screen with the participant
seated approximately 60 cm from the screen. Different difficulty
configurations of the Pong game were used to induce different
levels of psychological dimensions. The game difficulty can be
adjusted using two parameters: the ball speed and the paddle
size (with the paddle size being the same for both paddles at all
times). This results in nine difficulty configurations, defined by
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FIGURE 1 | The Pong game (left) and the Bimeo device (right). The Bimeo sits on a table and can be tilted left and right to play the game.

all possible combinations of three ball speeds (slow, medium, and
fast) and three paddle sizes (small, medium, and large).

Study Protocol
The study was approved by the University of Wyoming
Institutional Review Board (protocol #2016062201232). Thirty
healthy university students (24.2 ± 4.4 years old, 11 females) were
recruited, and each participated in a single 1-h session. At the
start of the session, participants filled out an informed consent
form and four personality questionnaires. The experimenter
attached all physiological electrodes; the physiological signals
were then recorded for a 2-min baseline period, during which
participants were instructed to relax, remain motionless and look
at a basic program menu on the computer screen without closing
their eyes. A photo of a participant during this baseline period is
shown in Figure 2. Then, nine game conditions (corresponding
to nine difficulty configurations of the Pong game) were played
in random order to discourage the use of structured exploration
strategies (Baranes et al., 2014). To ensure random order, 30
orders were selected using a random number generator among all
possible orders of the nine difficulty configurations and presented
to the participants in the order they were selected. After each
2-min condition, a short questionnaire was filled out to assess
four psychological dimensions (perceived difficulty, enjoyment,
valence, and arousal) and two subjective preferences about game
difficulty (desired change to ball speed and paddle size). The
first two psychological dimensions were assessed using simple
questions (e.g., how difficult was the condition?) on 7-point scales
where 1 and 7 represented very low and very high, respectively.
Valence and arousal were rated using the Self-Assessment
Manikin (Bradley and Lang, 1994) on a 9-point scale where 1 and
9 represented very low and very high, respectively. The range of
response for desired ball speed and paddle size change was −2
to 2 where −2 means “decrease by two levels.” These responses
were independent of the current ball speed and paddle size;
participants could, for example, request to decrease ball speed by

two levels even if it was already at the minimum value (though
no participant did so). The desired changes to the ball speed
and paddle size were not actually used to adapt difficulty, as the
order of nine game conditions was chosen randomly for each
participant before the session. The obtained results from the short
questionnaire were used as the reference (response variables)
for the proposed classification models. Participants’ physiological
signals and performance were recorded during each condition.
Signal processing and ML techniques were then applied offline
using MATLAB 2016b (MathWorks, United States).

FIGURE 2 | A participant relaxing during the baseline period while wearing the
physiological sensors and holding the Bimeo. At the end of the baseline
period, the Pong game appeared on the screen and the nine game conditions
were played.
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Physiological Signals
Signal Acquisition and Filtering
Two g.USBamp signal amplifiers and associated sensors (g.tec
Medical Engineering GmbH, Austria) were used to record
six physiological signals: eight-channel EEG, two-channel
electrooculogram (EOG), ECG, respiration, GSR, and ST.
A similar setup was used in our recent study on physiological
responses in simulated driving (Darzi et al., 2018). Eight unipolar
EEG signals were recorded using g.Sahara dry electrodes (g.tec)
placed on prefrontal, frontal and central areas of the brain
based on the 10–20 placement system (Klem et al., 1999):
AF3, AF4, F1, F2, F5, F6, C1, and C2. From these unipolar
signals, four bipolar signals (AF3–AF4, F1–F2, F5–F6, C1–C2)
were calculated. Two-channel EOG (reflecting up-down and
left-right eye movement) was recorded from the left eye using
small pre-gelled ECG electrodes (Kindall) placed according to
suggestions in the literature (Ma et al., 2015). The two-channel
EOG was used not only as a source of information about
psychological states, but also as a reference signal with which
to denoise the EEG signals (which are severely affected by
eye activity). The EEG denoising was done using a recursive
least squares adaptive filter with EOG as the reference (Adali
and Haykin, 2010). ECG was recorded using four pre-gelled
electrodes on the body (two on the chest, one over the
spine, and one on the abdomen) as recommended by the
manufacturer of the g.USBamp. Respiration was recorded using
a thermistor-based sensor in front of the nose and mouth.
ST was recorded using a small sensor attached to the distal
phalanx of the little finger of the non-dominant hand using
tape. GSR was recorded using two dry electrodes (g.GSRsensor2,
g.tec) attached to the index and middle fingers of the non-
dominant hand. Finally, a seventh physiological signal, point of
gaze, was recorded using the Gazepoint GP3 remote eye tracker
(Gazepoint, Canada).

The sampling frequency was 30 Hz for point of gaze and
256 Hz for all other signals. For respiration, GSR, and ST, a
band-pass filter (0–30 Hz) was used to reduce high-frequency
noise. For ECG, a high-pass filter (cutoff at 0.1 Hz) was used
to eliminate low-frequency noise, and a 60-Hz notch filter was
used to remove electrical interference. For EEG, a band-pass filter
(2–60 Hz) was applied.

Feature Extraction
For each 2-min game condition, a total of 49 features were
extracted from the seven physiological signals as follows:

EEG: Two methods were used: lateral power spectrum density
(PSD) (Fitzgibbon et al., 2016) and dispersion entropy (Azami
et al., 2017). Lateral PSD resulted in 20 features (four bipolar
signals times five frequency bands) while dispersion entropy
resulted in eight features (one feature per unipolar signal).

EOG: Mean, median and standard deviation of EOG first
derivative were calculated.

ECG: Two time-domain features were calculated: mean
heart rate and the standard deviation of inter-beat intervals.
Furthermore, three frequency-domain features of heart rate
variability were calculated: the power of low frequencies (LF),
power of high frequencies (HF) and the power ratio of LF/HF.

The LF range was 0.04–0.15 Hz while the HF range was 0.15–
0.4 Hz (Shaffer and Ginsberg, 2017).

Respiration: The mean respiration rate (number of complete
breathing cycles per minute), the standard deviation of
respiration rate, and the root-mean-square of successive
differences of respiration periods were calculated.

ST: Mean ST and the difference in ST between the first and last
second of the condition were calculated.

GSR: The GSR can be divided into two components: the tonic
(low-frequency) and phasic (high-frequency) component. For
the tonic component, the mean GSR and the difference in GSR
between the first and last second of the scenario were calculated.
The phasic component consists of discrete skin conductance
responses, and we calculated the number of responses, the mean
response amplitude, and the standard deviation of response
amplitude (Boucsein, 2012).

Eye tracker: The size of each pupil (left and right separately)
and mean gaze velocity based on the point of gaze estimated
by the GP3 eye tracker’s built-in software were calculated
(Duchowski, 2017).

As physiological features vary widely (e.g., amplitude and
frequency range) from one participant to another, they are
commonly normalized to reduce intersubject differences (Novak
et al., 2012). In this study, each participant’s normalized
physiological features were calculated by dividing the non-
normalized values by the value obtained in the baseline
period. Both normalized and non-normalized versions of the
physiological features were used and compared in order to find
the features that would yield the highest classification accuracies.

Performance
Two features were used to assess a participant’s performance in
different game conditions: in-game score, and the amount of
arm movement. The in-game score is defined as the difference
of the participant’s score and the computer opponent’s score for
each game condition. The amount of movement is defined as the
root-mean-square value of hand velocity recorded by the Bimeo’s
motion sensors, a common measure of motion intensity in arm
exercise studies (Tsurumi et al., 2002). Both features were used
for classification without any normalization.

Personality Characteristics
Participants filled out four personality questionnaires: the
Learning and Performance Goal Orientation Measure (Kim
and Lee, 2013), Behavioral Inhibition/Activation Scales (Carver
and White, 1994), the Self-efficacy Scale (Hsia et al., 2016),
and the Ten Item Personality Inventory (Gosling et al.,
2003). The Learning and Performance Goal Orientation
Measure is a 16-item questionnaire that results in two
characteristics: learning goal score and performance goal
score. The Behavioral Inhibition/Activation scales questionnaire
has 20 items and assesses four characteristics: behavioral
inhibition, reward responsiveness, activation system drive,
and fun seeking. The self-efficacy scale is a short four-item
questionnaire that assesses a single characteristic: self-efficacy.
The Ten Item Personality Inventory uses 10 items to assess
the Big Five characteristics: extraversion, agreeableness,

Frontiers in Neuroscience | www.frontiersin.org 5 November 2019 | Volume 13 | Article 1278

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01278 November 26, 2019 Time: 12:14 # 6

Darzi et al. Classification of Psychological Dimensions in Computer Games

conscientiousness, emotional stability, and openness to
experiences. All personality characteristics were used for
classification without any normalization.

Classification and Validation
All combinations of the three data modalities (physiology,
performance, and personality characteristics) were used as inputs
of ML methods to classify perceived difficulty, enjoyment,
valence, arousal, desired change to ball speed, and desired change
to paddle size (obtained from the short questionnaire) into one of
multiple possible classes. The current ball speed and paddle size
were added to all input data combinations since they indicate the
current game state and would be available to any practical model.
The reference output models for all classifiers were obtained
manually from the short questionnaire. Specifically, the range of
possible answers for each question on the short questionnaire
was divided into either two classes, three classes, or many classes
as follows.

Classification Into Two Classes
The input data were classified into “low” or “high” for perceived
difficulty, enjoyment, valence and arousal; they were classified
into “increase” or “decrease” for desired changes to paddle size
and ball speed using the ranges defined in Table 1. These
ranges were defined manually after data collection based on
the histograms of all participants’ short questionnaire answers
and ensured that the numbers of samples in each class were as
equal as possible. Additionally, Table 1 presents the number of
samples in each class.

Classification Into Three Classes
The input data were classified similarly to the above scenario,
but the possible classes were now low/medium/high (for
perceived difficulty, enjoyment, valence, and arousal) or
increase/decrease/no change (for desired changes to paddle
size and ball speed) using the ranges defined in Table 2. Again,
these ranges were manually defined based on histograms of

TABLE 1 | The definition of classes for two-class classification of four
psychological dimensions and two subjective preferences regarding game speed
and paddle size.

Dimension Difficulty Enjoyment Valence Arousal

Class low Range 1–2 1–4 1–2 1–3

# samples 86 121 93 72

Class high Range 4–7 6–7 4–9 7–9

# samples 123 93 120 95

Preference Speed change Paddle size change

Class Decrease Range −1, 0 −2, −1

# samples 120 79

Class Increase Range 1, 2 1, 2

# samples 150 60

The classes are defined based on histograms of possible answers to that question
on the short questionnaire. # samples = number of samples in class.

TABLE 2 | The definition of classes for three-class classification of four
psychological dimensions and two subjective preferences regarding game speed
and paddle size.

Dimension Difficulty Enjoyment Valence Arousal

Class low Range 1–2 1–3 1–2 1–3

# samples 86 76 93 72

Class medium Range 3–4 4–5 3–4 4–6

# samples 101 101 95 103

Class high Range 5–7 6–7 5–9 7–9

# samples 83 93 82 95

Preference Speed change Paddle size change

Class Decrease Range −2, −1 −2, −1

# samples 13 79

Class No change Range 0 0

# samples 107 131

Class Increase Range 1, 2 1, 2

# samples 150 60

The classes are defined based on histograms of possible answers to that question
on the short questionnaire. # samples = number of samples in class.

participants’ answers. Additionally, Table 2 presents the number
of samples in each class.

Classification Into Many Classes
Unlike the previous two scenarios, the answers to the short
questionnaire were not mapped to two or three classes; instead,
the number of classes for each outcome variable was the same
as the number of possible answers to that question on the
short questionnaire. Thus, the input data were classified into
seven possible classes for perceived difficulty and enjoyment
(which had a range of 1–7 on the short questionnaire), nine
classes for valence and arousal, and five for the desired changes
to ball speed and paddle size. This scenario is henceforth
referred to as “many classes” to be concise. Two-class and three-
class classification are common in affective games. Classification
into “many classes,” on the other hand, is not common,
but was added to evaluate the possibility of high-resolution
classification as well as allow direct impartial comparison of
regression to other classifiers. Since regression considers the
numerical relationship between the classes while other classifiers
do not, it was expected to be more accurate for classification
into many classes.

As the basis for all classification scenarios, we first used
forward stepwise feature selection (Keough and Quinn, 1995)
on the full dataset to find the most informative set of
features. The inclusion threshold for feature selection was
0.05 for the two- and three-class scenarios; it was 0.1 for
the “many classes” scenario. Then, all combinations of the
three data modalities (performance, physiology, and personality
characteristics) were classified using four different classifiers:
SVM with a linear kernel, LDA, ensemble decision tree, and
multiple linear regression. The classification was done for each
outcome variable of the short questionnaire (perceived difficulty,
enjoyment, valence, arousal, desired change to ball speed, and
paddle size) and each classification scenario separately. To use
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multiple linear regression as a classifier, its continuous output
value was rounded to the closest class. The classifiers were
validated using 10-fold crossvalidation (27 participants’ data
used to train, three participants’ data to validate the classifier;
procedure repeated 10 times with each participant in the
validation dataset once).

RESULTS

Classification
Table 3 presents the mean two-class classification accuracies for
all combinations of input data modalities. The highest accuracy
(97.6%) was obtained for classification of desired changes to
paddle size using only physiological measurements. Physiological
measurements alone yielded the highest accuracy for four of
six outcome variables; for the other two, the highest accuracy
was obtained with the combination of all data modalities. The
lowest classification accuracy (89.3%) was obtained for desired
changes to ball speed. Table 3 presents the results of only the
most accurate of the four classifiers in each classification scenario;
accuracies for all four classifiers are presented in Supplementary
Table S4. Standard deviations of these classification accuracies
are available in Supplementary Table S1.

Table 4 presents the mean three-class classification accuracies
for all combinations of the three data modalities. The highest

classification accuracy was obtained for desired changes to
ball speed and paddle size (84.1%) while the lowest was
obtained for arousal level (73.3%). The combination of
physiological measurements and personality characteristics
yielded the highest classification accuracy for four of six
outcome variables; for the other two, the combination of all
data modalities resulted in the highest accuracy. Standard
deviations of these classification accuracies are available in
Supplementary Table S2.

Table 5 presents the mean “many classes” classification
accuracies for all combinations of the three data modalities. In
this scenario, there were seven classes for perceived difficulty and
enjoyment, nine for valence and arousal, and five for changes to
ball speed and paddle size. The highest classification accuracy
was obtained for speed and paddle size change (approximately
65%) while the lowest was obtained for arousal (approximately
30%). The combination of all data modalities yielded the
highest accuracy for five of six classification cases; for the
other one, the physiological measurements or the combination
of physiology and performance yielded the highest accuracy.
Standard deviations of these classification accuracies are available
in Supplementary Table S3.

Best Selected Features
Table 6 shows the best selected features for two-class
classification of the six outcome variables from the short

TABLE 3 | Mean two-class classification accuracies for all combinations of input data modalities.

Outcome variables

Input data modality Difficulty Enjoyment Valence Arousal Speed change Paddle size change

Physiology N94.3% (R) 86.3% (S) N95.3% (R) N95.8% (R) 89.3% (R) N97.6% (S)

Personality 84.7% (E) 83.4% (E) 84.2% (E) 87.4% (E) 81.4% (E) 92.5% (S)

Performance 84.3% (R) 68.0% (S) 62.3% (E) 77.8% (E) 75.5% (L) 92.1% (L)

Physio and Pers N95.2% (R) N92.1% (R) 93.0% (R) N95.4% (R) N88.2% (S) 96.5% (S)

Physio and Perf N94.7% (R) N94.4% (R) N94.9% (R) N95.2% (S) 87.4% (R) 97.1% (S)

Pers and Perf 85.2% (E) 82.4% (E) 83.3% (E) 87.3% (E) 82.7% (E) 92.1% (S)

All N96.2% (R) N96.3% (R) 93.9% (R) N95.5%(R) N87.6% (S) 96.8% (S)

The highest accuracy in each column is bolded. Physio, Physiology; Pers, Personality characteristics; Perf, Performance; S, Support vector machine; L, linear discriminant
analysis; E, ensemble decision tree; R, multiple linear regression; N, Normalized physiological features.

TABLE 4 | Mean three-class classification accuracies for all combinations of input data modalities.

Outcome variables

Input data modality Difficulty Enjoyment Valence Arousal Speed change Paddle size change

Physiology N76.3% (R) N70.0% (R) 65.6% (S) N69.6% (R) N83.7% (R) N83.7% (S)

Personality 63.3% (E) 60.4% (E) 62.6% (E) 68.5% (E) 78.2% (S) 73.0% (E)

Performance 59.6% (S) 47.1% (S) 41.5% (S) 56.0% (S) 71.1% (E) 58.5% (S)

Physio and Pers N81.5% (R) N75.2% (R) 72.2% (S) N72.2% (R) N84.1%(R) N84.1% (S)

Physio and Perf N77.1% (R) N74.4% (R) N66.1% (R) 67.8% (L) N83.7% (R) N83.0% (S)

Pers and Perf 62.6% (E) 63.3% (E) 61.8% (E) 63.0% (L) 79.6% (E) 71.1% (E)

All N76.7% (R) N70.0% (R) 74.4% (R) N73.3% (R) N84.1% (S) N81.5% (S)

The highest accuracy in each column is bolded. Physio, Physiology; Pers, Personality characteristics; Perf, Performance; S, Support vector machine; L, linear discriminant
analysis; E, ensemble decision tree; R, multiple linear regression; N, Normalized physiological features.
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TABLE 5 | Mean “many-class” classification accuracies for all combinations of input data modalities.

Outcome variables

7 classes 9 classes 5 classes

Input data modality Difficulty Enjoyment Valence Arousal Speed change Paddle size change

Physiology 37.4% (R) 31.5% (S) N38.9% (S) 28.6% (S) N60.0% (R) 58.5% (S)

Personality 34.1% (S) 38.2% (E) 36.3% (E) 23.3% (S) 60.6% (E) 61.8% (S)

Performance 34.8% (E) 27.1% (R) 23.3% (S) 18.9% (R) 53.0% (L) 47.5% (L)

Physio and Pers N35.6% (R) 37.1% (S) N34.8% (S) 26.7% (S) 65.2% (R) 65.6% (S)

Physio and Perf 37.4% (R) N37.4% (S) N38.9% (S) N25.6% (S) N60.0% (R) 60.7% (S)

Pers and Perf 34.1% (S) 35.2% (S) 31.1% (E) 25.6% (E) 63.3% (E) 63.7% (E)

All 38.8% (R) N38.2% (S) N35.6% (S) N29.5% (S) 65.2% (R) 66.3% (E)

The highest accuracy in each column is bolded. Physio, Physiology; Pers, Personality characteristics; Perf, Performance; S, Support vector machine; L, linear discriminant
analysis; E, ensemble decision tree; R, multiple linear regression; N, Normalized physiological features.

TABLE 6 | The best four features chosen by stepwise feature selection for each outcome variable.

Outcome variable Rank Selected feature P-value Class low (Mean ± SD) Class high (Mean ± SD)

Difficulty 1 Current speed (1.5–3.5) <0.001 2.4 ± 0.5 3.4 ± 0.7

2 Current paddle size (1–3) <0.001 2.2 ± 0.8 1.7 ± 0.8

3 Lateral PSD of AF3/AF4 in Gamma band <0.001 0.11 ± 0.93 −0.15 ± 0.95

4 Behavioral inhibition (7–28) 0.01 19.9 ± 3.4 18.9 ± 3.8

Enjoyment 1 Current speed (1.5–3.5) <0.001 2.8 ± 0.8 3.2 ± 0.8

2 Learning goal (8–56) <0.001 48.1 ± 6.0 50.8 ± 4.3

3 In-game score <0.001 3.6 ± 7.1 6.2 ± 7.4

4 Arm movement level <0.001 −0.12 ± 0.76 0.18 ± 0.95

Valence 1 Normalized left pupil size <0.001 −0.03 ± 0.73 0.51 ± 1.07

2 Learning goal (8–56) <0.001 48.0 ± 6.3 51.1 ± 3.9

3 Agreeableness (2–14) <0.001 5.7 ± 1.6 6.6 ± 1.8

4 Lateral PSD of C1/C2 in Gamma band <0.001 0.25 ± 0.93 −0.12 ± 0.82

Arousal 1 Current speed (1.5–3.5) <0.001 2.5 ± 0.7 3.3 ± 0.8

2 Normalized eye movement velocity <0.001 −0.13 ± 0.67 0.77 ± 1.25

3 Current paddle size (1–3) <0.001 2.3 ± 0.1 1.8 ± 0.1

4 Normalized mean respiration rate 0.001 0.04 ± 0.95 0.28 ± 0.81

Rank Selected feature P-value Decrease (Mean ± STD) Increase (Mean ± STD)

Speed change 1 Current speed (1.5–3.5) <0.001 3.5 ± 0.7 2.6 ± 0.7

2 Self-efficacy (4–20) <0.001 15.1 ± 2.0 15.9 ± 2.4

3 Openness to experience (2–14) 0.002 10.8 ± 1.9 10.6 ± 2.0

4 Dispersion entropy of AF3 (−1 to 1) 0.003 −0.16 ± 0.84 0.11 ± 1.06

Paddle size change 1 Current paddle size (1–3) <0.001 2.7 ± 0.1 1.2 ± 0.1

2 Extraversion (2–14) <0.001 7.4 ± 3.1 8.7 ± 2.7

3 Agreeableness (2–14) <0.001 6.6 ± 1.9 5.8 ± 1.5

4 Dispersion entropy of C2 (−1 to 1) 0.001 −0.19 ± 1.04 0.13 ± 0.90

The features are selected for the case of two-class classification among all features from all three data modalities. For questionnaires and current difficulty settings, the
minimum and maximum possible value are given. For all features, the mean ± standard deviation are given for the feature’s value in each class. The significance level of
the difference between the two classes is shown with P-values. PSD, power spectrum density; SD, standard deviation.

questionnaire: perceived difficulty, enjoyment, valence, arousal,
desired change to ball speed, and paddle size. The “best” features
are considered to be the first four features selected by forward
stepwise feature selection among all features from all three data
modalities. Each feature’s mean value and standard deviation are
shown separately for each class (e.g., low or high); furthermore,
the significance of each feature’s differences between the two
classes is indicated with P-values.

DISCUSSION

Classification of Different Psychological
Dimensions
Tables 3–5 indicate that two-class classification is most effective
using physiological measurements, three-class classification
is most effective using a combination of physiology and
personality characteristics, and many-class classification is most
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effective using a combination of all three data modalities.
Thus, physiological measurements are more informative than
performance and personality data and should be collected despite
the relatively high cost and difficulty of measurement compared
to performance measurements.

Though physiological data generally exhibited the highest
classification accuracy, the accuracies of performance and
personality data were not worse than the physiological ones by
more than 15%, which was somewhat unexpected – we expected
that personality data would be nearly useless on their own.
Further analysis revealed that the high accuracy was because
the current speed and current paddle size were included in
all classifiers. As a follow-up evaluation, all classification cases
were repeated without adding the current game parameters to
the input data, resulting in a large decrease in all classification
accuracies. For two-class classification, the largest decrease was
observed for perceived difficulty (96–66%) while the smallest
was observed for valence (95–84%). For three-class classification,
the largest decrease was again observed for perceived difficulty
(81–46%) while the smallest was observed for valence (74–63%).
For many-class classification, the largest decrease was observed
for desired paddle size change (66–50%) while the smallest was
observed for valence (39–37%). Therefore, the current state of the
game already allows some estimation of how the user is likely to
want to adjust difficulty, and this should be taken into account in
general affective computing research.

Based on Tables 3–5, perceived difficulty is the most
promising psychological dimension for use in a real-time
application, as it is classified more accurately than the other
three dimensions. Furthermore, it is the only one that can
be directly used as a basis for adaptation – if-then rules can
easily be designed to adapt the difficulty parameters based on
perceived difficulty. Enjoyment, for example, provides a less
intuitive basis for adaptation, as low enjoyment could be caused
by the game being either too easy or too hard. Other than
the psychological dimensions, the two subjective preferences
regarding the difficulty parameters could also be accurately
predicted in a real-time application using the developed
classifiers, and could provide more fine-grained information
about how exactly difficulty should be adapted.

Machine Learning Methods
According to Tables 3–5, regression and SVM are the most
accurate classifiers. In two-class classification, regression is
the dominant classifier, however, in three- and many-class
classification, other classifiers (especially SVM) are also often
the most accurate. In a practical application, developers could
mix and match classifiers and data modalities, choosing whatever
approach is most accurate for each specific goal (e.g., use one
approach for classification of desired ball speed change and a
different approach for desired paddle size change).

In 65% of classification cases that involved physiological
features (either alone or with personality/performance), the
normalized physiological features resulted in higher accuracy
than non-normalized ones. Furthermore, in 66% of classification
cases with normalized physiological features, the regression-
based classifier was more accurate than the other three

classifiers. Therefore, since normalization is computationally not
demanding, it should be used in the classification cases where it
improves accuracy; when normalization is used, regression-based
classification is most likely to be effective.

As the specific classes (low, medium, and high) were defined
for each psychological dimension and subjective preference
based on the histogram of responses, the number of samples in
different classes is similar between dimensions and preferences,
and should not have a major effect on relative classification
accuracies. The one exception to this is in the “many classes”
case, where the subjective preferences yield higher accuracies due
to a lower number of possible classes (five vs. seven or nine for
psychological dimensions).

The Best Selected Features
Table 6 lists the best four selected features for two-class
classification of all short questionnaire outputs (perceived
difficulty, enjoyment, valence, arousal, desired speed, and paddle
size change). These features were selected by the stepwise
method; however, the causal relationship between the features
and the output is unclear and beyond the scope of this
paper. Below, we discuss the best selected features for each
questionnaire output.

Perceived Difficulty
The current speed and paddle size values are the most
effective features, showing that the game’s difficulty parameters
are effective. Lateral PSD of prefrontal electrodes (AF3/AF4)
decreases during difficult game conditions, indicating a lower
activation of the right prefrontal lobe. Behavioral inhibition
predicts an individual’s response to anxiety-relevant cues, and
higher values indicate more intense inhibition. The obtained
results show that behavioral inhibition is lower among the
participants who reported higher perceived difficulty.

Enjoyment
Current ball speed was the best predictor of enjoyment,
indicating that participants enjoyed themselves more when the
game was harder. However, this result is likely specific to our
participants (mostly young university students); furthermore, it
is likely specific to the range of tested ball speeds, as higher
difficulties would likely cause enjoyment to drop again. Learning
goal, a personality characteristic, is also a predictor of enjoyment.
We consider this reasonable, as this characteristic indicates an
individual’s persistence in learning; thus, participants who are
more persistent likely learn how to play the game better and enjoy
themselves more.

Valence
Participants’ pupil size is significantly larger when they
experience more positive emotions. Previous studies have
indicated that pupil size can increase with both positive and
negative stimuli, supporting this finding (Partala and Surakka,
2003). Furthermore, two personality characteristics are correlated
with valence: agreeableness and learning goal. As with enjoyment,
participants with a higher learning goal score may have been
more persistent in learning how to play; participants with
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high agreeableness, on the other hand, may have been simply
more likely to exhibit higher enjoyment in general. Finally,
the lateral PSD of the central electrodes (C1/C2) decreases as
valence increases.

Arousal
The current ball speed and paddle size act as predictors of
arousal, which is unsurprising – higher difficulties require more
arousal. Furthermore, eye movement velocity increases with
arousal, likely since participants need to track the moving ball
and paddles across the screen more quickly. The general trend
of eye velocity being correlated with arousal is also seen in
other affective computing studies (e.g., Di Stasi et al., 2013).
Furthermore, respiration rate increases with arousal, which could
be either due to psychological effects or due to the higher physical
demand associated with faster arm movements.

Desired Speed Change
The current speed is a predictor of how participants would like to
change the speed, which can be considered a trivial result. More
interestingly, self-efficacy, which assesses the personal judgment
of “how well one can execute courses of action required to deal
with prospective situations,” is higher in participants who prefer
to increase the speed and make the game harder. Furthermore,
the dispersion entropy for the AF3 electrode is higher when
participants prefer to increase speed.

Desired Paddle Size Change
Again, the current paddle size is a trivial predictor of desired
paddle size changes. More interestingly, two personality changes
are predictors of desired paddle size changes: participants with
high extraversion prefer to increase paddle size while participants
with high agreeableness prefer to decrease it. However, the reason
for this relationship is unclear. Finally, the dispersion entropy for
the C2 electrode is lower when participants prefer to decrease
paddle size. Similar correlations between EEG dispersion entropy
and mental workload have been found in other studies (e.g.,
Zarjam et al., 2015).

Next Steps
As the classifiers are highly accurate, our next step will be to
use them in a real-time manner: the participant’s psychological
dimension will be classified, the game will adapt its difficulty
based on this information, and the effect on the overall
user experience will be evaluated. We consider such real-time
evaluation to be critical, as differences in offline classification
accuracy may not actually translate to differences in actual user
experience (Novak et al., 2014; McCrea et al., 2016).

Since the classifiers are not computationally demanding, real-
time versions have already been made and preliminarily tested.
In the future, we will evaluate ways to increase their accuracy by
also providing them with information about previous difficulty
configurations experienced by the specific participant and the
evoked psychological dimensions. This would allow the affective
computing system to estimate how a specific participant is likely
to react to a certain difficulty configuration based on past data,
providing personalized classification.

At the same time, as our ultimate goal is to enable the
development of practical affective game systems, we should
consider how the approach can be simplified for real-world use.
None of the classifiers used in our work are computationally
demanding, and both task performance and personality measures
can be obtained easily. The main obstacle is the use of laboratory-
grade sensors that take time to apply. In the future, we will
thus also evaluate less obtrusive sensors such as heart rate
sensors embedded in the game controller (Abe et al., 2015) or
eye trackers embedded in head-mounted virtual reality systems
(Hua, 2001).

Study Limitations
Three limitations of the study should be acknowledged. First,
we performed classification over 2-min intervals so that results
of our study could be compared to those of other studies
on physiology-based analysis of psychological dimensions,
which tend to use intervals of 2–5 min. However, shorter
or longer intervals could result in different classification
accuracies, and both shorter and longer intervals have their
advantages: shorter intervals would allow difficulty to be adapted
more often while longer intervals would allow more complex
emotions to be induced.

Second, the training data were limited to nine difficulty
configurations (three speeds and three paddle sizes), and these
nine configurations were not perceived as overwhelmingly
difficult by most participants. This is indicated by participants’
opinions about desired difficulty changes, as they were more
likely to want to increase rather than decrease difficulty. As a
consequence, the full range of emotion that could be experienced
in an affective game was likely not induced – for example, most
participants did not experience very high perceived difficulty or
frustration. We have partially compensated for this shortcoming
by redefining the class ranges manually based on histograms of
participants’ responses to the short questionnaire, which ensures
that the dataset still contains a relatively balanced distribution
of samples from “low,” “medium,” and “high” classes. Still, it
must be acknowledged that this distribution reflects the range of
emotion induced by our study protocol, not the range of emotion
induced by all affective games. Thus, the developed classifiers
may not generalize to more extreme difficulty configurations of
our game or to other games that induce different levels and
types of workload. For example, our game primarily induces
temporal workload due to the need to quickly intercept the ball,
and the developed classifiers may not generalize to games that
primarily induce mental workload in the absence of temporal
workload (e.g., a math practice game with no time limits).
However, this is not simply a limitation of our study, as
generalizability of results between tasks has long been a challenge
in affective computing.

Finally, the study was conducted with a sample of healthy
university students who were mostly Caucasian and had prior
experience with computer games. Thus, care should be taken
when generalizing the results to other populations. Older or non-
Caucasian participants, for example, may have both different
physiological responses to stress and different psychological
reactions to computer games.
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CONCLUSION

In this study, four psychological dimensions and two subjective
preferences of participants who played Pong at nine difficulty
configurations were classified into either two, three or many
classes using four classifiers: SVM, LDA, ensemble decision tree
and multiple linear regression. Reference class labels were defined
based on participants’ answers to a short questionnaire after each
game condition. The classifiers used different combinations of
three input data modalities (physiological measurements, game
performance, and personality characteristics), and classification
accuracies were compared between data modalities.

The highest classification accuracies were 97.6% for two-class
classification, 84.1% for three-class classification, and 66.3% for
“many classes” classification. The four psychological dimensions
exhibited different classification accuracies, with the highest
accuracy achieved for perceived difficulty. As perceived difficulty
is also the easiest to use as a basis for difficulty adaptation,
we thus recommend using it if the goal is to adapt game
difficulty based on psychological dimensions. The two subjective
preferences about game difficulty were also highly accurate and
could be used instead of or in addition to the overall perceived
difficulty estimate. Physiological measurements were the most
informative data modality and are thus worth including despite
the additional hardware and preparation time; furthermore,
they should ideally be normalized, as normalization increased
classification accuracy in the majority of cases. However, other
data modalities should not be ignored, as the current game
difficulty, personality characteristics and game performance also
usefully contributed to classification accuracy. Table 6 specifically
lists the most useful features for classification of the different
psychological dimensions and subjective preferences, providing
guidance for developers of affective games.

As the next step, we will use our classifiers in a real-time
manner: to adapt game difficulty based on the participant’s
psychological dimensions. We will then study the effects of
different classification methods on user enjoyment and game
performance, allowing us to obtain a complete picture of the
performance of affective games in both an offline (classification
accuracy) and real-time (effect on user experience) fashion. In
the long term, comparisons of different methods will allow
us to identify the most effective ways to increase participant
engagement in an affective game, resulting in an improved user
experience. In the case of serious games (e.g., rehabilitation
games), increased engagement may also lead to improved game
outcomes – e.g., higher exercise intensity in a rehabilitation game
or improved learning rate in an educational game.
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