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Abstract
Myroides odoratimimus is an important nosocomial pathogen. Management of 
M. odoratimimus infection is difficult owing to the multidrug resistance and the 
unknown pathogenesis mechanisms. Based on our previous genomic sequencing 
data of M. odoratimimus PR63039 (isolated from a patient with the urinary tract 
infection), in this study, we further performed comparative genomic analysis for 
10 selected Myroides strains. Our results showed that these Myroides genome con-
texts were very similar and phylogenetically related. Various prophages were iden-
tified in the four clinical isolate genomes, which possibly contributed to the 
genome evolution among the Myroides strains. CRISPR elements were only de-
tected in the two clinical (PR63039 and CCUG10230) isolates and two environ-
mental (CCUG12700 and H1bi) strains. With more stringent cutoff parameters in 
CARD analysis, the four clinical M. odoratimimus contained roughly equal antibi-
otic resistance genes, indicating their similar antibiotic resistance profiles. The 
three clinical (CCUG10230, CCUG12901, CIP101113) and three environmental 
(CCUG12700, L41, H1bi) M. odoratimimus strains were speculated to carry the in-
distinguishable virulent factors (VFs), which may involve in the similar pathogen-
esis mechanism. Moreover, some VFs might confer to the high capacity of 
dissemination, attacking tissue cells and induction of autoimmune complications. 
Our results facilitate the research of antibiotic resistance and the development of 
therapeutic regimens for the M. odoratimimus infections.
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1  | INTRODUC TION

Myroides odoratimimus is a gram-negative and opportunistic 
pathogen. It causes a variety of serious infections mainly re-
ported in China (summarized by Hu et al., 2016) and outbreak of 
urinary tract infection (Ktari et al., 2012). Recently, the increasing 
infections emerged in patients with the recurrent calcaneal ulcer 
(Pompilio et al., 2017), fulminant erysipelas and sepsis (Willems, 
Muller, Verhaegen, Saegeman, & Desmet, 2017), bacteremia 
(Belloir, Billy, Hentgen, Fille, & Barrans, 2016), or prosthesis joint 
infection (Jover-Sáenz, Pérez-Villar, & Barcenilla-Gaite, 2016).

M. odoratimimus infections are life-threatening due to its multi-
drug resistance and unknown pathogenicity (as summarized in Hu 
et al., 2016). In our previous report (Hu et al., 2017), to some extent, 
we correlated the phenotype in antibiotic susceptibilities and infec-
tivity of M. odoratimimus with the genomic findings of a variety of 
resistance genes, virulence factor (VF) genes. To better accomplish 
these purposes and verify the possibility of infection source of envi-
ronmental strains, here, we further performed comparative genomic 
analysis of 10 Myroides strains, including four clinically pathogenic 
(PR63039, CCUG10230, CCUG12901, CIP101113), four environmen-
tal (CCUG 3837 CCUG 12700 H1bi L41), and two human-associated 
Myroides isolates (CCUG39352, Myroides sp. A21) by focusing on 
their antibiotic resistance and pathogenesis mechanisms.

2  | MATERIAL S AND METHODS

2.1 | Genome sequences

In the NCBI Genome RefSeq Assembly Database, only nine genomic 
sequences of M. odoratimimus were found (Table 1). They included 
four clinically pathogenic strains, a human-associated strain, and 
four environmental isolates. Only PR63039 genome (Hu et al., 2017) 
was complete. Strain PR63039 (Hu et al., 2017) and CCUG12901 
were isolated from the urine of patients with postinjury urinary 
tract infection. CCUG10230 and CIP101113 were isolated from 
skin wounds. Human-associated strain CCUG39352 was collected 
and sequenced by Shandong University. M. odoratimimus H1 bi, L41, 
CCUG 12700, and CCUG 3837 are environmental isolates. For the 
phylogenetic tree analysis of Myroides genomes, another human-
associated strain Myroides sp. A21 (CP010327) (Burghartz et al., 
2015) with highly homologous 16S rRNA gene sequence to strain 
PR63039 (coverage 100%, identity 100%, 1,388 bp) (GenBank No. 
KR349266) was also included. Myroides sp. A21 was isolated from 
the urethral catheter of a patient without symptoms of a urinary 
tract infection, had extensive drug resistance; its full genomic se-
quence was available.

2.2 | Softwares and databases used for comparative 
genomics analysis

The analyses of whole-genome phylogenetic tree, circular ge-
nome mapping, insertion sequence elements (IS), multiple genome 

alignment, prophage, CRISPR, antibiotic resistance genes, and VF 
genes in the M. odoratimimus genomes were performed with the 
softwares and databases listed in Table 2.

We should mention that, for identifying the resistance genes 
using CARD Resistance Gene Identifier (RGI) software (Jia et al., 
2017; Mcarthur et al., 2013), we performed BLASTp search (collab-
orated with Beijing Novogene Bioinformatics Technology Co., Ltd, 
BNNT) of the protein sequences of M. odoratimimus (downloaded 
from RefSeq assembly) against the CARD reference sequences, and 
more stringent parameters were set up [Query ID, Chromosome, 
Gene start, Gene end, Direction, ARO ID, ARO name, Category, 
Query length, Query start, Query end, Subject length, Subject 
start, Subject end, Gap, Mismatch length, Match length, Bit score, 
E value ≤ 1e-30, Identity (%), Query coverage, Subject coverage]. 
The stringency of extracting antibiotic resistance genes from the 
primary output was improved by setting the cutoff parameters 
(Protein identity [>50%], Query coverage [>50%], and Subject cov-
erage [>50%]).

The genes coding for the virulence factors was predicted by 
performing BLAST search (collaborated with Beijing Novogene 
Bioinformatics Technology Co., Ltd) of the protein sequences of M. odo-
ratimimus against the VFDB protein Set B database (Chen, Xiong, Sun, 
Yang, & Jin, 2012; Chen, Zheng, Liu, Yang, & Jin, 2016). The stringent 
parameters were set up (Gene ID, VFDB internal ID, VF ID, VF name, 
Genes, Characteristics, Structure features, Functions, Mechanisms, 
Descriptions, Query length, Query start, Query end, Subject length, 
Subject start, Subject end, Match length, Mismatch length, Gap, 
Identity, E value, Bit score, Query coverage, Subject coverage). The 
cutoff parameters for extracting VF genes from the primary outputs 
were same as the extracting resistance genes as the above.

3  | RESULTS

3.1 | The basic genome statistics of 10 Myroides 
genomes

The general features of 10 Myroides genomes, including four clinically 
pathogenic M. odoratimimus (PR63039, CCUG12901, CCUG10230, 
CIP101113), four environmental (CCUG 12700, L41, H1bi, CCUG 
3837), and two human-associated Myroides strains (CCUG 39352, 
Myroides sp. A21) were similar (summarized in Table 1). Their GC 
contents were approximately 34%. The sizes of the genomes varied 
from 3.88 to 4.46 Mb. The numbers of genes, proteins, and tRNAs in 
PR63039 genome were larger than that of the other nine genomes. 
We should mention that eight Myroides genomes were incomplete, 
and the sequencing of the plasmids in PR63039 strains were not 
completed even its chromosome was fully sequenced (Figure 1 in 
Hu et al., 2016, 2017).

3.2 | Phylogenetic analysis of 10 Myroides genomes

Whole-genome phylogenetic tree of the 10 Myroides genomes was 
created (Figure 1). It showed that PR63039 formed a different clade 
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from Myroides sp. A21 even although they had highly homologous 
16S rRNA gene sequence (100% identity). The clinically pathogenic 
strain CCUG 10230 and the environmental strain CCUG 39352 were 
closest. Strain CCUG3837, CIP101113, and CCUG12700 formed 
a clade, while strain H1bi was located alone. It seemed that strain 
CCUG3837, CIP101113, and CCUG12700 were phylogenetically 
closer and H1bi might have a different origin compared to the above 
three strains.

Collectively, these 10 Myroides strains were related phylogenet-
ically, indicating that there might similarly evolve to some patho-
genesis traits. However, further study to illuminate the evolution 
pathway is warranted.

3.3 | Genomic variants among four clinically 
pathogenic M. odoratimimus strains

We compared the genomes of three clinically pathogenic M. odoratimi-
mus strains (CCUG12901, CCUG10230, CIP101113) with the clinically 
pathogenic PR63039 genome as the reference (Table 2). Many highly 
variable regions were found (Figure 2). Specifically, the following re-
gions on the above three genomes were absent or had low identity 
with our strain PR63039: from 150 to 250 kb, 700 to 780 kb, 1,650 
to 1,700 kb, 2,300 to 2,450 kb, 2,680 to 2,720 kb, 3,370 to 3,530 kb, 
3,720 to 3,800 kb, 4,110 to 4,200 kb, 4,250 to 4,270 kb, and 4,350 to 
4,560 kb. Interestingly, the region from 1,650 to 1,700 kb was pre-
dicted to be located in one prophage locus of CCUG-12901 genome. 
Circular map of the genome comparisons indicated that there were a 
number of conserved or diverged genome segments among the ge-
nomes of these four clinically pathogenic M. odoratimimus.

In addition, the abovementioned variable regions were partially 
accompanied by several insertion elements, which might assist 

the integration of resistance-  and pathogenesis-related genes and 
facilitate the transfer of drug resistance and pathogenic genes 
among M. odoratimimus strains. Furthermore, IS elements may en-
hance drug resistance and virulence by promoting gene expression 
(Heritier, Poirel, & Nordmann, 2006; Higgins, Dammhayn, Hackel, & 
Seifert, 2010).

3.4 | Synteny analysis among four clinically 
pathogenic and three environmental 
M. odoratimimus strains

Genome alignments can identify evolutionary traits. To study the 
genome synteny and rearrangements in four clinically pathogenic 
(PR63039, CCUG10230, CCUG12901, and CIP101113) and three 
environmental (CCUG12700, L41, and H1bi) M. odoratimimus bac-
teria (Table 2), the genome alignment software progressive MAUVE 
(Darling, Mau, & Perna, 2010) was used (Figure S1). The synteny 
between the PR63039 genome and Myroides sp. A21 was approxi-
mately 83.7% (Hu et al., 2017). The genome arrangement of these 
four clinically pathogenic isolates mimics each other. Similarly, the 
genome context and arrangement in the three environmental strains 
exhibited great similarity. However, the genome synteny between 
the clinically pathogenic and environmental isolates was relatively 
low.

The alignment of the four genomes of clinically pathogenic 
isolates showed that their genome rearrangements were similar 
although there were inversions in some regions. Moreover, the chro-
mosomal alignments of CCUG12901 and CIP101113 were nearly 
identical with large segments of high similarity. There were some 
white areas not aligned well because they might contain elements 
specific to a particular genome.

TABLE  2 The softwares and databases used for comparative analysis

Analysis Software/database References

Clinically pathogenic strains Environmental strains Human-associated strains

PR63039 CCUG 10230 CCUG 12901 CIP 101113 CCUG 12700 L41 H1bi CCUG 3837 CCUG 39352
Myroides sp. 
A21

Sequence level Complete Scaffold Scaffold Scaffold Scaffold Contig Contig Scaffold Contig Complete

Phylogenetic tree REALPHY Bertels, Silander, Pachkov, 
Rainey, & van Nimwegen, 2014;

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

CG CG viewer Grant & Stothard, 2008; Yes Yes Yes Yes

ISs IS Finder Siguier, Perochon, Lestrade, 
Mahillon, & Chandler, 2006;

Yes (43) Yes (169) Yes (117) Yes (104)

Synteny Progressive mauve Darling et al., 2010; Yes Yes Yes Yes Yes Yes Yes

Prophage PHAST Zhou, Liang, Lynch, Dennis, & 
Wishart, 2011;

Yes (2 
incomplete)

Yes (2) Yes (5) Yes (1)

CRISPR CRISPR Finder Bland et al., 2007; Yes (3) Yes (4) Yes (ND) Yes (ND) Yes (1) Yes (ND) Yes (1)

Antibiotic resistance 
genes

CARD Resistance Gene 
identifier

Mcarthur et al., 2013; Jia et al., 
2017;

Yes Yes Yes Yes

Virulence factors VFDB protein Set B 
database

Chen et al., 2012, 2016 Yes Yes Yes Yes Yes Yes

CG, Circular genome maps (Genomic variants); ISs, insertion sequence elements; Yes, analyzed; (): number of the predicted; ND, not detected.
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Overall, the four clinically pathogenic strain genomes were sim-
ilar although the genome synteny in the latter three (CCUG10230, 
CCUG12901, and CIP101113) was more related than that in PR63039.

3.5 | Prophages in four clinically pathogenic 
M. odoratimimus strains

All the four clinically pathogenic isolates genomes contained incom-
plete prophage elements (Figure 3). In our strain PR 63039, two in-
complete prophages were identified (Hu et al., 2017). CIP101113 
contained one prophage with 54 CDs extending from 985,588 bp 
to 1,032,415 bp (46.8 kb). CCUG10230 was predicted to carry two 
prophages (9 CDs, 9.2 kb and 12 CDs, respectively). CCUG12901 had 
five prophages. The region length was 9.2, 9.7, 9.9, 10.1, and 9 kb, 
respectively, and the number of CDs was 9, 8, 7, 6, 6, respectively. 

CIP101113 contained only one prophage, but it was larger and more 
complete than any other prophages. It consisted of hypothetical pro-
teins, phage-like proteins, attachment sites, tail shafts, and proteases. 
Among these predicted prophages, attachment sites and proteases 
only existed in CIP101113 prophage. In bacterial genomes, integrases 
are useful markers for mobile DNA elements, such as prophages, inte-
grative plasmids, and pathogenicity islands (Liu et al., 2015). However, 
no integrase was identified in these predicted prophages.

3.6 | CRISPR prediction in the genomes of four 
clinically pathogenic and three environmental 
M. odoratimimus strains

CRISPR is well known to contribute to the antibiotic resistance and 
prevent the foreign virulence genes from invading into pathogens. 

TABLE  2 The softwares and databases used for comparative analysis

Analysis Software/database References

Clinically pathogenic strains Environmental strains Human-associated strains

PR63039 CCUG 10230 CCUG 12901 CIP 101113 CCUG 12700 L41 H1bi CCUG 3837 CCUG 39352
Myroides sp. 
A21

Sequence level Complete Scaffold Scaffold Scaffold Scaffold Contig Contig Scaffold Contig Complete

Phylogenetic tree REALPHY Bertels, Silander, Pachkov, 
Rainey, & van Nimwegen, 2014;

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

CG CG viewer Grant & Stothard, 2008; Yes Yes Yes Yes

ISs IS Finder Siguier, Perochon, Lestrade, 
Mahillon, & Chandler, 2006;

Yes (43) Yes (169) Yes (117) Yes (104)

Synteny Progressive mauve Darling et al., 2010; Yes Yes Yes Yes Yes Yes Yes

Prophage PHAST Zhou, Liang, Lynch, Dennis, & 
Wishart, 2011;

Yes (2 
incomplete)

Yes (2) Yes (5) Yes (1)

CRISPR CRISPR Finder Bland et al., 2007; Yes (3) Yes (4) Yes (ND) Yes (ND) Yes (1) Yes (ND) Yes (1)

Antibiotic resistance 
genes

CARD Resistance Gene 
identifier

Mcarthur et al., 2013; Jia et al., 
2017;

Yes Yes Yes Yes

Virulence factors VFDB protein Set B 
database

Chen et al., 2012, 2016 Yes Yes Yes Yes Yes Yes

CG, Circular genome maps (Genomic variants); ISs, insertion sequence elements; Yes, analyzed; (): number of the predicted; ND, not detected.

F IGURE  1 Whole-genome phylogenetic tree of 10 Myroides isolates. This Whole-genome phylogenetic tree was produced by REALPHY 
with the default parameters. Strain L41 was used as the root
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It may be involved in the bacterial evolution, regulation of virulence 
gene expression, and the enhancement of pathogenicity (Hatoum-
Aslan & Marraffini, 2014). Particularly, in the pathogen, CRISPR is 
able to edit genome and modulate gene functions as an adaptive 

immune system (Arras et al., 2016; Sontheimer & Barrangou, 2015). 
Comparative analysis of the seven strain genomes (PR63039, 
CCUG10230, CCUG12901, CIP101113, CCUG12700, L41, and H1bi) 
showed that PR63039 genome contained three types of CRISPRs 

F IGURE  2 Genomic comparisons in four clinically pathogenic M. odoratimimus strains. Blast 1: CCUG10230. Blast 2: M. CCUG12901. 
Blast 3: CIP101113. The contents of the feature rings (starting with the outermost ring) are as follows: Ring 1: forward strand features 
the read from the primary sequence of PR63039. Rings 2: forward strand ORFs from the primary sequence of PR63039. Rings 3: reverse 
strand ORFs from the primary sequence of PR63039. Ring 4: reverse strand features read from the primary sequence of PR63039. Ring 5 
(vermilion): blast 1. Ring 6 (green): blast 2. Ring 7 (blue): blast 3. Ring 8 (black): the G + C content. Ring 9 (green and purple): the GC skew 
value



     |  7 of 14HU et al.

(Table S1); CCUG10230 genome contained four types of CRISPRs. 
CCUG12700 and H1bi contained only one CRISPR. However, no 
CRISPRs were identified in the genomes of CCUG12901, CIP101113, 
and L41 (Table S1).

3.7 | Comparative analysis of antibiotic resistance 
genes in the genomes of four clinically pathogenic 
M. odoratimimus strains

With CARD RGI software (Jia et al., 2017; Mcarthur et al., 2013), all 
the genomes of four clinically pathogenic M. odoratimimus strains 
PR63039, CCUG10230, CCUG12901, and CIP101113 were pre-
dicted to contain a number of genes related to antibiotic resistance, 

including the β-lactam resistance gene, fluoroquinolone resistance 
gene, antibiotic target replacement protein, antibiotic inactivation 
enzyme, triclosan resistance gene, diaminopyrimidine resistance 
gene, phenicol resistance gene, elfamycin resistance gene, and ef-
flux pumps conferring antibiotic resistance (Table 3).

Overall, more resistance genes were predicted in the fully se-
quenced clinically pathogenic PR63039 genome than in the other 
three partially sequenced strains, such as, cat gene variant catB2, 
catB3, catB6, catB7, catB8, catB9, and catB10, tetracycline resistance 
gene tetX, sulfonamide resistance gene sul1, sul2, and sul3, and β-
lactam resistance gene OXA-209, OXA-347. Moreover, in PR63039 
genome, the resistance genes tetX, cat, OXA-347, and OXA-209 were 
clustered in an approximately 6 kb region, called MY63039-RR (Hu 

F IGURE  3 Prophage regions and 
predicted elements in three clinically 
pathogenic M. odoratimimus strains. 
Different colored rectangles indicated 
different phage elements. Att, attachment 
site; Hyp, hypothetical protein; PLP, Other 
phage-like protein; sha, Tail shaft; Pro, 
protease; Tra, transposase
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et al., 2017). No similar resistance gene cluster could be identified 
in the genomes of other three clinically pathogenic M. odoratimimus 
strains.

Among CCUG12901, CIP101113, and CCUG10230, the iden-
tified resistance genes were almost similar. By comparing with 
PR63039 genome, CCUG12901 genome contained mefC (efflux 
pump conferring antibiotic resistance) and antibiotic inactivation 
enzyme (mphD and mphG), but lacked the resistance gene cat. The 
gene catII, catIII in CCUG10230, and catI in CIP101113 were also not 
predicted in PR63039 genome.

3.8 | Virulence factors in the genomes of three 
clinically pathogenic and three environmental 
M. odoratimimus strains

With the help of VFDB protein Set B database (Chen et al., 2012, 
2016) and more stringent cutoff parameters, we obtained the VF 
genes in the genome of three clinically pathogenic (CCUG.12901, 
CCUG.10230, CIP.101113) and three environmental (H1bi, L41, 
CCUG.12700) M. odoratimimus isolates (Table 4).

Overall, all these M. odoratimimus genomes had similar VF pro-
files with a little difference. The VFs included capsule/capsular 
polysaccharide (GalE, GlmU, wbjD/wecB, ugd, uppS, RmlA, RmlB, capL, 
wecC), intracellular survival and invasion factors (katA, clpP, EF-Tu, 
sodB), molecular chaperone (hsp60, DnaK), urease (ureA, ureB, ureG), 
acinetobactin (bauE), Streptococcal enolase (eno), heme biosynthesis 
(hemB, hemL), acyl carrier protein (acpXL), and T4SS effectors (Trans-
2-enoyl-CoA reductase).

4  | DISCUSSION

4.1 | Genomic evolution, variants, synteny of 
M. odoratimimus

To some contents, the 10 Myroides genomes had similar general 
features. However, the genomes of four clinically pathogenic M. 
odoratimimus strains (PR63039, CCUG12901, CCUG10230, and 
CIP101113) contained highly variable regions. The genome ar-
rangement, rearrangements of the four clinically pathogenic 
isolates, and the three environmental strains were similar, respec-
tively. These data implied that they might be evolutionarily related. 
All four clinically pathogenic isolate genomes contained prophage 
elements. CRISPRs were not always identified in all the genomes of 
four clinically pathogenic and three environmental M. odoratimimus 
strains. Complete genomic sequencing of these M. odoratimimus 
strains and their plasmids are indispensable for confirming these 
analyses.

4.2 | Resistance genes in clinically pathogenic 
M. odoratimimus

All these four clinically pathogenic strains (PR63039, CCUG12901, 
CCUG10230, CIP101113) contained a number of antibiotic 

resistance genes. PR63039 genome might have several possibly 
unique resistance genes, including catB2, catB3, catB6, catB7, catB8, 
catB9, catB10, tetX, OXA-209, OXA-347, sul1, sul2, and sul3. Some 
were already discussed to be involved in drug resistance in our pre-
vious report (Hu et al., 2017). Here, we mainly discuss mph and cat 
genes (catB2, catB3, catB6, catB8) with clear functions in antibiotic 
resistance described by literatures.

The mphD and mphG genes provide a high level of resistance to 
14-  and 15-membered-ring macrolides via coding for a macrolide 
2′-phosphotransferase (https://card.mcmaster.ca/). Cat (chloram-
phenicol acetyltransferase gene) has many variants in a variety of 
bacteria, such as Staphylococcus aureus, Staphylococcus haemolyticus, 
Enterococcus faecium, and Bacillus clausii (Bruckner & Matzura, 1985; 
Galopin, Cattoir, & Leclercq, 2009; Grady & Hayes, 2003; Schwarz 
& Cardoso, 1991). All the above identified catB genes (as well catI, 
catII, catIII) are plasmid, chromosome, or integron-mediated cat vari-
ants (https://card.mcmaster.ca/). The cat variants usually participate 
in the composition of gene cassette or integron, and confer to the 
ability of antibiotic resistance. For instance, catB2, aacC4, and aadA1 
form the gene cassettes aacC4-aadA1-catB2, which confers multi-
drug and broad-spectrum cephalosporin resistance in Salmonella 
clinical isolates (Villa et al., 2002). CatB3, one member of gene 
cassette aacA7-catB3-aadB-oxa2-orfD, can be mobilized by the 
integron-encoded DNA integrase and plays a role in chloramphen-
icol resistance of plasmid pBWH301 (Bunny, Hall, & Stokes, 1995; 
Houang, Chu, Lo, Chu, & Cheng, 2003). CatB6, a chloramphenicol 
acetyltransferase-encoding allele of the catB family inserted in in-
tegron In31, functions to decrease the in vitro antibiotic suscepti-
bilities of Pseudomonas aeruginosa strains (Laraki et al., 1999). CatB8 
consists of a resistance gene cassette aacA4-catB8-aadA1 which 
is prevalent in many clinical antibiotic-resistant bacteria, such as 
carbapenem-resistant Klebsiella pneumoniae (Ou, Li, Li, & Yu, 2017) 
and carbapenem-resistant Acinetobacter baumannii (Farshadzadeh 
et al., 2015; Lin, Liou, Tu, Yeh, & Lan, 2013).

We could not further correlate these predicted antibiotic resis-
tance gene profiles to the antibiotic susceptibility of the other three 
clinically pathogenic strains (CCUG12901, CCUG10230, CIP101113) 
due to the lack of these related data. However, the conservation 
of the antibiotic resistance genes among the clinically pathogenic 
M. odoratimimus strains indicated that these predicted antibiotic re-
sistance gene profiles potentially provide the guidance for treating 
M. odoratimimus infections later.

4.3 | Pathogenicity of clinically pathogenic and 
environmental M. odoratimimus indicated by the 
predicted virulence factors

The VFs in M. odoratimimus were identified using VFDB protein Set 
B database which curates the experiment-verified and predicted 
virulence factor genes (Table 4). The finding of similar VFs in both 
clinically pathogenic and environmental M. odoratimimus genomes 
might explain the pathogenicity of the three clinically pathogenic 
M. odoratimimus isolates and indicate that the three environmental 

https://card.mcmaster.ca/
https://card.mcmaster.ca/
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M. odoratimimus isolates are also potentially pathogenic. We 
only discuss the experimentally verified VF genes (in bold/italic, 
Table 4).

bauE encodes the ferric siderophore ABC transporter/ATP-
binding protein BauE with a high-affinity iron-chelating capacity, 
belonging to acinetobactin. In a mouse sepsis model, the expression 
of a fully active acinetobactin-mediated iron uptake apparatus by 
Acinetobacter baumannii was verified to be vital for the bacteria to 
establish infection and kill mouse, by competing with host cells for 

iron (Gaddy et al., 2012). Thus, bauE should be a survival factor of 
M. odoratimimus during infection.

Capsular LPS is the predominant virulence determinant in 
many gram-negative and -positive bacteria (García & López, 
1997). It inhibits complement-mediated lysis, phagocytosis, and 
immune recognition in host (Rowe & Huntley, 2015). Several 
genes involved in capsular LPS biosynthesis pathway were found 
in the M. odoratimimus genomes, such as GalE, GlmU, ugd, wbjD/
wecB, uppS, RmlA, RmlB. UDP-sugar 4-epimerase (GalE) plays an 

TABLE  3 The predicted resistance genes in the genomes of four clinically pathogenic M. odoratimimus strains

Category PR63039 CCUG12901 CCUG10230 CIP101113

Efflux pump complex or subunit conferring 
antibiotic resistance

abeS abeS abeS abeS

KPC-2 KPC-2 KPC-2 KPC-2

- mefC - -

msrB msrB msrB msrB

qacH qacH qacH qacH

rosA rosA rosA rosA

Determinant of elfamycin resistance basS basS basS basS

LpxC LpxC LpxC LpxC

SPM-1 SPM-1 SPM-1 SPM-1

Determinant of phenicol resistance catB2 - - -

catB6 - - -

catB7 - - catB7

catB8 - - -

catB9 - - -

catB10 - - -

- - catII catI

- - catIII -

Determinant of diaminopyrimidine resistance dfrE dfrE dfrE dfrE

Determinant of triclosan resistance MexR MexR MexR MexR

Antibiotic inactivation enzyme catB3 - - -

- catII catII

- mphD - -

- mphG - -

OXA-78 OXA-78 OXA-78 OXA-78

tetX

VIM-2 VIM-2 VIM-2 VIM-2

Antibiotic target replacement protein sul1 - - -

sul2 - - -

sul3 - - -

Determinant of fluoroquinolone resistance oqxB oqxB oqxB oqxB

rpsJ rpsJ rpsJ rpsJ

tet(35) tet(35) tet(35) tet(35)

tetB(48) tetB(48) tetB(48) tetB(48)

Determinant of beta-lactam resistance OXA-209 - - -

OXA-347 - - -

TLA-3 TLA-3 TLA-3 TLA-3

-not predicted
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TABLE  4 The VFs predicted in three clinically pathogenic and three environmental M. odoratimimus genomes

Classification Definition

Genes coding for virulence factors

Clinically pathogenic M. odoratimimus Environmental M. odoratimimus

CCUG. 12901 CCUG. 10230 CIP. 101113 H1bi L41 CCUG. 12700

Capsular 
polysaccharide

UDP-N-acetyl-D-
galactosamine 
6-dehydrogenase

capL (hasB2) capL - capL - capL

UDP-glucose 4-epimerase galE galE galE galE galE galE

Bifunctional UDP-N-
acetylglucosamine 
pyrophosphorylase/
glucosamine-1-phosphate 
N-acetyltransferase

glmU glmU glmU glmU glmU -

UDP-glucose 
6-dehydrogenase

ugd ugd ugd - ugd -

Capsule sialic acid UDP-N-acetylglucosamine 
2-epimerase

wbjD/wecB wbjD/wecB wbjD/wecB wbjD/wecB - wbjD/wecB

Cell wall 
Peptidoglycan

Undecaprenyl diphosphate 
synthase

uppS uppS uppS uppS uppS uppS

Glucose-1-phosphate 
thymidylytransferase

rmlA rmlA rmlA rmlA rmlA rmlA

dTDP-glucose 
4,6-dehydratase

rmlB rmlB rmlB rmlB - -

UDP-N-acetyl-D-
mannosaminuronic acid 
dehydrogenase

wecC wecC wecC - - wecC

Intracellular survival 
factors

Catalase katA katA katA katA katA katA katA

ATP-dependent Clp protease 
proteolytic subunit

clpP clpP clpP clpP clpP clpP

Elongation factor Tu EF-Tu EF-Tu EF-Tu EF-Tu EF-Tu EF-Tu

Superoxide dismutase sodB SodB sodB sodB sodB sodB

Molecular 
chaperones

CT396 molecular chaperone 
DnaK

DnaK DnaK DnaK DnaK DnaK DnaK

60k heat-shock protein HtpB Hsp60 Hsp60 Hsp60 Hsp60 Hsp60 Hsp60

Urease Urease ureA ureA ureA ureA ureA ureA

Urease ureB ureB ureB ureB ureB ureB

Urease/hydrogenase-
associated predicted 
GTPase

ureG ureG ureG ureG ureG ureG

Acinetobactin ABC-type enterochelin 
transport system, ATPase 
component

bauE bauE bauE bauE - bauE

Streptococcal 
enolase

Streptococcal enolase eno eno eno eno eno eno

Pantothenate 
synthesis

Aspartate 1-decarboxylase panD panD panD panD panD panD

Heme biosynthesis Porphobilinogen synthase hemB hemB hemB hemB hemB hemB

glutamate-1-semialdehyde 
aminotransferase

hemL hemL hemL hemL hemL hemL

Acyl carrier protein acpXL acpXL acpXL acpXL acpXL acpXL

T4SS effectors Trans-2-enoyl-CoA reductase 
(no unique name)

+ + + + + +

-not predicted; +,predicted; bold/italic, were discussed.
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essential role in LPS synthesis (Beerens, Soetaert, & Desmet, 
2015; Fry et al., 2000) by catalyzing the interconversion of UDP-
galactose and UDP-glucose (Fry et al., 2000), is a critical virulence 
factor in many gram-negative bacteria (Beerens et al., 2015; Fry 
et al., 2000). N-acetylglucosamine-1-phosphateuridyltransferase/
glucosamine-1-phosphate-acetyltransferase (GlmU) is involved 
in the synthesis of peptidoglycan and LPS in Gram-negative and 
-positive bacteria (Sharma & Khan, 2017). The bifunctional enzyme 
UDP-N-acetylglucosamine 2-epimerase/ManNAc kinase (encoded 
by wbjD/wecB, also known as siaA or neuC) catalyzes biosynthesis of 
Escherichia coli K1 capsule, an alpha-2,8-linked polymer of sialic acid, 
and is a vital meningitis virulence factor for this pathogen (Vann et al., 
2004). Both mammals (Chou, Hinderlich, Reutter, & Tanner, 2003) 
and bacteria (Murkin, Chou, Wakarchuk, & Tanner, 2004) produce 
this bifunctional enzyme. Both source of this enzyme can catalyze 
the conversion of UDP-GlcNAc into ManNAc and UDP, the first two 
steps in the sialic acid biosynthesis in mammals (Chou et al., 2003) 
and the first step of sialic acid (N-acetylneuraminic acid) biosynthe-
sis in bacteria (Murkin et al., 2004). UDP-glucose 6-dehydrogenase 
(UGD) has an indispensable role in hyaluronic acid capsule produc-
tion and pathogenicity in Group A Streptococcus (Cole et al., 2012), 
is required for bacterial growth inside macrophages (Mouslim & 
Groisman, 2003). Undecaprenyl diphosphate synthase (UPPS) is in-
volved in cell wall biosynthesis (peptidoglycan and wall teichoic acid 
synthesis) by catalyzing the synthesis of a polyisoprenoid, becoming 
an attractive antibacterial drug target (Farha et al., 2015). Glucose-1-
phosphate thymidylyltransferase (RmlA) is vital for bacteria survival 
(Mansuri et al., 2016). It participates in L-rhamnose synthesis (Alphey 
et al., 2013; Mansuri et al., 2016), a critical linker of peptidoglycan 
and arabinogalacton in bacterial cell wall (Mansuri et al., 2016), by 
catalyzing the generation of dTDP-D-glucose and pyrophosphate 
(PPi) (Alphey et al., 2013; Mansuri et al., 2016). dTDP-D-glucose 
4,6-dehydratase (RmlB) is also involved in L-rhamnose biosynthesis, 
by catalyzing the conversion of dTDP-D-glucose into dTDP-4-keto-
6-deoxy-D-glucose in cell wall (Allard et al., 2002). Bacteria with 
truncated LPS molecules due to the L-rhamnose synthesis failure 
could not prevent clearance by the host cells and become avirulent 
(Allard et al., 2002). The presence of capsular LPS biosynthesis genes 
in six M. odoratimimus indicates their infectivity. The presence of 
these LPS biosynthesis genes in both the three clinically pathogenic 
and the three environmental M. odoratimimus isolates is in concert 
with the fact that M. odoratimimus is gram-negative and confer it this 
bacterium with in infectivity.

The presence of bacterial intracellular survival factors katA, clpP, 
EF-Tu, and sodB in the six M. odoratimimus genomes suggested that 
this bacterium might be able to survive within host cells, increase 
the antibiotic therapy difficulty and thus explain the reported high 
death rate of M. odoratimimus infections (summarized in Hu et al., 
2016). Catalase katA is a critical virulence factor for Campylobacter 
jejuni, a facultatively intracellular microbe and the principal pathogen 
of human gastroenteritis. Its resistance ability to the bacteriocidal 
activity from host cell-produced hydrogen peroxide and intramac-
rophage persistence/growth is dependent on this catalase (Day, 

Sajecki, Pitts, & Joens, 2000). ClpP, a highly conserved protease in 
prokaryotes and eukaryotes, is involved in the rapid adaption ca-
pacity during infection for Listeria monocytogenes, another faculta-
tive intracellular pathogen (Gaillot, Bregenholt, Jaubert, Di Santo, & 
Berche, 2001; Gaillot, Pellegrini, Bregenholt, Nair, & Berche, 2000). 
By interacting with host surface nucleolin, the bacterial surface EF-
Tu (elongation factor Tu), a GTP-binding protein involved in protein 
translation in Francisella tularensis, a highly infectious intracellu-
lar gram-negative bacterium, plays a crucial role in its invasion to 
host tissues (Barel et al., 2008). It is also an adhesion/invasion factor 
secreted by microbes during infection by bacteria (like Helicobacter 
pylori) (Chiu, Wang, Tsai, Lei, & Liao, 2017) and fungi (Marcos et al., 
2016) through binding (Mycobacterium avium subsp. paratuberculosis) 
with fibronectin on host cells (Viale et al., 2014). Superoxide dis-
mutases (SODs) protect the bacteria from oxidative damage by con-
verting endogenously generated superoxide radicals into hydrogen 
peroxide and oxygen, are indispensable for intraphagocytic viability 
for pathogenic bacteria (Dhar, Gupta, & Virdi, 2013), SodB is required 
for colonization of Helicobacter pylori in the stomach (Tsugawa et al., 
2015).

The presence of bacterial DnaK (known as Hsp70 in eukaryotes) 
and Hsp60 in M. odoratimimus imply that the autoimmunological re-
sponse might be complicated by the infection. Heat-shock proteins 
are ubiquitous proteins with high homology between eukaryotes 
and prokaryotes. Bacterial DnaK is crucial bacterial virulence factor. 
Both host Hsp70 and bacterial DnaK mediate bacterial attachment to 
host cells. After infection, bacterial DnaK switches on bacterial sur-
vival processes and arouses autoimmune sequelae (Ghazaei, 2017). 
Hsp60 is also involved in Clostridium difficile attachment to host cells 
(Hennequin et al., 2001), and the strong proinflammatory reaction 
(IL8) of monocytic cells induced by Helicobacter pylori (Lin et al., 
2005). Chlamydia pneumonia Hsp60 can help to spread Chlamydial in-
fection of blood monocytes to vascular wall cells (Rupp et al., 2005), 
and increase the pathogenesis and severity of Chlamydia infection-
correlated atherosclerosis because of sequence homology between 
bacterial and human Hsp60 (mitochondria in endothelial cells) and 
subsequent induction of a strong autologous humoral and cellular 
immune responses (Kalayoglu et al., 2000; Mehta et al., 2005).

The presence of ureA, ureB, ureG in M. odoratimimus implies that 
this bacterium might be pathogenic in human stomach. Urease is a 
principal virulence factor of human gastric bacterium Helicobacter 
pylori (Stingl et al., 2008). It has oligomeric Ni2+-containing heterod-
imer of UreA and UreB subunits involved in converting gastric juice 
urea into NH3 in bacterial periplasm which maintains an optimal pH, 
inner membrane potential and proton motive force, being critical for 
colonization within the human stomach (Sachs, Weeks, Melchers, 
& Scott, 2003). Urease activity needs an assembly of a lysine-
carbamate functional group with two Ni2+ ions facilitated partially 
by GTP hydrolysis by UreG (Martin-Diaconescu, Bellucci, Musiani, 
Ciurli, & Maroney, 2012; Zambelli, Turano, Musiani, Neyroz, & Ciurli, 
2009).

The surface enolase (eno) of bacteria, a glycolytic pathway 
enzyme, can bind human plasminogen and convert it into active 
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plasmin (Cork et al., 2009) to facilitate bacterial adherence to host 
cells and destruction of host tissues through plasmin degrading in-
tercellular junctions and extracellular matrix components (Attali, 
Durmort, Vernet, & Di Guilmi, 2008), like cellulitis (Bachmeyer et al., 
2008), necrotizing fasciitis (Crum-Cianflone, Matson, & Ballon-
Landa, 2014), and make the bacterial infection life-threatening (Cork 
et al., 2009). The containing eno in M. odoratimimus genome might 
explain the high death rate of patients infected by M. odoratimimus 
(as summarized in Hu et al., 2016).

In brief, M. odoratimimus not only possesses common virulence 
factors, like using bauE gene to compete the iron with host, general 
LPS synthesis genes, adherence factors (DnaK, Hsp60), but also can 
survive intracellularly (katA, clpP, EF-Tu, and sodB), even in human 
stomach (ureA, ureB, ureG), but also disseminate easily, destroy 
human tissues, induce autoimmune diseases. So, the M. odoratimi-
mus is a life-threatening pathogen as reported (summarized in Hu 
et al., 2016).

5  | CONCLUSION

The genomic analysis demonstrated that these M. odoratimimus 
isolates are closely related. Our analyses provided some insights 
in bacterial pathogenicity and antibiotic resistance mechanisms of 
M. odoratimimus and contribute to future development of the thera-
peutic regimens in M. odoratimimus infections.
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