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Furmaga-Jabłońska, W.; Januszewski,

S.; Czuczwar, S.J. Post-Ischemic Brain

Neurodegeneration in the Form of

Alzheimer’s Disease Proteinopathy:

Possible Therapeutic Role of

Curcumin. Nutrients 2022, 14, 248.

https://doi.org/10.3390/nu14020248

Academic Editor: Maria

Antonietta Panaro

Received: 18 December 2021

Accepted: 3 January 2022

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

Post-Ischemic Brain Neurodegeneration in the Form of
Alzheimer’s Disease Proteinopathy: Possible Therapeutic
Role of Curcumin
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Abstract: For thousands of years, mankind has been using plant extracts or plants themselves as
medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal
substances that are virtually non-toxic, readily available, and have an impact on well-being and health.
It has been noted that dietary curcumin is one of the regulators that may positively influence changes
in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological
properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and
its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and
for Alzheimer’s disease. Additionally, it has been shown that one of the potential mechanisms of
severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein
after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence
of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin
is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing
their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of
amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia
have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability,
apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and
improves neurological and behavioral deficits. The available data suggest that curcumin may be a
new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative
disorders such as post-ischemic neurodegeneration.
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1. Introduction

Today ischemic stroke is a huge and growing health challenge in the world. In
developed and developing countries, post-ischemic brain neurodegeneration is becoming
more common in view of the progressive aging of the world’s population. Ischemia-
reperfusion brain neurodegeneration in the human population is the third cause of disability,
second most common cause of dementia, and second cause of death worldwide, and may
soon be the leading cause of dementia [1–5]. Eighty-four percent of ischemic stroke patients
in developing countries die within three years after stroke, compared with 16% in developed
countries [6]. In the population of 1 million annually, 2.4 thousand people will have an
ischemic stroke and less than 50% of them will be independent a year later [5–7]. The
epidemiological data show that annually about 17 million patients suffer from various types
of cerebral ischemia in the world, and 6 million of them die each year as a result of brain
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ischemia [4,5,8]. Currently, it is estimated that the number of people after brain ischemia
around the world reaches about 33 million [4,5,8]. According to new prognosis, the number
of ischemic stroke patients in the world will increase to 77 million in 2030 [5,8]. In 2010, the
annual cost of treating and caring for ischemic stroke patients in Europe was estimated at
around € 64 billion [4]. In the UK, treating stroke and loss of productivity result in a social
cost of £ 8.9 billion per year, with care costs accounting for about 5% of the total cost of the
National Healthcare System [9]. Post-stroke neurological deficits are usually not the main
problem, but the gradual, progressive cognitive decline that is associated with increased
care of these patients is becoming a problem. In ischemic stroke survivors, the incidence
of dementia after the first ischemic episode is estimated to be around 10% and around
41% after the next ischemic stroke [4,5]. In long-term studies of dementia after ischemic
stroke, the estimated development of dementia was approximately 48% during 25 years of
survival [4,8]. When the ischemic stroke trend continues, approximately 12 million patients
will die by 2030, 70 million patients will be stroke survivors, and more than 200 million
years of life with a disability will be recorded worldwide each year [4,8].

It is now well known that post-ischemic brain neurodegeneration is caused by a set
of genetic and proteomic changes that lead to neuronal death in an amyloid- and tau
protein-dependent manner, with progressive inflammation resulting in brain atrophy with
the development of full-blown Alzheimer’s disease dementia [4,10,11]. Research indicates
that after ischemia the brain can develop the typical neurodegeneration of Alzheimer’s
disease [3,4,11–22]. First, post-ischemic brain damage causes selective neuronal death in
the hippocampus typical of Alzheimer’s disease with progressive brain atrophy [23–28].
Second, neuroinflammatory changes play a key role in the progression of post-ischemic
brain neurodegeneration [10,12]. Third, evidence shows that cerebral ischemia in animals
and humans induces the production and accumulation of amyloid in the form of amyloid
plaques [26,29–34]. Fourth, research indicates that hyperphosphorylation of the tau protein
with the final formation of neurofibrillary tangles also plays a key role in the development
of post-ischemic brain neurodegeneration as in Alzheimer’s disease [35–54]. Fifth, dys-
function of the autophagy, mitophagy, and apoptosis genes is involved in post-ischemic
neurodegeneration, as in Alzheimer’s disease [55–57]. Sixth, cerebral ischemia is believed
to be a causative factor in Alzheimer’s disease development [23]. It is also believed that the
signaling pathways generated by amyloid and tau protein after cerebral ischemia play a
decisive role in the development of irreversible neurodegeneration [26,29,35,53,54,58–60].

There are no therapies to prevent progressive changes from cerebral ischemia and/
or to delay or stop post-ischemic neurodegeneration. In the absence of translational
experimental post-ischemic therapies in animals for clinical use [61], the emphasis is on
reducing the neurotoxic effects of amyloid and tau protein on post-ischemic neurons to
prevent brain neurodegeneration with dementia of Alzheimer’s disease-type. This work
also focuses on the neuroprotective effects of curcumin’s pleiotropic properties on the
ischemic brain.

2. Search Criteria and Data Collection

Published scientific papers on the use of curcumin have been screened for in vivo,
in vitro, experimental and clinical studies, interactions between curcumin and the gut mi-
crobiota and vice versa, and side effects. Searches were performed digitally using databases,
including PubMed, SCOPUS, MEDLINE, Science Direct, and Google Scholar to identify
peer-reviewed original articles and reviews over the past two decades (1 January 2001–
1 July 2021). The search strategy was carried out using the following key words: “curcumin
and brain ischemia”, “brain ischemia and curcumin”, “curcumin and stroke”, stroke and
curcumin”, “curcumin, neuroprotection, and brain ischemia”, “curcumin and amyloid”,
“curcumin and tau protein”, “curcumin and gut microbiota”, “gut microbiota and cur-
cumin”. A total of 1201 original papers and reviews were found, and 150 publications
closely related to the subject of the review were used.
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3. Curcumin

The favorable effects of many miscellaneous substances have been discovered through
the regular consumption of plants and fruits as food. This is also the case with curcumin,
whose action has been known for years in eastern countries such as India and China. Cur-
cumin is widely used in Chinese and Indian cuisines, but has only recently been recognized
as a natural remedy with proven pharmacological properties. It was chemically isolated
for the first time over 200 years ago, and its structure was characterized in 1910 [62]. Cur-
cumin is a phytopolylphenol pigment (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-
1,6-diene-3,5-dione) obtained from the Curcuma longa plant (Figure 1). Curcuma longa is
an herbaceous perennial plant with oblong palm-like roots and tubers that grows sponta-
neously in Africa and South Asia, in regions with tropical climates with high rainfall. The
world leader in the production of curcumin is India. Curcumin is yellow in color and is
used for health, as a food preservative, but also as a fabric dye.
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Curcuma longa, commonly known as turmeric and one of its biologically active ingredi-
ents, curcumin, is enjoying increasing clinical interest worldwide due to growing evidence
of therapeutic potential resulting from numerous observations that include antioxidant,
anti-inflammatory, and neurotrophic effects [63]. Curcumin is commonly used as a healing
herb to aid digestion and as a culinary seasoning. With health care professionals using
curcumin for a variety of clinical uses, as well as increasing interest in turmeric among
laypeople, it fuels the global curcumin market. Clinical studies are heterogeneous due to
the use of various forms of curcumin, turmeric essential oil, a mixture of curcuminoids,
turmeric extracts, or powdered turmeric rhizome. Thus, curcumin has shown some po-
tential in disorders, such as dermatological, gastrointestinal and neurological diseases,
diabetes, cancer, and gut microbiota control [64].

4. Curcumin and Neuroprotection

Following experimental local brain ischemia, curcumin reduced both infarct volume
and brain edema, prevented blood-brain barrier permeability, and improved neurological
outcomes (Table 1) [65–78]. Curcumin had a beneficial effect on locomotor, motor, and sen-
sory functions, as well as cognitive deficits (Table 1) [67,71,72,76,78–80]. Curcumin reduced
neuronal apoptosis by increasing Bcl2 protein levels and by down-regulating caspase-3
mRNA and ultimately stimulating neurogenesis (Table 1) (Figure 2) [68,76,77,79–86]. Cur-
cumin improved cerebral blood flow in the brain after ischemia by preventing neutrophil
adhesion to the cerebral circulation, resulting in improved microcirculation in the brain
(Table 1) [70,72]. In addition, it reduced astrogliosis and post-ischemic neuroinflammation
(Table 1) [66,69,72,79]. Supplementation with curcumin reduced the inflammation of the ner-
vous system by reducing tumor necrosis factor α, interleukin 6, and inducible nitric oxide
synthase, and decreased the activity of autophagy through PI3K/Akt/mTOR [76,78,83,85].
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Table 1. Protective action of curcumin in post-ischemic neurodegeneration of the brain.

Brain Ischemia in Animals Benefits References

Rat, mouse Reduction in infarct size and
brain edema [65–67,69,71,72,76,78]

Mouse Reduction in the permeability of
the blood-brain barrier [66,69]

Rat, gerbil, Decreasing apoptosis [76–81]

Rat, mouse Improvement of
microcirculation in the brain [70,72]

Gerbil, mouse Reduced neuroinflammation [72,79]

Rat Attenuation of glutamate
neurotoxicity [82]

Rat
Mutual inhibition of

hypoxia-inducible factor-1α
and autophagy

[76,78,83]

Rat Inhibition of oxidative stress [81]

Rat Stimulation of neurogenesis [84]

Rat, gerbil, mouse Improving neurological and
behavioral deficits [67,71,72,76,78,79,84]
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Curcumin is also protective in rats with spontaneous hypertension prone to stroke,
delaying the onset of stroke and increasing survival by improving vascular endothelial
function [87]. These effects are most likely due to the increase in the presence of proteins
from the family of mitochondrial anion carriers and the curcumin-induced regulation of
the production of reactive oxygen species in the mitochondria [87]. These observations
were also confirmed in the HUVEC cell model, using H2O2 to induce oxidative stress
in vitro, which was alleviated by curcumin treatment [87]. Data similar to those obtained
in the rat were also demonstrated in a mouse model of focal cerebral ischemia, in which
curcumin treatment reduced the volume of cerebral infarction and neuronal apoptosis
and in vitro on N2a cells, possibly by limiting mitochondrial dysfunction [88]. In parallel,
curcumin influenced neurological deficits and the integrity of the ischemic blood-brain
barrier, decreased brain cortex infarction, mortality, and apoptosis of neurons after cerebral
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ischemia [82,89,90]. Moreover, curcumin reduced the neurotoxicity of glutamate in the post-
ischemic hippocampus (Table 1) [82]. In a new study, curcumin protected ischemic neuronal
cells from apoptotic death through the neuroprotective effects of curcumin associated with
the reciprocal inhibition of hypoxia-inducible factor-1α and autophagy (Table 1) [83].

5. Curcumin and Amyloid

Amyloid is a product of the metabolism of the amyloid protein precursor. The pro-
duction of amyloid is catalyzed by two enzymes, β- and γ-secretase. It has been suggested
that after ischemia, the development of inflammation increases the production of amyloid
via increased activity of β-secretase [91]. Curcumin, by inhibiting the action of β-secretase,
thus reduced the production of amyloid [91–93]. In addition, curcumin inhibits the mat-
uration of the amyloid protein precursor resulting in a reduction in amyloid in brain
tissue [94,95]. Curcumin may also affect amyloid production by inhibiting glycogen syn-
thase kinase-3β mediated presenilin 1 activity, which is one of the important components
of γ-secretase [96]. It has been documented that the generation of amyloid can be limited
by the metal chelation phenomenon [97] and the decline in β-secretase activation by pro-
inflammatory factors [58,93]. Additionally, it was presented that curcumin significantly
increased the retention of the immature amyloid protein precursor in the reticulum [58].
In addition, it has been suggested that curcumin may affect the endocytosis of the amyloid
protein precursor [95].

Experimental results have shown that curcumin binds to β-amyloid peptide 1–42 fib-
rils [98]. Curcumin has a strong inhibitory effect on amyloid aggregates in vitro, indicating
that it is one of the most promising anti-amyloid substances [99–102]. In vivo and in vitro
studies have revealed that curcumin has a dose-dependent effect on the inhibition of fibril
development of the amyloid peptide 1–42 and 1–40, with an EC50 of 0.09–0.63 µM [92,103].
Several studies have presented that curcumin can inhibit the deposition of amyloid peptide
1–42 and 1–40 as oligomers, as well as the development of their fibril form [92,103,104].
Curcumin prevents the toxicity of the β-amyloid peptide 1–40 and inhibits the process of
its aggregation [105]. The above results indicate that curcumin does not directly inhibit
the development of amyloid fibrils, but rather enriches the amount of soluble oligomers
and prefibrillar aggregates that do not have neurotoxic properties. The neuroprotective
effect associated with curcumin is manifested in a decrease in the permeability of the cell
membrane caused by amyloid. Furthermore, curcumin exerted a neuroprotective effect
on amyloid-triggered toxicity by at least two compatible processes, modifying amyloid
aggregation to develop non-toxic aggregates and ameliorating amyloid-induced neuro-
toxicity, possibly by a non-specific mechanism [105]. It was found that gold nanoparticles
loaded with curcumin inhibited the aggregation of the N-terminus of amyloid and were
able to dissolve its aggregates [106]. Another study provided evidence that curcumin
disorganized amyloid fibrils as a result of structural changes at the salt bridge site near the
C-terminus of amyloid [107]. Other studies have documented that curcumin also inhibits
the development of amyloid oligomers and fibrils, binds amyloid plaques, destroys existing
amyloid plaques, and decreases amyloid level and its neurotoxicity in vivo [92,105,108].
In contrast, systemic curcumin supplementation to transgenic mice for one week removed
and reduced the number of amyloid plaques [108]. Curcumin also reversed structural
alterations in dendrites. It follows from the above that curcumin reversed the pathological
effects of amyloid and its associated toxicity in transgenic mice [108].

Post-ischemic brain amyloid level depends on the balance between brain amyloid
production, clearance, and from serum influx. Thus, disruption of the clearance pathways
of amyloid from the brain promotes an increase in its level in the brain parenchyma. Several
possible mechanisms for removing amyloid from brain have been identified, including
transport of amyloid by lipoprotein receptor related protein-1 across the blood-brain barrier
into plasma, subsequent breakdown of amyloid by specialized enzymes, and also through
the immune system [109]. Curcumin works similar to an amyloid vaccine by binding to
amyloid, allowing it to be cleared from the brain parenchyma by promoting receptor medi-
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ated amyloid clearance [92,93]. In addition, curcumin may reduce amyloid influx into the
brain parenchyma from blood by blocking the receptor for advanced glycation end-products
at the blood-brain barrier and by increasing the enzymatic metabolism of amyloid [92,93].
Curcumin has phagocytic-stimulating properties and increases the number of phagocytic
cells around amyloid plaques and also around human brain amyloid plaques exposed to
rodent microglia after death [110–112]. Curcumin has been documented to induce amyloid
phagocytosis through microglia activation and enzymatic metabolism [112]. Curcumin
also stimulates B lymphocytes to produce anti-amyloid antibodies. In summary, curcumin
simultaneously blocks the flow of amyloid from the serum into the brain parenchyma and
increases its flow from the brain tissue into the blood.

6. Curcumin and Tau Protein

Neural cells are rich in tau protein, which is used to stabilize microtubules. Another
important pathology associated with folding proteins in the brain after ischemia in humans
and animals are neurofibrillary tangles, which are inherently associated with excessive hy-
perphosphorylation of the tau protein [35,39,49,53,113–115]. Hyperphosphorylated tau pro-
tein, among other things, triggers oxidative stress, causes mitochondrial dysfunction, and
ultimately contributes to the progressive development of brain neurodegeneration [116].
The hyperphosphorylation and accumulation of tau protein in the form of neurofibrillary
tangles are regulated by several tau protein kinases, the most common of them being glyco-
gen synthase kinase-3β and the mitogen-activated protein kinase [39,54,96,117]. Common
tau protein kinases that pathologically phosphorylate the tau protein are extracellular
signal-regulated kinase 2, cyclin-dependent kinase 5, S6 kinase, SAD kinase, microtubule
affinity regulating kinase, protein kinase A, calcium/calmodulin II dependent protein
kinase, and kinases Fyn and c-Abl. Therefore, it is believed that the effect of curcumin on
tau protein kinases is an activity to prevent or slow down [118]. Curcumin has been shown
to bind to neurofibrillary tangles in the brains of animals with experimental Alzheimer’s
disease, resulting in inhibition of the action of prion proteins [118]. In vitro studies have
shown that curcumin inhibits the accumulation of hyperphosphorylated tau protein and
disintegrates its fibers [119]. Curcumin also inhibits glycogen synthase kinase-3β activity
and reduces tau protein hyperphosphorylated oligomerization and tau protein dimmer
development in tau protein transgenic animals [96,120]. In addition, oral curcumin sup-
plementation with docosahexaenoic acid reduced tau protein hyperphosphorylation by
inhibiting the activity of C-Jun N-terminal kinase and insulin receptor 1 substrate [120].

7. Curcumin Bioavailability and Gut Microbiome

There are three compelling reasons why the therapeutic potential of curcumin has
yet to be realized. The first is low oral bioavailability, mainly due to its rapid metabolism,
limited absorption, and rapid systemic elimination. Second, curcumin is poorly soluble in
water, around 11 ng/mL, and is highly metabolized in the body [85]. Third, when curcumin
is administered orally, most of it is excreted in feces due to poor absorption in the gastroin-
testinal tract, moreover, curcumin is inactivated in the intestinal mucosa by glucuronidation.
Curcumin then undergoes reduction in the first pass effect to hexahydrocurcumin, followed
by conjugation with sulphates and glucuronides in the liver [121,122], and is finally excreted
in urine [85]. Pharmacokinetic studies in rodents and humans showed that the highest
blood levels achieved after oral administration were 0.051 µg/mL with 12 g of curcumin
in humans, 1.35 µg/mL with 2 g/kg in the rat, and 0.22 µg/mL with 1 g/kg in mice [84].
Orally administered curcumin has been shown to have a bioavailability of 1% lower than af-
ter intraperitoneal or intravenous administration [123,124]. Curcumin appears in the blood
15 min after intraperitoneal administration, 45 min later it can be found in the liver, spleen,
intestines, kidneys, and brain because curcumin crosses the blood-brain barrier [123,124].
In a rodent model, the presence of the l-piperoylpiperidine alkaloid produced from black
pepper fruit, an inhibitor of uridine-5’-diphosphoglucuronosyl transferase, increases the
oral bioavailability of curcumin by up to 154% [123] and results in the presence of curcumin
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in the brain notably up to 96 h after administration [124]. The bioavailability of curcumin
can be increased by administering its derivatives which exhibit enhanced biological activity
and improved pharmacokinetics, one example being dimethoxycurcumin, which has a
higher level of metabolic stability [125].

The problem of the low bioavailability of curcumin is currently under discussion.
Despite the low bioavailability of curcumin, its use is not ruled out, as it has beneficial
effects even in small doses [126,127]. The poor bioavailability of curcumin is associated
with limited absorption and rapid metabolism, which results in rapid elimination from the
body. It should be added that the high concentration of curcumin causes side effects related
to its action [127]. In the human body, the metabolism of curcumin takes place mainly
in the small intestine and liver [127,128]. The main products of curcumin metabolism
are glucuronides [127,129,130]. However, the lysosomal enzyme responsible for the de-
conjugation of glucuronides is present in the organisms, i.e., β-glucuronidase, and one
of its substrates is curcumin glucuronide [131,132]. β-glucuronidase activity increases in
inflammation [133], and the development of inflammation is associated with post-ischemic
brain neurodegeneration [10,12,134]. It should be assumed that the local concentrations of
curcumin may differ from those found in the blood [135]. It cannot be excluded that the
inflammation associated with cerebral ischemia is responsible for the increased concentra-
tion of unmetabolized curcumin in the tissues or organs of the affected individuals. The
glucuronidation of curcumin is just one of many factors affecting its bioavailability. Blood
and tissue levels are affected by other factors, such as low food levels of curcumin and its
interactions with other food ingredients. Curcumin is able to pass the blood-brain barrier
but the permeability for the curcumin by the barrier is limited [92,127,136,137]. Although
the concentration in the brain parenchyma is lower than in the blood, curcumin alleviates
inflammation in the nervous system. It is currently suggested that the actual activity of
curcumin in the body is not direct, but is mediated through the gut microflora [138,139].
In addition, there is evidence that gut bacteria produce large amounts of β-glucuronidase,
which can raise curcumin levels [140]. This suggests that the gut microflora may con-
trol curcumin metabolism and bioavailability in the body. The gut microbiome changes
throughout life [141] and progressive aging is associated with reduced microbial diversity
in composition, quantity and quality, and the occurrence of cerebral ischemia [13,142–145].
There are experimental indications that curcumin may modulate the composition of the gut
microbes, including microbial diversity [86,146–149]. It is believed that by modulating the
gut microbiome, curcumin can reduce some of the negative consequences of post-ischemic
neurodegeneration in the brain, for example by slowing it down. In conclusion, curcumin,
by influencing the gut microflora, can positively affect some pathological changes. The gut
microflora, through its ability to metabolize curcumin, can regulate its bioavailability.

8. Conclusions

Injury and death of neuronal cells, with the accumulation of diffuse amyloid and
senile plaques, the development of neurofibrillary tangles, as well as neurological deficits
with the development of full-blown dementia are the main phenomena in post-ischemic
brain neurodegeneration in animals and humans. Due to the pleiotropic action of curcumin,
such as anti-inflammatory, anti-oxidant, anti-amyloid, anti-dysfunctional tau protein, and
anti-dementia properties, curcumin is a promising candidate for the prevention and therapy
of post-ischemic brain neurodegeneration (Figures 2–4). In addition, it is a safe substance,
approved in the Europe and US as a pro-health substance, commercially available, and
inexpensive. Recapitulating, the information available in this article about the pharmaco-
logical activity of curcumin provides significant evidence for the potential clinical utility of
curcumin in the therapy of neurodegenerative phenomena with accumulation of folding
proteins, such as amyloid and tau protein following ischemia (Figure 2).
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In this review, we presented the neuroprotective effects of curcumin in post-ischemic
brain neurodegeneration. Evidence shows neuroprotective, neurological, and cognitive
positive effects of curcumin after ischemia-reperfusion brain injury (Figure 2). Based on the
evidence presented, it seems that curcumin has therapeutic potential through anti-amyloid,
anti-tau protein hyperphosphorylation, antioxidant, anti-inflammatory, anti-apoptotic
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effects, and influences autophagy, clearly indicating that curcumin can be used as a neuro-
protective agent in post-ischemic neurodegeneration (Figure 2). It is clear that curcumin
induces neuroprotection and neurogenesis, and may be a new drug substance in the treat-
ment of aging and neurodegenerative diseases, including neurodegeneration following
cerebral ischemia [150]. For this reason, curcumin may be a promising substance to coun-
teract ischemic neurodegeneration in the future. Overall, there is a scientific rationale for
the use of curcumin in the prevention and therapy of post-ischemic neurodegeneration.
Nevertheless, despite preliminary hard data, prospective studies are needed to further
elucidate how curcumin may be protective against ischemic brain injury and how it can be
used during treatment of post-ischemic neurodegeneration. In particular, evidence from
randomized controlled clinical trials will be helpful.

9. Outlook

The data presented in this review show a promising protective effect of curcumin after
ischemia-reperfusion brain injury. However, a limited number of investigations after brain
ischemia provide evidence of low or very low quality. Since post-ischemic observations
have been brief, the long-term effects associated with curcumin use are currently unknown.
Future randomized clinical studies are needed to confirm curcumin effectiveness and
to provide additional information on some of the unresolved issues, such as how long
curcumin can be used. Despite very scarce research, the results of curcumin in treating
cerebral ischemia so far appear interesting in preventing the deposition of amyloid plaques
and dysfunctional tau protein (Figures 3 and 4). In recent years, curcumin’s reputation
for pharmacological effects has steadily increased. Due to the fact that curcumin, similar
to many other natural molecules, has more than one drug target, it indicates its versatile
use and low risk of resistance to therapy. There is no doubt that, due to the preclinical
results, the next step must be the study of curcumin in well-designed and controlled clinical
trials. Double-blind studies are needed to elucidate the curcumin treatment properties.
A definitive explanation of curcumin’s healing properties may offer hope for a long-term
therapeutic effect. Curcumin has not been approved for clinical use. Low bioavailability
is a major limitation on the utility of curcumin in the clinic. We hope that future clinical
research will help us better understand the therapeutic potential of curcumin and put this
fascinating molecule at the forefront of new neuroprotective therapies.
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54. Pluta, R.; Czuczwar, S.J.; Januszewski, S.; Jabłoński, M. The many faces of post-ischemic tau protein in brain neurodegeneration
of the Alzheimer’s disease type. Cells 2021, 10, 2213. [CrossRef]

55. Ułamek-Kozioł, M.; Kocki, J.; Bogucka-Kocka, A.; Petniak, A.; Gil-Kulik, P.; Januszewski, S.; Bogucki, J.; Jabłoński, M.; Furmaga-
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