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Study on the nonfatigue 
and fatigue states 
of orchard workers based 
on electrocardiogram signal 
analysis
Ruitao Gao1, Huachao Yan1, Jieli Duan1,2*, Yu Gao1, Can Cao1, Lanxiao Li1 & Liang Guo1

In recent years, fatigue has become an important issue in modern life that cannot be ignored, 
especially in some special occupations. Agricultural workers are high-risk occupations that, under 
fatigue conditions over a long period, will cause health problems. In China, since very few studies have 
focused on the fatigue state of agricultural workers, we were interested in using electrocardiogram 
(ECG) signals to analyze the fatigue state of agricultural workers. Healthy agricultural workers were 
randomly recruited from hilly orchards in South China. Through the field experiment, 130 groups 
of 5-min interval ECG signals were collected, and we analyzed the ECG signal by HRV. The time 
domain (meanHR, meanRR, SDNN, RMSSD, SDSD, PNN20, PNN50 and CV), frequency domain (VLF 
percent, LF percent, HF percent, LF norm, HF norm and LF/HF) and nonlinear parameters (SD1, SD2, 
SD1/SD2 and sample entropy) were calculated and Spearman correlation coefficient analysis and 
Mann–Whitney U tests were performed on each parameter for further analysis. For all subjects, nine 
parameters were slightly correlated in nonfatigue and fatigue state. Six parameters were significantly 
increased and ten HRV parameters were significantly decreased compared the nonfatigue state. As 
for males, fifteen parameters were significantly different, and for females, eighteen parameters were 
significantly different. In addition, the probability density functions of SDNN, SDSD, VLF%, HFnorm 
and LF/HF were significantly different in nonfatigue and fatigue state for different genders, and the 
nonlinear parameters become more discrete compared the nonfatigue state. Finally, we obtained the 
most suitable parameters, which reflect the fatigue characteristics of orchard workers under different 
genders. The results have instructional significance for identifying fatigue in orchard workers and 
provide a convincing and valid reference for clinical diagnosis.

Fatigue is a common issue affecting people from all walks of life. The risk of accidents will significantly increase 
when people are under fatigue. Fatigue-related disorders, such as cardiovascular disease, are a major topic in 
occupation and public health1. It is generally believed that fatigue is mainly due to a large consumption of physical 
and mental capability, which is shown as a decline in the function of human organs or cells and a reduction in 
reaction ability2. In the field of occupational safety and health, fatigue could be defined as the mental or physical 
decline of people in work with long duration and high labor intensity. From the perspective of physiology, fatigue 
could also be understood as a method of self-protection for relieving functional consumption. At the same time, 
fatigue is also a subjective feeling. Under the influence of many factors, the measurement of fatigue could not be 
studied by simply linear calculation of working intensity.

In many industries, massive research work has been done to measure fatigue levels. Huang et al.3 analyzed 
the applicability of “Subjective Fatigue Symptoms” revised by the Japan Institute of Industrial Hygiene in the 
Chinese Manufacturing Industry. Binoosh et al.4 designed the assembly test of workers and used several fatigue 
questionnaires to predict the fatigue degree of workers. The results show that the Borg CR10 scale has better 
performance than the Samn-Perelli fatigue scale (SPFS) in fatigue predictability. Research on driving fatigue is 
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currently a hot topic. A series of studies have been performed to recognize driving fatigue from the perspec-
tive of physiological signals. These signals include electroencephalogram (EEG)5,6, surface electromyography 
(sEMG)7,8 and electrocardiogram (ECG)9, and researchers have also made rich achievements regarding driving 
fatigue. Similarly, miners’ fatigue and behavior safety have gradually attracted extensive attention. Tian et al. 10 
revealed the relationship between miners’ fatigue and unsafe behavior by recording physiological behavior with 
eye trackers, behavior recorders and arm adjustment testers. Risk assessments of occupational diseases, such 
as anthraciosis pneumoconiosis and lung cancer, have also been studied11,12. In the construction industry, the 
fatigue of construction workers was usually scaled by subjective questionnaires in most studies. Qi13 and Lou14 
used a questionnaire to study the relationship between workers’ fatigue and construction quality, and a structural 
equation model was applied to fit the fatigue level and obtained good results. Dong et al.15 studied the influence 
of two fatigue factors on unsafe behavior in construction workers: overtime and irregular working arrangement. 
The results showed that two fatigue factors were harmful to safety for workers. Xiang et al.16. designed a fatigue 
test of construction workers based on the handing error rate and discussed the relationship between a variety of 
physiological parameters and unsafe behavior. The study found that the number of errors was positively correlated 
with electrodermal activity (EDA), respiration (RESP) and LF/HF and negatively correlated with the standard 
deviation of EDA, skin temperature (SKT), R-R interval, SDNN and HFnorm.

Agriculture is one of the most hazardous productive sectors around the world17, and studies have shown that 
the quality of life of farmers is closely related to fatigue18. In addition, farmers experiencing long-term fatigue 
have an increased risk of hypertension, heart diseases and suicide19–21. Orchard workers are a population at 
risk for serious occupational injuries and illnesses. In China, research on the occupational health and safety of 
orchard works is quite rare, while developed countries have pursued research on this issue22,23. Moreover, there 
are many studies on the optimization design of orchard production equipment to reduce the risk of unsafe 
behavior of orchard workers24–26.

Based on the above studies, many scholars have studied the fatigue of workers in the construction industry 
and the mining industry. However, in agriculture, the recognition of farmers’ fatigue has received less attention, 
and the occupational health problems of farmers need to be invested more. With the development of hardware 
technology, wireless biosensors are rapidly growing in research in psychology, medicine and ergonomics, and 
these sensors can collect sufficient and continuous physiological information in real time and transmit it via 
wireless or Bluetooth. Among the kinds of physiological signals, ECG signals are widely used in the detection of 
comprehensive fatigue in many fields, and many studies have described the connection between cardiac rhythm 
and the autonomic nervous system (ANS)27,28. In a case study, we will combine the questionnaire survey and 
physiological measurement to analyze fatigue orchard workers. The purpose of this study was to provide effec-
tive parameters for fatigue in orchard workers, and the results can be used for fatigue prediction and referred to 
clinically for occupational disease diagnosis.

Method
Ethic statement.  The whole experiment was approved by the Industrial Design Ethics Committee of South 
China Agricultural University and followed the 1964 Declaration of Helsinki. All subjects with informed consent 
and submitted written consent after verbal explanation of the study. The experiments and the fatigue question-
naire were completed in voluntary and anonymously All experiments were performed in accordance with test 
criteria and regulations of Industrial Design Department of College of Engineering.

Participants.  The method of stratified random sampling was adopted for the selection of subjects. We 
selected 65 workers from the hilly orchard in Guangzhou and South China Agricultural University, the typical 
hilly orchard in South China, as subjects, and raw data were obtained through field collection. The basic infor-
mation of subjects is as follows: the average age was 30.7 ± 5.1, the average weight was 68.79 ± 3.4 kg, the subjects 
got sufficient sleep the day before the experiment and no alcohol or caffeine intake within 24 h. All subjects had 
no history of heart disease and were in good health. Strenuous exercise was avoided, and food intake was limited 
to 1 h before the experiment.

Experimental procedure.  The experiment of the study was designed to obtain the ECG signal of orchard 
workers in fatigue and nonfatigue states. Individual information, such as age, weight and height, was recorded in 
preparation. A set of questionnaires (FS-14) was given to subjects to complete to measure comprehensive fatigue 
before and after work in the field study. After daily work, most subjects should experience fatigue. The ECG data 
were collected in the nonfatigue state and fatigue state. In this way, the ECG signals of orchard workers under 
fatigue and nonfatigue states were obtained.

First, all subjects rested for 10 min and then completed the questionnaire to report the current fatigue state. 
After that, the ECG signal was collected to obtain the baseline state of orchard workers. Next. The workers were 
required to carry out field activities as usual. After the end of the working day, each subject was required to fol-
low a 10-min rest, and the questionnaire needed to be completed again. Finally, 5 min of ECG signal acquisition 
was performed to record the fatigue state of the orchard workers after finishing a day’s task. Figure 1 shows the 
test flow.

The specific details in the test are as follows:

1.	 This experiment considered the factors that affect fatigue caused by circadian fluctuations29,30. Therefore, 
to avoid this factor in ECG signal collection, the experiments were completed in the same time session 
(9:00–10:00 a.m. and 4:00–5:00 p.m.).
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2.	 The subjective questionnaire of the Fatigue Scale proposed by Chalder et al.31 was to measure comprehensive 
fatigue state in this study, it contains 14 items which include 8 physical fatigue questions and 6 mental ques-
tions, and the fatigue scale is a 5-point Likert scales from 1 = “strongly disagree” to “strong agree” applied to 
all items.

3.	 During the 10-min rest and more than 5-min ECG signal collection, all subjects needed to remain in a 
relaxed upright posture. Upright posture means required subjects to put hand on thighs with elbow angle at 
110°–135°and maintain seating posture with knee angle and thigh-angle at 105–130° and 100–125°, respec-
tively.

4.	 The ECG signal was measured by the method of three-lead chest association. After wiping the skin with 
alcohol, three electrodes were placed on the chest of subjects. The positions of the three electrodes were as 
follows: the positive electrode was affixed to the sternum and the 3rd costa, the negative electrode was affixed 
to the left margin of the sternum and the 5th costa, and the reference electrode was affixed to 1 cm below 
the xiphoid process. After collecting the ECG signal, ECG characteristics can be obtained by filtering and 
denoising32. The detection method proposed by Wu33 was used to extract the R peak value. The real-time 
acquisition of the ECG signal is shown in Fig. 2.

Experimental condition.  This study aimed to analyze the ECG signal and identify fatigue characteristics 
of orchard workers. The measurement conditions were as follows: the temperature was 27.8–33.5 °C, the altitude 
was 500–720 m, the wetness was 71.7–84.3%, and the atmospheric pressure was 998.6–1002.3 hPa. Litchi, longan 
and citrus are the main crops in this hilly orchard.

Experimental equipment.  In this study, Ag/AgCl electrodes were selected as the skin surface electrode for 
ECG acquisition because of their better conductivity and stability. The ErgoLAB man–machine synchronization 
system developed by Jinfa Technology Co., Ltd. was able to collect multiple physiological signals at the same 
time, such as sEMG, EOG, ECG and RESP.

Physiological sensors matched with the Man machine system system are shown in Fig. 3. In particular, the 
sampling frequency of the ECG sensor is 256 Hz, and the communication mode is 2.4 GHz two-way digital 
wireless transmitter. Pure ECG signals can be obtained by noise reduction and filtering.

Computational method.  The ECG signal (Fig. 4) is the biological reaction on the body surface in the 
process of heart activity electrical signals generated. Heart rate variability (HRV) is the classical method for 
analyzing ECG signals and refers to the variability of small differences between adjacent heartbeat cycles. It is 

Figure 1.   The flow chart of total experiment.

Figure 2.   Real-time ECG signal acquisition of orchard workers.
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generally accepted that HRV describes the adaptive changes of autonomic nervous activity (ANS) in response to 
unpredictable factors, such as cardiac disease, stress, fatigue and drowsiness33. The sympathetic nervous system 
(SNS) and parasympathetic nervous system (PNS) are components of the ANS, and the balancing action of the 
SNS and PNS branches of the ANS controls heart rhythm. HRV can quantitatively assess the tension and bal-
ance of SNS and PNS activity and its effect on cardiovascular system activity under the fatigue state, and reflect 
the condition of fatigue from physical and mental load. The most conspicuous feature of HRV is the abnormal 
sensitivity which is contains subtle information about cardiovascular regulation. Many application sceneries 
where HRV have been found available include evaluation of physical training intensity and clinical diagnosis of 
cardiac illness.

In this study, we concentrated on the study of orchard workers under fatigue and nonfatigue states in HRV 
and summarized the changing characteristics of physiological parameters. HRV analysis mainly includes time 
domain analysis, frequency domain analysis and nonlinear analysis.

Time domain analysis.  Time domain analysis is a method for calculating the differences in the R-R interval 
by discrete statistical analysis. The RR interval is the time difference between two between the R peaks of two 
consecutive heart beats in the ECG, In this section, we calculated the key time domain parameters of HRV. The 
calculation methods of each parameter are as follows:

(1)	 Mean RR Interval (meanRR): The mean RR interval can be calculated using the following formula:

(2)	 Mean Heart Rate (meanHR): The mean Heart Rate is defined as:

(1)meanRR =
1

N

N
∑

i=1

RRi

Figure 3.   Physiological sensors.

Figure 4.   Real time ECG signal.
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(3)	 SDNN is the standard deviation of all RR intervals over the whole collection time, which reflects the com-
prehensive change in heart rate variation in this period. The formula for calculation of SDNN is as follows:

(4)	 The root mean square of successive differences (RMSSD) between the R-R interval is a key time domain 
parameter to estimate vagus nerve changes, which also reflects the high-frequency component in HRV. 
The RMSSD is defined as:

(5)	 SDSD is the standard deviation of the difference between adjacent intervals, which can be calculated in the 
following formula:

(6)	 The coefficient of variation (CV) is the ratio of the SDNN to meanHR, and the formula is defined as follows:

(7)	 PNN20 is the proportion of the difference between adjacent intervals of more than 20 ms in a period of 
time. PNN20 is defined as follows:

where NN20 is the number of successive R-R interval pairs that differ by more than 20 ms.
(8)	 PNN50 is the proportion of the difference between adjacent intervals of more than 50 ms in a period of 

time. The formula for calculation of PNN50 is as follows:

Frequency domain analysis.  The frequency domain analysis of HRV analyzes the characteristics of heart rate 
from the power spectrum. There is a certain correlation between frequency domain analysis and time domain 
analysis, but frequency domain analysis can reveal more complex heart rate changes. The classical spectrum esti-
mation of fast Fourier transformation (FFT) and the modern spectrum estimation method of the autoregressive 
(AR) model are always used to obtain the power spectrum with frequency as the X-axis and power amplitude 
as the Y-axis34. The power distribution of the ECG signal in different frequency bands can be characterized 
quantitatively by spectral analysis. The frequency domain analysis of the ECG signal provides four components, 
including ultra low frequency (ULF, ≤ 0.003 Hz), very low frequency (VLF, 0.003–0.04 Hz), low frequency (LF, 
0.04–0.15 Hz) and high frequency (HF, 0.15–0.4 Hz). These components were generally expressed in normal-
ized units, which represent the dominance of ANS, SNS and PNS activities for cardiac rhythm35,36. Therefore, we 
extracted the relative powers (%) of VLF, LF and HF and normalized the powers of LF and HF and the ratio of 
LF and HF. Since ULF requires a long recording period of least 24 h while the production mechanisms of ULF 
band is still in dispute so the characteristic parameters of ULF are not calculated in this study. The formula for 
the calculation of mentioned frequency domain component is as follows:

(2)meanHR =
60

meanRR

(3)SDNN =

√

√

√

√

1

N

N
∑

i=1

(RRi −meanRR)2

(4)RMSSD =

√

√

√

√

1

N − 1

N−1
∑

i−1

(RRi+1 − RRi)
2

(5)SDSD =

√

√

√

√

1

N

N
∑

i=1

[(RRi − RRi+1)− (meanRR − RRi+1)]2

(6)CV =
SDNN

meanRR
× 100%

(7)PNN20 =
NN20

N − 1
× 100%

(8)PNN50 =
NN50

N − 1
× 100%

(9)VLFpercent =
VLF power

Total power
× 100%

(10)LFpercent =
LF power

Total power
× 100%

(11)HFpercent =
HF power

Total power
× 100%
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Nonlinear analysis.  Nonlinear means that a relationship between parameters cannot be plotted as a straight 
line37. A Poincare plot is a graphed method applied to HRV for nonlinear analysis, which is used to analyze the 
dispersion of the RR interval and can directly reflect the pattern of every RR interval. The coordinates of the data 
points in the Poincare plot are determined by the sequence of RR intervals. The data points are plotted with the 
RRi interval as the abscissa and RRi+1 interval as the ordinate. Ellipses are used to fit data points in a Poincare 
plot, and the shape of the ellipses is determined by the standard deviation of the data point in the T direction 
and L direction, which are denoted by SD1 and SD2, respectively. Concretely, SD1 specifies the width of the fit-
ting ellipse, and SD2 specifies the length of the fitting ellipse. By calculating the standard deviations of distances 
of the data point to the line y = x and y = − x + 2meanRR to analyze the dispersion of data points. In short term 
measurement of HRV, Brennan et al.38 proved that SD1 and SD2 are related to the time domain parameters, 
which can be expressed as formulas (14) and (15). In particular, SD1 indicates the short-term variability caused 
by respiratory sinus arrhythmia (RSA), and SD2 could measure both the long-term and short-term variability 
of HRV.

where N is the number of successive R–R interval pairs and SDSD and SDNN are shown in Eqs. (3) and (5).
By observing the distribution of data points in the Poincare plot, the abnormal RR interval caused by fatigue 

can be located. The intuitive difference in the RR interval of orchard workers between fatigue and nonfatigue 
states was analyzed by Poincaré plots. Therefore, SD1, SD2 and SD1/SD2 were selected to analyze the nonlinear 
variability of HRV.

Sample entropy.  Entropy is a measurement of physical properties and was initially defined as the quotient of 
an infinitesimal amount of heat to the instantaneous temperature. The complexity unpredictability of a sequence 
signal is also reflected by entropy in informatics, and the principle of entropy is to estimate the complexity by 
detecting the generation probability of new subsequences in the time domain signal. The approximate entropy 
and sample entropy are generally used for nonlinear analysis of ECG signals39–41. Sample entropy was proposed 
by Richman et al.40, which is also an improvement of approximate entropy. Compared with approximate entropy, 
the calculation of sample entropy maintains better relative consistency for data with large amplitude, and self-
matches are not included in calculating the probability. This means that sample entropy represents more self-
similarity in the time series. Therefore, in this study, we selected sample entropy to scale the complexity of the 
HRV signal. Sample entropy can be obtained by follows:

First, the time series are reconstructed in phase space, and it is assumed that for a group of measured time 
series {xn}Nn=1 with a length of N, the reconstructed phase space is defined as Eq. (16):

where m is the dimension and τ is the delay time interval of time series {xn}Nn=1 . The distance between compo-
nents X(i) and X(j) is defined as the maximum distance, which can be expressed as Eq. (17):

where k = 1, 2, . . .m and i ≤ N −m+ 1 . With the center of y(i) and allowable deviation r in the m dimension 
space, the probability of the distance between X(i) and X

(

j
)

 of remaining vectors less than r is defined as:

where r is a preselected parameter and is empirically taken as 0.1 ∗ STD − 0.25 ∗ STD . SDT  represents the 
standard deviation of the time series. We selected r = 0.2 ∗ STD in this study. Cm

i (r) reflects the degree of cor-
relation between both X(i) and X

(

j
)

 , which means the regularity degree of vector {X(i)} . The average regularity 
can be calculated as follows:

(12)LFnorm =
LF power

Total power − uLF power

(13)HFnorm =
HF power

Total power − uLF power

(14)SD1 =
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√

√

√

1

N − 1
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2
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(15)SD2 =
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1

N − 1
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(RRi + RRi+1 − 2meanHR)2

2
=

√
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2
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(16)Xn =
{

xn, xn+τ, . . . , xn+(m−1)τ

}

∈ Rm, n = N0,N0 + 1, . . . ,N

N0 = (m− 1)τ+ 1

(17)d
[
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(

j
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N −m
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Through the calculation method above, �m+1(r) can be obtained, and the sample entropy can be expressed as:

In real calculations, the length N of the time series is a limited value. Therefore, sample entropy is typically 
expressed as:

SampleEn is not limited by the length of the time series, and the embedding dimension m and allowable 
deviation r contribute are the same for SampleEn. A higher SampleEn represents a dynamic system trend toward 
randomness with better adaptability. A lower SampleEn indicates a time series with higher periodicity. Mean-
while, the improved time series regularity algorithm of sample entropy is more suitable for the analysis of 
biological time series such as ECG42. Table 1 summarizes and describes the characteristic parameters used for 
further analysis in this study.

Analysis and results
In this section, we calculated the characteristic values in the questionnaire and HRV for ECG signals and analyzed 
the correlation and change trend of each parameter. The results were given as the mean ± SD. After removing 
unavailable data due to weather and signal distortion, 65 out of 67 subjects were used for further analysis, includ-
ing 38 males and 27 females. The state of fatigue was identified according to the scoring at the Fatigue Scale-14, 
the score of questionnaire FS-14 answered by orchard workers is shown in Table 2 and Fig. 5. Compared with 
before daily work, self-reporting total scores of orchard workers as daily work increased from 21.5 to 49.4 and 

(19)�m(r) =
∑N−m

i=1 Cm
i (r)

N −m

(20)SampleEn(m, r,N) = lim
N→∞

{

ln
�m(r)

�m+1(r)

}

(21)SampleEn(m, r,N) = ln
�m(r)

�m+1(r)

Table 1.   Description of HRV parameters used in this study.

No Parameters Unit Description

Time domain parameters

1 meanRR ms The mean of RR intervals

2 meanHR beats/min The mean heart rate

3 SDNN ms Standard deviation of RR intervals

4 RMSSD ms Square root of the mean squared differences between successive RR intervals

5 SDSD ms Standard deviation of the difference between adjacent interval

6 CV – Ratio between SDNN and RR band powers

7 PNN20 % NN20 divided by the total number of RR intervals

8 PNN50 % NN50 divided by the total number of RR intervals

Frequency domain parameters

1 VLF percent % Relative powers in very low frequency band (0–0.04 Hz)

2 LF percent % Relative powers low frequency band (0.04–0.15 Hz)

3 HF percent % Relative powers in high frequency band (0.15–0.4 Hz)

4 LF norm – Normalized low frequency power

5 HF norm – Normalized high frequency power

6 LF/HF – Ratio of LF power to HF power

Nonlinear parameters

1 SD1 ms Standard deviation for T direction of Poincare plot

2 SD2 ms Standard deviation for L direction of Poincare plot

3 SD1/SD2 – Ratio of SD1 to SD2

4 SampleEn – A method to measure the complexity of time series

Table 2.   Characteristic values of Fatigue Scale-14.

State Min–max
Mean ± SD
95%CI Sig

Before daily work 14–26 21.5 ± 2.4
0.000**

After daily work 40–55 49.4 ± 3.9
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the increase was significant (P < 0.001), we could conclude that as completing the day’s work the orchards work-
ers were in a state of fatigue.

Table 3 shows that the mean self-reported FS-14 broke into its subtraits of mental and physical fatigue of 
workers. The scoring of each section both increased significantly (P < 0.001), and the scoring of physical fatigue 
and mental fatigue on average increased 21.6 and 6.2, respectively. From the results of the questionnaire, it is 
clearly seen that both physiological and mental scores increased, but the increase in the physiological fatigue 
score was more compared to the mental fatigue score. Therefore, it can be inferred that physiological fatigue 
contributes more to the comprehensive fatigue of orchard workers. In this study, all subjects worked for about 
6 h to complete daily tasks, but the content of work was not recorded for each subject. Therefore, in order to 
delay appearance of fatigue, it can be considered in terms of reducing the working hours and the work intensity.

Next, the results of HRV parameters of subjects before and after fatigue are shown in this section. It was found 
that each parameter has different variation patterns. Table 4 shows the characteristic value changes of the HRV 
parameters of all subjects in the nonfatigue and fatigue states. Correlation coefficients were used to analyze the 
correlation of individual parameters, but the majority of HRV parameters did not pass the K-S normality test. 
Therefore, Spearman coefficients were chosen for analyze the specific relevance of each parameter and signifi-
cant differences were tested by Mann–Whitney U test. The significant difference is expressed by the symbol 
“*”, “*” represents the significance level P < 0.05, and “**” represents the significance level P < 0.001. The results 
show that RMSSD (Spearman coefficient = 0.312), SDSD (Spearman coefficient = 0.389), LF norm (Spearman 
coefficient = 0.355), HFnorm (Spearman coefficient = 0.355), SD1 (Spearman coefficient = 0.375) SampleEn_iHR 
(Spearman coefficient = 0.453) and SampleEn_Peak (Spearman coefficient = 0.354) with the moderate correla-
tions (Spearman coefficient > 0.3) in fatigue and nonfatigue states among time domain, frequency domain and 
nonlinear parameters. The strongest significant (P < 0.001) increased difference was found for mean HR LF/HF 
SampleiHR, followed by LF percent and Samplepeak, SampleRR. On the other hand, fatigue also led to significant 
decreases (P < 0.05) in nine HRV parameters (meanRR, SDNN, RMSSD, SDSD, PNN50, PNN20, LFnorm, SD1, 
SD2, SD1/SD2), of which the eight parameters had the stronger significance level (P < 0.001) for the decrease, 
and SD1/SD2 showed a decrease significanly (P < 0.05). Figures 6, 7 shows the differences of HRV parameters 
in nonfatigue and fatigue states.

In order to determine the differences in the variation of HRV parameters in different groups, we grouped 
all subjects by gender and discussed the change of HRV parameters in different genders separately. The differ-
ences in HRV between fatigue and nonfatigue states for orchard workers of different genders can be seen in the 
following Table 5.

Eight of the time-domain HRV parameters were analyzed. Due to the alteration in cardiac rhythm under 
fatigue, the related characteristic parameters displayed certain trends. In male orchard workers, four time-domain 
parameters showed significant changes (P < 0.05), among which meanHR increased significantly and meanRR, 
SDSD, PNN50, PNN20 decreased significantly. However, as for female orchard workers, all 8 HRV parameters 
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Figure 5.   Total score of each subject in FS-14.

Table 3.   Characteristic values of physical and mental parts on the Fatigue Scale-14.

Score
Nonfatigue state
95%CI

Fatigue state
95%CI Sig

Total score 21.5 ± 2.4 49.4 ± 3.9 0.000**

Physical score 12.6 ± 1.9 34.2 ± 3.4 0.000**

Mental score 9.0 ± 1.6 15.2 ± 1.8 0.000**
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showed significant changes (P < 0.05), only meanHR showed an increasing trend, and the remaining time-domain 
parameters RR SDNN RMSSD, SDSD, PNN50, PNN20, CV showed significant decreases (P < 0.05).

The probability density functions (PDF) of HRV parameters for orchard workers of different genders also 
showed distinct differences as seen in Figs. 8, 9, 10, (a) represents male and (b) represents females. The distribu-
tion of SDNN and SDSD in fatigue and nonfatigue states in the time domain parameters was obviously different 
among the different gender of orchard workers. The peak segment of the PDF of SDNN for female workers 
increased significantly after fatigue, but the number remained almost constant in males. In addition, although the 
SDNN shifted to the lower segment after fatigue, the number of SDNN distributed in the peak segment increased 
in male workers, but decreased in females compared to the nonfatigue condition. The PDF of the remaining 
time-domain parameters did not change significantly in the gender differences.

In the frequency domain, six parameters were analyzed, and it was found that each parameter was signifi-
cantly different. Table 6 presents the results of the parameters in the frequency domain before and after the task.

Table 4.   Characteristic values of each HRV parameter.

No Parameter

Mean [SD]

Spearman M-W U testNonfatigue state Fatigue state

Time domian

1 MeanHR 72.154 ± 8.987 86.692 ± 7.709 0.25258 **

2 MeanRR 844.971 ± 105.832 697.508 ± 66.827 0.24382 **

3 SDNN 67.122 ± 25.272 44.996 ± 17.444 0.25296 **

4 RMSSD 46.867 ± 34.475 29.938 ± 23.165 0.33115 **

5 SDSD 46.996 ± 34.589 28.615 ± 22.823 0.38888 **

6 PNN50 11.85 ± 8.917 3.742 ± 4.678 0.22654 **

7 PNN20 45.316 ± 14.108 21.915 ± 13.115 0.22888 **

8 CV 0.082 ± 0.032 0.064 ± 0.023 0.31081 **

Frequency domain

1 VLF percent 46.024 ± 15.71 43.535 ± 14.379 0.13783 NS

2 LF percent 32.831 ± 10.199 38.927 ± 12.21 0.03427 *

3 HF percent 16.36 ± 12.209 13.444 ± 11.171 0.2691 NS

4 LF norm 0.694 ± 0.134 0.766 ± 0.14 0.35475 NS

5 HF norm 0.306 ± 0.134 0.234 ± 0.14 0.35475 **

6 LF/HF 2.976 ± 2.058 4.842 ± 3.268 0.35082 **

Nonlinear

1 SD1 33.231 ± 24.458 20.214 ± 14.24 0.37514 **

2 SD2 86.193 ± 31.777 59.97 ± 21.213 0.20016 **

3 SD1/SD2 0.38 ± 0.205 0.326 ± 0.177 0.2353 *

4 SampleEn_Peak 1.522 1.7475 0.354 *

5 SampleEn_RR 1.2565 1.589 0.152 *

6 SampleEn_iHR 1.2165 1.342 0.453 **

Figure 6.   The value of SDNN, RMSSD, SDSD, PNN50 and PNN20 changes in the nonfatigue and fatigue state.
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The relative power of three different frequency bands showed distinct changes in nonfatigue and fatigue. First, 
among male orchard workers, only HFpercent showed a significant decrease, while VLFpercent and LFpercent 
showed a trend of change but did not produce a significant difference. In contrast, a significant upward trend in 
both VLFpercent and LFpercent was observed in female orchard workers. The normalized method was applied 
to process frequency domain parameters (LF and HF) to ensure the stability and accuracy of the data features. 
Furthermore, a better uniformity and significant differences in the three normalized parameters were obtained. 
Both LFnorm and HFnorm showed significant increases and decreases in male and female workers, respectively. 
Meanwhile, the ratio of LF to HF also showed a significant increase compared to nonfatigue state of workers.

The variation of the PDF of each frequency domain parameter is shown in Figs. 11, 12, 13. The VLF percent 
distribution in the peak PDF segment showed a slight increase after fatigue in male workers, but this decreased in 

Figure 7.   The value of VLF (%), LF (%), HF (%), LFnorm and HFnorm changes in the nonfatigue and fatigue 
state.

Table 5.   Characteristic values of time domain parameters in HRV.

No Parameter

Mean [SD] M-W U test

M-Nonfatigue M-Fatigue F-Nonfatigue F-Fatigue MN-MF FN-FF

Time domian

1 MeanHR 73.658 ± 8.666 84.947 ± 8.466  70.037 ± 9.163 89.148 ± 5.796 ** **

2 MeanRR 825.791 ± 98.837 713.445 ± 75.162 871.966 ± 111.238 675.08 ± 45.387 ** **

3 SDNN 66.814 ± 23.07 51.137 ± 19.351 67.554 ± 28.537 36.353 ± 9.133 * **

4 RMSSD 54.139 ± 41.559 36.927 ± 27.435 36.632 ± 16.783 20.103 ± 8.829 NS **

5 SDSD 54.209 ± 41.614 34.639 ± 27.501 36.844 ± 17.248 20.137 ± 8.846 * **

6 PNN50 10.43 ± 7.994 4.264 ± 5.004 13.849 ± 9.882 3.007 ± 4.155 ** **

7 PNN20 43.491 ± 14.486 23.95 ± 14.184 47.885 ± 13.402 19.051 ± 11.069 ** **

8 CV 0.085 ± 0.033 0.071 ± 0.027 0.077 ± 0.03 0.053 ± 0.012 NS **

Figure 8.   The probability density function of SDNN and RMSSD in different gender under nonfatigue and 
fatigue state.
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females. In addition, the PDF of HFnorm peak segment of remained unchanged before and after fatigue in male 
workers, but there has been a significant decline among women. The PDF of LF/HF in fatigue and nonfatigue 
states were almost opposite in different genders.

Changes in VLF percent were considered to originate from thermal and hormonal control along with vaso-
motor activity. LFnorm and HFnorm were supposed to reflect cardiac sympathetic activity and vagal activity, 
respectively. Likewise, the LF/HF ratio was used to estimate the balance between cardiac sympathetic and para-
sympathetic activity.

In nonlinear analysis, six nonlinear parameters of HRV parameters were calculated and summarized in 
Table 7. SD1 and SD2 of the Poincaré plot generally measure short-term and long-term variability features in ms.

In this study, SD1 and SD2 showed a significant decrease (P < 0.05) in both male and female workers. And 
among male orchard workers, The SD1 decrease was less than SD1, leading to a smaller SD1/SD2 and indicating 
the shift of balance between short-term variability and long- term variability in the RR interval. but SD1/SD2 
did not show a significant change (P > 0.05) among female workers.

Figure 9.   The probability density function of SDNN and RMSSD in different gender under nonfatigue and 
fatigue state.
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Figure 10.   The probability density function of SDNN and RMSSD in different gender under nonfatigue and 
fatigue state.

Table 6.   Characteristic values of frequency domain parameters in HRV.

No Parameter

Mean [SD] M-W U test

M-Nonfatigue M-Fatigue F-Nonfatigue F-Fatigue MN-MF FN-FF

Frequency domain

1 VLF percent 43.282 ± 15.823 44.91 ± 15.319 49.883 ± 14.993 41.6 ± 12.973 NS *

2 LF percent 32.824 ± 8.618 36.716 ± 11.146 32.841 ± 12.262 42.038 ± 13.152 NS *

3 HF percent 19.488 ± 13.534 14.404 ± 11.703 11.957 ± 8.472 12.094 ± 10.442 * NS

4 LF norm 0.659 ± 0.147 0.752 ± 0.138 0.744 ± 0.097 0.786 ± 0.143 * *

5 HF norm 0.341 ± 0.147 0.248 ± 0.138 0.256 ± 0.097 0.214 ± 0.143 * *

6 LF/HF 2.515 ± 1.518 4.482 ± 3.202 3.626 ± 2.53 5.349 ± 3.352 * *
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Figure 11.   The probability density function of VLF (%) and LF (%) in different gender under nonfatigue and 
fatigue state.

Figure 12.   The probability density function of HF (%) and LFnorm in different gender under nonfatigue and 
fatigue state.

Figure 13.   The probability density function of HFnorm and LF/HF in different gender under nonfatigue and 
fatigue state.

Table 7.   Characteristic values of nonlinear parameters.

No Parameter

Mean [SD] M-W U test

M-Nonfatigue M-Fatigue F-Nonfatigue F-Fatigue MN-MF FN-FF

Nonlinear

1 SD1 38.331 ± 29.426 24.46 ± 16.694 26.053 ± 12.196 14.239 ± 6.255 * **

2 SD2 82.434 ± 24.778 67.816 ± 22.419 91.484 ± 39.525 48.927 ± 13.258 * **

3 SD1/SD2 0.44 ± 0.239 0.34 ± 0.177 0.296 ± 0.096 0.306 ± 0.178 * NS

4 SampleEn_Peak 1.605 ± 0.274 1.812 ± 0.382 1.439 ± 0.272 1.683 ± 0.3431 **

5 SampleEn_RR 1.401 ± 0.2629 1.996 ± 0.2535 1.112 ± 0.19 1.182 ± 0.35 * *

6 SampleEn_iHR 1.244 ± 0.497 1.37 ± 0.616 1.189 ± 0.316 1.314 ± 0.283 * **
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The Poincaré plot of a normal subject usually has a comet shape, and data points distributed in the head of the 
scatter graph are dense and relatively loose in the end. In this study, Fig. 14a,b shows the Poincaré plot of orchard 
workers in fatigue and nonfatigue states. The distribution area of RR intervals in the Poincaré plot decreased than 
that in the nonfatigue state, and several outliers appeared at the edge of the Poincaré plot, which represented that 
the RR intervals of subjects after the operating task became relatively unstable.

The sample entropy of instantaneous heart rate (SampleEn_iHR), RR interval (SampleEn_RR) and value of 
R wave peak (SampleEn_Peak) was calculated for analyzing complexity differences of ECG signal. It is can be 
seen from the Fig. 15 that the characteristic value of the sample entropy analysis become more discrete than 
nonfatigue state. Specifically, SampleEn_Peak SampleEn_iHR SampleEn_RR showed an increasing trend among 
male orchard workers relative to the nonfatigued state, but no significant difference was observed in the change 
of SampleEn_Peak. The difference was that SampleEn_iHR had the strongest significant level among female 
orchard workers.

Both SampleEn_iHR, SampleEn_RR and SampleEn_Peak were positive numbers, which indicates the dynamic 
performance of the ECG signal in the chaotic state. Under the fatigue state, the unpredictability and complexity 
increased in SampleEn_iHR and SampleEn_Peak, while this decreased in SampleEn_RR. Thus, the confusion 
of instantaneous heart rate and value of R wave peak increased and RR interval decreased in fatigue state than 
nonfatigue state. The results of nonlinear analysis can provide valid information on occupational health disease 
diagnosis.

Figure 14.   Poincare plot of orchard workers in the nonfatigue state (a) and fatigue state (b).

Figure 15.   The result sample entropy analysis of iHR, RR interval and value of R Peak in different gender of 
workers.
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Discussion
This study analyzed the nonfatigue and fatigue state of orchardworkers with a change in the HRV of ECG signals 
caused by daily work under hilly orchard conditions. According to field data collection and further analysis, 
we found the HRV difference of orchard workers between nonfatigue state and fatigue these differences were 
observed both in time domain, frequency domain and nonlinear parameters.

We summarized the change trend of each parameter mentioned above, which can be seen in Table 8. The 
seven time-domain parameters, including MeanRR (decreased − 39.11%), PNN50 (decreased 68.42%), PNN20 
(decreased 51.64%) and CV (decreased 21.95%) were significantly smaller in the fatigue state than in the non-
fatigue state. Conversely, the MeanHR (increased 20.15%) was larger in the fatigue state. The changes of time 
domain parameters could be explained by limb movement activated by the reciprocal activation pattern of the 
body, and autonomic nerves play an increasingly dominant role in the regulation of cardiac rhythm. Moreover, 
SDSD showed a different distribution in PDF among different gender of orchard workers. In frequency domain, 
one of the relative power parameters LF percent (increased 17.82%) was larger than the nonfatigue state, and 
the other two parameters (VLF percent decreased 5.41% and HF percent decreased 17.82%) showed a decreas-
ing trend. However, the significance of three relative power parameters varies greatly among different genders 
and the PDF of VLF percent, HF norm and LF/HF in fatigue and nonfatigue state differed significantly. The 
lower HF percent and HFnorm indicated that the regulation of vagus nerve activity was inhibited in the fatigue 
state. Correspondingly, the simultaneous increase in LFnorm means that the dual regulation of sympathetic 
and parasympathetic nerves to the cardiac rhythm becomes more sensitive43,44. The marked increase in the LF/
HF ratio (increased62.7%) can be explained by the gap in the activation level of the cardiac sympathetic and 
parasympathetic systems becoming wider with fatigue than without fatigue.

Three parameters, SD1 (decreased 39.17%), SD2 (decreased 30.42%) and SD1/SD2 (decreased 14.21%), in 
the Poincaré plot for nonlinear analysis showed decreasing trends. However, there was no significant difference 
change in SD1/SD2 among female orchard workers when gender differences were considered. Poincare plot 
analysis is an emerging quantitative-visual technique whereby the shape of the plot is categorized into functional 
classes that indicate the degree of the abnormal heart rate in a subject and provides summary information as 
well as detailed beat-to-beat information on the behavior of the heart45,46. As shown in Fig. 14, the differences 
between the two figures described the abnormal change in heart rate caused by an imbalanced RR interval in 
the fatigue state. In the analysis of sample entropy, Three characteristic value showed a slight increase, but there 
was no significant difference in the SampleEn_Peak of male orchard workers in fatigue and nonfatigue state. The 
result of nonlinear analysis indicates that the degree of disorder and complexity in cardiac rhythm increased, 
which means that the heart rhythm regulation ability of hilly orchard workers is limited due to fatigue.

Lu et al.47 proposed a facial recognition method for tractor driver fatigue based on a convolutional neural 
network. After gamma brightness correction and wavelet denoising for the collected image, the PCA-SCM core 
feature recognition algorithm was used to identify the driver face. Through the comparison of four detection 
methods in field tests, including the back propagation neural network, dynamic template matching technique, 
fuzzy reasoning method and convolutional neural network, the convolution neural network achieved the best 

Table 8.   The changing trend of each parameter used in this study.

No Parameter Unit

State

Rate (%)Non fatigue Fatigue

1 MeanRR ms 844.971 697.499 − 17.45%

2 MeanHR beats/min 72.154 86.692 20.15

3 SDNN ms 67.122 44.996 − 32.96

4 RMSSD ms 46.867 29.938 − 36.12

5 SDSD ms 46.996 28.615 − 39.11

6 PNN50 % 11.85 3.742 − 68.42

7 PNN20 % 45.316 21.915 − 51.64

8 CV – 0.082 0.064 − 21.95

9 VLF percent % 46.024 43.535 − 5.41

10 LF percent % 32.831 38.927 18.57

11 HF percent % 16.36 13.444 − 17.82

12 LFnormalized – 0.694 0.766 10.37

13 HFnormalized – 0.306 0.234 − 23.53

14 LF/HF – 2.976 4.842 62.7

15 SD1 ms 33.231 20.214 − 39.17

16 SD2 ms 86.193 59.97 − 30.42

17 SD1/SD2 – 0.38 0.326 − 14.21

18 SamEntropy_iHR 1.2165 1.342 10.316

19 SamEntropy_RR 1.2565 1.589 26.46

20 SamEntropy_Peak 1.522 1.7475 14.81
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recognition rate and reached 98.9%. Chen et al.48 used linear and nonlinear methods to analyze the difference 
in miners’ HRV before and after fatigue. The results show that LFnorm, HFnorm and the HF/LF ratio exhibited 
increasing trends and significant differences. It is suggested that SDNN, LF, HF, LF/HF, HR, RH and RR are 
gold-standard sensitive parameters that can be used to reliably detect miner fatigue. Huang et al.49 used wear-
able ECG smart devices to detect mental fatigue. They found that the rMSSD was positively associated with 
the mental fatigue state and that the PNN50 and NN.mean were negatively associated with the mental fatigue 
state. Moreover, this study also combined different indicators in four classification algorithms. It was found that 
NN.mean, TP and LF achieved the best accuracy, which was 75.5% with KNN (k = 3), and NN.mean, PNN50, 
TP and LF were the key HRV indicators identified for mental fatigue detection. Tong et al.50 tested the relation-
ship between the HRV parameters and exercise-induced fatigue and found that the SDNN, RMSSD, and PNN50 
of nine long-term runners decreased after exercise. Likewise, it is generally believed that drowsiness is also a 
manifestation of fatigue. However, some studies showed opposite results under drowsy conditions. Byeon et al.51 
and Patel et al.52 studied driving fatigue in ECG signals, and a marked decrease was shown in the LF to HF ratio 
in drivers’ fatigue state, while other studies4,53 showed that LF/HF may increase with higher fatigue levels during 
tasks. Therefore, the results of these studies are still in dispute.

Liu et al.54 extracted the RR interval series and calculated the value of approximate entropy (An) in normal 
sinus rhythm (NSR), ventricular tachycardia (VT) and ventricular fibrillation. The results show that the ApEn 
increased significantly from NSR to VT and then to VF, which may be regarded as an index to discriminate the 
ECG signals of different states. Zhang et al.55 and Chen et al.48 analyzed driving fatigue and miners’ working 
fatigue by sample entropy. The former study extracted the wavelet entropy (WE), the peak-to-peak value of the 
approximate entropy (PP-ApEn) and sample entropy (PP-SampEn) in real-time ECG signals, and an artificial 
neural network (ANN) model was applied to recognize the fatigue state of drivers. The automatic identification 
of driver fatigue was achieved, and the accuracy of estimation was approximately 96.5–99.5%. The result of the 
miner fatigue state study indicates that the SampleEn of the RR interval and HR increased from the nonfatigue 
state to the fatigue state. The results in this study are line with these studies.

Conclusion
In this study, HRV and sample entropy analyses of ECG signals were used to research the differences in the 
nonfatigue and fatigue states of orchard workers. Sixty-five healthy orchard workers (38 men and 27 women) 
without cardiovascular disease were recruited from hilly orchards in South China. The fatigue state was identi-
fied by a subjective questionnaire (FS-14), and sixteen linear HRV parameters and six nonlinear parameters in 
short-term intervals (5 min) were calculated before and after the experiment. After this, Spearman correlation 
analysis and M-W Utests were performed on each parameter, and convincing results were obtained, which can 
be summarized as follows:

1.	 The fatigue scale questionnaire scoring increased 27.9 on average from a nonfatigue state to a fatigue state. In 
particular, the degree of physical fatigue and mental fatigue of orchard workers all had upward trends, which 
increased on average 21.6 and 6.2 on average in scoring, respectively. The physiological fatigue contributed 
more to the comprehensive fatigue of orchard workers It can be considered to delay the occurrence of fatigue 
by reducing work intensity and working hours

2.	 Among all HRV parameters, RMSSD, SDSD, CV, LFnorm, HFnorm, LF/HF, SD1, SampleEn_Peak and 
SampleEn_iHR with Spearman coefficients larger than 0.3, however, the remaining HRV parameters had 
correlation coefficients less than 0.3 with almost no correlation. Without considering the effect of gender, 6 
HRV parameters (meanHR, LFpercent, LF/HF, SampleEn_iHR, SampleEn_RPeak, SampleEn_RR) showed 
a significant increase (P < 0.05) and 10 HRV parameters (meanRR, SDNN, RMSSD, SDSD, PNN50, PNN20, 
CV, HFnorm, SD1, SD2 and SD1/SD2) showed a significant decrease (P < 0.05), which results suggest that 
these HRV characteristics can be used to distinguish the ability of orchard workers’ fatigue status.

3.	 Fatigue led to significant changes in 15 HRV parameters among male hilly orchard workers, but in females 
18 HRV parameters showed significant changes. The nonlinear parameters all showed a tendency to disperse 
in the fatigue state. In addition, the PDF of SDNN, SDSD, VLF%, HFnorm and LF/HF were significantly 
different in the fatigue and nonfatigue states of the different genders of orchard workers, which leads to the 
conclusion that there are gender differences in the effects of fatigue on the autonomic nervous system. It can 
be inferred that more accurate results can be obtained when the HRV parameter is used to distinguish the 
fatigue status of different genders of orchard workers.

There are several limitations in this study. First, we collected ECG samples from 67 orchard workers, and only 
65 subjects were used for further analysis in this study. The small sample size is an inevitable factor in similar 
works. Second, due to the working conditions and environment in hilly orchards, we could not collect the real-
time ECG signals of workers. Third, the experiment was conducted in a typical hilly orchard in southern China. 
Limited by regional factors, there are few studies in this field. Therefore, in future studies, more samples should 
be obtained to improve reliability, and the regional limitations of this study can be reduced by selecting more dif-
ferent hilly orchards for experiments. At the same time, the results of this study can be used to identify the fatigue 
state of orchard workers and provide a reliable reference for clinical medical diagnosis of cardiovascular disease.
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