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We present a new efficient approach for characterizing
image texture based on a recently published discrete,
orthonormal space-frequency transform known as the
DOST. We develop a frequency-domain implementation
of the DOST in two dimensions for the case of dyadic
frequency sampling. Then, we describe a rapid and
efficient approach to obtain local spatial frequency infor-
mation for an image and show that this information can be
used to characterize the horizontal and vertical frequency
patterns in synthetic images. Finally, we demonstrate that
DOST components can be combined to obtain a rotation-
ally invariant set of texture features that can accurately
classify a series of texture patterns. The DOST provides
the computational efficiency and multi-scale information
of wavelet transforms, while providing texture features in
terms of Fourier frequencies. It outperforms leading wave-
let-based texture analysis methods.
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BACKGROUND

T exture characterization is an important prob-
lem in medical image analysis. Image texture

can be defined as the spatial relationship of pixel
values in an image region1. In medical images,
texture can be thought of as the local characteristic
pattern of image intensity that identifies a tissue.
Texture also determines local spectral or frequency
content in an image; changes in local texture should
cause changes in the local spatial frequency. Texture
analysis is of interest in medical imaging because, as
biological tissues become abnormal during a disease
process, their underlying texture may also change.

Lerski et al.2 and Castellano et al.3 provide good
reviews of the application of texture analysis meth-
ods to medical images.
Various mathematical techniques to quantify

image texture, including statistical, Fourier, and
wavelet-based methods, have been applied to radio-
logical images of numerous pathologies, such as
multiple sclerosis4,5, brain tumors6, liver diseases7,
infarcted myocardial tissue8, and normal tissues of
the knee9, and has even been used for automated
detection and classification based on phase-contrast
microscopy images, such as those used in cervical
cancer diagnosis10.
A texture feature is a value that quantifies some

characteristic of local intensity variation within an
image1. A variety of approaches exist to quantify
texture. A common technique used in medical imag-
ing is based on co-occurrence matrices11. Statistical
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measures of texture are calculated based on the
frequency of specific gray levels occurring between
pairs of points within an image. The co-occurrence
technique has been used in many studies, such as to
classify benign and malignant solitary pulmonary
nodules on computed tomography (CT) images12

and to quantify pathological changes during treat-
ment of multiple sclerosis13. However, the technique
is limited to very small neighborhoods due to its
computation complexity. Therefore, only the highest
frequency textures can be analyzed. Broad, large-scale
changes are difficult to detect using co-occurrence
statistics. Furthermore, the resulting statistical meas-
ures are difficult to interpret and compare across
patients.
A more recent method of texture analysis relies on

discrete wavelet transform (DWT) (see14 for a
review). Wavelets provide a multi-scale representa-
tion of an image, allowing analysis of varying degrees
of detail within an image. Efficient algorithms and a
solid mathematical framework make wavelets ap-
pealing for numerous applications, including texture
analysis. For example, wavelet-based texture analysis
has been used for automatic diagnosis and grading of
breast tumor histology images15.
The S-transform16 (ST) is closely related to the

continuouswavelet transform using a complexMorlet
mother wavelet17 and directly measures the local
spatial frequency content of each pixel in an image.
The ST has been successfully used to analyze sig-
nals in numerous applications, such as seismic
recordings18, ground vibrations19, hydrology20, grav-
itational waves21, and power system analysis22. The
one-dimensional ST has shown to be a useful tool
for analysis of medical signals, such as EEG23,
functional magnetic resonance imaging24, and laser
Doppler flowmetry25. The ST is particularly well
suited to texture analysis of medical images due to
its optimal space-frequency resolution and close ties
to the Fourier transform (FT)—the basis of medical
image reconstruction. The ST uses complex Fourier
basis functions, modulated by frequency-dependent
Gaussian windows. The ST preserves the phase
information, uses a linear frequency scale, and can
be easily inverted to recover the Fourier domain of
an image.
The redundant nature of the ST algorithm has been

the main obstacle in wider application of ST-based
texture analysis for 2D images. Extensive processing
time and a large amount of memory are required to
calculate and store the texture descriptions of large

medical images. The 2D-ST of an array of size N×N
has computational complexity of O[N4+N4log(N)]
and storage requirements of O[N4]. As a result, the
ST of a typical 256×256 MR image takes approx-
imately 1.5 h to calculate on a single computer and
requires 32 GB of memory26. While other research-
ers have developed techniques to distribute these
calculations over networks of machines26, the
results are still difficult to manage and interpret27.
Therefore, previous work on 2D images has been
limited to analysis of small regions of interest
(ROIs) and typically collapsed to 1D spectra28–30.
However, small ROIs reduce the resolution of the
frequency spectra, and therefore, the sensitivity to
subtle texture changes. These requirements make
applying the 2D-ST to clinical medical applica-
tions difficult and impractical. Clinical texture
analysis requires a rapid, efficient algorithm that
provides complete information about all frequency
components.
Despite these limitations, the 2D-ST has shown

promising results in identifying differences in texture
that correlate with neurological pathology. For
example, previous work has shown that ST-based
texture measures can help detect sub-clinical abnor-
malities in normal-appearing white matter of multi-
ple sclerosis patients31. The 2D-ST has also been
used to identify oligodendroglial brain tumors with
genetic abnormalities that make the tumors more
responsive to chemotherapy treatment28.
Recent work shows that a discrete, orthonormal

basis can be used to accelerate calculation of the
ST and eliminates the redundancy in the space-
frequency domain32. The discrete, orthonormal ST
(DOST) provides a spatial frequency representa-
tion similar to the DWT. However, the DOST has
the additional benefits of maintaining the phase
properties of the ST (and FT), retaining the ability
to collapse exactly back to the Fourier domain.
Furthermore, the DOST framework allows for an
arbitrary partitioning of the frequency domain; this
allows for a dyadic sampling similar to the discrete
wavelet transform for zero redundancy, or over-
sampling to any extent, all the way back to the
fully redundant ST.
We present a frequency-domain implementation

of the 2D-DOST by partitioning the frequency
domain in a dyadic sampling scheme. We show that
the DOST can provide a pixel-by-pixel texture
description of an image by creating local spectra
containing the horizontal and vertical frequency
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information from the FT of the image. The DOST is
straightforward and fast to calculate, allowing us to
analyze every pixel in a large image within seconds.
Our goal in this paper is to introduce the multi-
dimensional DOST, describe its application to tex-
ture classification, and characterize its performance
on real and synthetic images.

THEORY

2D Discrete Orthonormal S-Transform

The process of calculating the DOST of a 1D signal
in the time domain is described in32. That process
involves calculating the basis functions, which are
derived by taking linear combinations of the Fourier
complex sinusoids in band-limited subspaces and
applying appropriate phase and frequency shifts. In
this paper, we describe the process of calculating the
DOST of a 2D image in the frequency domain using
a dyadic sampling scheme.
We begin by defining the forward 2D-FT of a

discrete function f[x,y], which is assumed to have a
sampling interval of one in the x- and y-directions:

H m; n½ � ¼
XM�1

x¼0

XN�1

y¼0

h x; y½ � e�2�i mx
Mþny

Nð Þ ð1Þ

and the inverse 2D-FT:

h x; y½ � ¼ 1

MN

�
XM=2�1

m¼�M=2

XN=2�1

n¼�N=2

H m; n½ � e2�i mx
Mþny

Nð Þ ð2Þ

The 2D-DOST of a N×N image h[x,y] is cal-
culated by partitioning the 2D-FT of the image, H
[m,n], multiplying by the square root of the number
of points in the partition, and performing an inverse
2D-FT,

S x0; y0; �x; �y
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pxþpy�2
p

X2px�2�1

m¼�2px�2

X2py�2�1

n¼�2py�2

H mþ �x; nþ �y
� �

e
2�i mx0

2px�1þ ny0
2py�1

� �

ð3Þ
where we define vx ¼ 2px�1 þ 2px�2 and vy ¼
2py�1 þ 2py�2 as the horizontal and vertical “voice
frequencies”32. One should note that the operation

to create the voice image (S[x,y,νx0,νy0]) consists of
an inverse fast Fourier transform (FFT) of smaller
dimension (not N×N). The spectrum is partitioned
such that the wavenumbers (νx0,νy0) are shifted to
the zero wavenumber point, and a 2px�1 � 2py�1

inverse FFT is performed, resulting in a rectangular
(in general) voice image of 2px�1 � 2py�1 points
(see Fig. 1). The total number of points in the
DOST result and in the original image are the same.
The inverse transform for the 2D-DOST is similar

to the 1D case in32. Since the DOST is an energy-
conserving transform32, we can apply the forward
2D-FFT to each “voice” in order to reverse the
spectral partitioning and reconstruct the spectrum of
the image:

H m; n½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pxþpy�2

p

X2px�2�1

m¼�2px�2

X2py�2�1

n¼�2py�2

S m� �x; n� �y
� �

e
�2�i mx0 0

2px�1þ ny00
2py�1

� �

ð4Þ

The image can then be recovered by performing an
inverse FT:

h x; y½ � ¼ 1

N 2

XN=2�1

m¼�N=2

XN=2�1

n¼�N=2

H m; n½ � e2�i mxþnyð Þ=N

ð5Þ
Source code for the forward 2D-DOST is given in
Appendix. Note that, in the source code, the
division by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pxþpy�2

p
is replaced with a multi-

plication by the same factor; this is to account for
the fact that the inverse FFT calculation inherently
divides the total number of samples in the partition
2px�1 � 2py�1
� �

, resulting in the overall scaling by

2pxþpy�2ð Þ�1=2.

The DOST in this formulation, like the DWT,
uses a dyadic sampling scheme (orders=0, 1,
2, …, log2N−1; Fig. 1). However, the two
transforms provide different information about
the frequency content of the image. The DWT
gives horizontal, vertical, and diagonal “detail”
coefficients for each order, while the DOST
provides information about the voice frequencies
(νx,νy) that contain a bandwidth of 2px�1 � 2py�1

frequencies. While the wavelet decomposes the
image into “scales” of size M×M, the DOST uses
the minimum number of points required to describe
the amplitude of a Fourier frequency component in
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each of the horizontal and vertical directions. For
example, a Fourier frequency component with two
cycles spanning the horizontal direction and four
cycles spanning the vertical direction is represented
in the DOST by 4×8 points. As a result, the DOST
provides more texture features for aN×N image than
the DWT, while maintaining an overall size of
N2. For example, Figure 2 shows the DOST and
DWT transforms of an image containing four
textures from the Brodatz texture library33. Each
texture section is size 128×128 pixels and has been
normalized such that the average (DC) is zero. The
DWT was calculated using the Daubechies tap-4
(db4) wavelet at five levels of decomposition. The

difference in partitioning can be seen in this
example.

Pixel-Wise Local Spatial
Frequency Description

Once we have the DOST description of an image,
we can find the contribution of each horizontal and
vertical voice to any pixel within the image. By
simply choosing a set of (x,y) coordinates represent-
ing a single pixel or image region, we can de-
termine the value of S[x′,y′,νx,νy] for all (νx,νy).
Since the voice images are of varying shape and
size, the value of the DOST for frequency order
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(a) (b) (c)

Fig. 2. a A mosaic of four texture images: straw, wood, sand and grass. b The 2D-DOST of the mosaic. c The DWT of the image using
the db4 wavelet at five levels of decomposition. Note that the square root of the amplitude of both the DOST and DWT coefficients is
shown for display purposes.

Fig. 1. Partitioning of a the DWT and b the DOST for six orders. The squares indicate the sub-images for each order. Both transforms
use a dyadic sampling scheme but provide different information about the frequency content of the image. The DWT gives horizontal,
vertical and diagonal “detail” coefficients for each order, while the DOST provides information about the voice frequencies (νx,νy) that
contain a bandwidth of 2px�1 � 2py�1 frequencies.
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(px,py) at image location (x,y) can be found at
S x=N � 2px�1; y=N � 2py�1; vx ; vy
� �

. By iterating
over all values of (px,py), we can build up a local
spatial frequency domain of size 2 log2N×2 log2N
for each pixel or averaged region within an image;
this domain contains the positive and negative
frequency components from the DC, (νx,νy)=(0,0),
to the Nyquist frequency, (νx,νy)=(N/2,N/2). We refer
to the local domain for a pixel (x,y) as the local
spectrum, Sx,y[νx,νy]. Alternatively, we can refer to the
components of the domain in terms of the frequency
orders (px,py), instead of the voice frequencies (νx,νy),
since they have a simple relationship.
Note that, since the voice images are of size

2px�1 � 2py�1
� �

, the mapping will not be unique for
low-frequency components of neighboring pixels.
For example, the px=py=2 contribution describes
the low-frequency portion of the image using
4 pixels. Therefore, all pixels in a particular quad-
rant of the image will contain the same low-
frequency information. In the extreme case, the
px=py=0 order will be represented by a single
point for the entire image.
The local frequency domain is analogous to a local

2D Fourier domain, often referred to as k-space. This
provides a way to measure the texture character-
istics by examining the contribution of each
horizontal and vertical frequency bandwidth within
the image. These “texture descriptors” replace the
1D texture curves of the polar ST analysis used
in28–30. If we use the dyadic sampling scheme
presented above, the frequency scale is linear and
the bandwidths do not overlap.
For example, Figure 3 shows the local domain at

the center of each texture region in Figure 2a. The
local domain of straw (Fig. 3a) reflects the strong
diagonal stripes present in the image. The figure
also shows that wood (Fig. 3b) has more high
frequency components oriented horizontally than
vertically, while sand (Fig. 3c) and grass (Fig. 3d)
have similar frequency distributions, with grass
having slightly more high frequency energy.

Primary Frequency Component

In order to more easily determine the most signi-
ficant spatial frequency component at a particular
point or region, we calculate the “primary” or highest
amplitude frequency. This is done for a particular
point by determining the value of each voice image in
the DOST at that pixel location.We examine the value

of each voice image at location (x,y) and determine
the component with the highest amplitude. The
(νx,νy) pair is the “primary frequency” for the pixel.
We can extend this analysis to calculate the

primary frequency at every image pixel. This results
in a value of (νx,νy) for each value of (x,y) in the
image. We can represent this as a complex image,
with the real channel corresponding to the primary
νx value and the imaginary channel corresponding
to the primary νy value. The magnitude image can
then be used to examine the primary radial
frequency, �r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x þ �2y

q
. The phase image tells

us the angle of orientation of the primary frequency,
θν=arctan(νy/νx).
The DOST is normalized to preserve the length of

the vector; like the FT, it satisfies a Parseval
theorem. Thus, each voice is divided by the size
of its partition—which attenuates the amplitude
of high frequency signals when dyadic sampling
is employed. To obtain a domain where the rel-
ative contribution of each partition is constant,
we remove the partition factor. This provides the
equivalent scaling as the original ST.

Effect of Spatial Transformations
on the DOST

The DOST is rotationally variant because we cal-
culate measures of local spatial frequency content in
the horizontal and vertical directions. The result of a
horizontal shift byΔx pixels and/or a vertical shift of
Δy pixels results in a corresponding shift of each
voice image. We can understand this effect by
considering the DOST process on a shifted image.
A circular shift of the image by Δx pixels in x and
Δy pixels in y causes the phase of the FFT of the
image to be multiplied by the complex value
e2�i x�xþy�yð Þ. The multiplied FFT is partitioned,
and each partition is inverse Fourier-transformed.
The phase ramp applied to each partition causes it
to be shifted horizontally by Δx pixels and vertically
by Δy pixels when inverse transformed. The
multiplication of an image by a scaling factor
causes the DOST to be multiplied by the same
factor, as it is a linear transform.
In the case of a 90° rotation, the effect is a transpose

or a switching of the x and y values in the image and
a reversal of the y-coordinate. As a result, each voice
image has the x- and y-coordinates switched and the
y-coordinate reversed. Similarly, for a 180° rotation,
the effect is to reverse the y-coordinates and maintain
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the x-coordinates. The result on the DOST is to
reverse the y-coordinates of each voice image; the x-
coordinates are not affected. In the case of rotations
of 0GθG90°, the effect is more complicated. A
rotation of the image implies a rotation of its FT.
Therefore, when calculating the 2D-DOST of a
rotated image, the partitioning grid is applied to the
rotated FT. As a result, the frequency components
are rotated into different partitions.

Rotationally Invariant DOST Features

In order to obtain rotationally invariant features
from the DOST, we can follow a method similar to
the invariant wavelet transform described in34. In that
approach, invariant wavelet coefficients are comput-

ed by taking the wavelet coefficients at each level,
averaged over the horizontal and vertical coeffi-
cients. Figure 4a shows the wavelet channels that are
averaged together, marked with the same letter (A=
level 0, B=level 1, etc.). The diagonal channels are
excluded from the feature extraction, since they tend
to contain the majority of the noise in the image and
can degrade classification performance34.
We can take a similar approach with the 2D-DOST

by averaging together the magnitude of the hori-
zontal and vertical frequency values for each order
and excluding “diagonal” elements of the DOST
domain where px=py. By combining the horizontal
and vertical frequency information for the entire
DOST, we can obtain an invariant domain describ-
ing the entire image. This is useful when using the

(a) (b)

(c) (d)

Fig. 3. The local DOST spectra of: a straw, b wood, c sand, and d grass obtained from the center pixel of each region in Figure 2a.
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DOST to examine a small ROI. However, for
medical imaging applications, we would like to
retain the spatial information and the frequency
information of the DOST. In this case, we can
combine the diagonal elements of the local DOST
spectrum, described in “Pixel-Wise Local Spatial
Frequency Description.”
Figure 4b shows an example of how the values

are calculated from the local frequency domain for
N=8. The features marked with the same letter are
averaged together to get an invariant DOST spec-
trum of texture features. For a given N, the DOST
approach provides more texture features (A to H=
10) than the wavelet approach (A to D=4).

METHODS

We conduct a series of experiments to determine
the response of the 2D-DOST to a wide range of fre-
quencies, texture patterns, and noise. These experi-
ments attempt to provide a robust characterization of
2D-DOST based measures of texture and determine
the limits on our ability to measure subtle texture
changes in images. We also evaluate the perfor-
mance of the rotationally invariant features in
classifying a wide range of known textures and
compare the results to those obtained using the
invariant wavelet transform34.

All DOST computations were carried out in
Python 2.5 (http://www.python.org) using the Nu-
merical Python package (http://www.numpy.scipy.
org) and the Python Imaging Library (http://www.
pythonware.com/products/pil). Wavelet coefficients
were calculated in Matlab (The MathWorks, Inc.,
Natick, MA, USA) using wavedec2.m and det-
coef2.m with the periodic extension mode. Rotated
texture images were obtained from33. Analysis was
performed on a 2.4-GHz Intel Core 2 Duo with
2 GB of RAM on Mac OS X 10.5. Source code for
the algorithm is provided in Appendix.

Transform Characterization

In order to determine the frequency response of
the 2D-DOST, we calculated the point spread func-
tion. This was done by creating a “delta” image—a
256×256 image where the pixel at location
(128,128) had a value of one, and all other pixels
had a value of zero. We took the 2D-DOST of the
delta function and then computed the local spectrum.
We also measured the average time to calculate the
DOST and determined the amount of memory
required to store the structure, for randomly gener-
ated N×N images, where N varied from 4 to 1,024.
We compared the computation times and storage
requirements to the ST. These calculations were
based on the calculation of real images, where only

Fig. 4. a The wavelet decomposition for N=8 at three levels of decomposition. Invariant wavelet coefficients are calculated by
averaging horizontal and vertical coefficients at each level (marked with the same letter: A level 0, B level 1, etc.). The diagonal channels
are excluded from the feature extraction. b The local frequency domain generated from the 2D-DOST for N=8. Features marked with the
same letter are averaged together to get an invariant DOST spectrum; a similar approach is taken of excluding the “diagonal” elements,
where px=py. For a given N, the DOST approach provides more texture features (A to J=10) than the wavelet approach (A to D=4).
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half of the space-frequency domain needs to be
calculated and stored due to Hermitian symmetry.
We tested the accuracy of the DOST inversion

by taking the DOST of each of the nine Brodatz
texture images shown in Figure 5, then inverting
the 2D DOST domain according to Eqs. 4 and 5.
We measured the L1 norm between each inverted
image, s1, and the original, s0:

L1 ¼ 1

N2

XN
i¼1

XN
j¼1

s1 i; jð Þ � s0 i; jð Þj j ð6Þ

Response to Noise

To examine the changes in local DOST frequency
domains with varying levels of noise, we evaluated a
series of synthetic images with known frequency
content and added noise. By varying both of these
factors, we were able to determine the smallest
change in spatial frequency, and contrast, that can be
reliably detected. We expect these two factors to be
related; that is, we expect that high spatial frequen-
cies will be more reliably detected in images with
high contrast-to-noise ratios. The relationship be-
tween contrast and maximum detectable frequency is
akin to the modulation-transfer-function used to
characterize imaging systems and should provide a
robust characterization of the 2D-DOST.

We generated a series of images of size 256×256
with a single frequency component. We varied the
frequency of a sinusoid of wavenumber k=1, 10,
20, …, 120, oriented either horizontally or diago-
nally, or both (equal components horizontally and
vertically), with a minimum value of −1.0 and a
maximum of +1.0. We also added various levels
of Gaussian noise with standard deviation σ=0.1,
0.2, …, 1.0. This gave us a total of 260 test images
(13 frequencies×2 orientations×10 noise levels).
To determine the effect of the varying frequency

and noise, we measured the signal-to-noise ratio
(SNR) of the local DOST spectrum, Sx,y(px,py), for
the central 5×5 pixels in the image. The SNR was
defined in units of decibels (dB) as the amplitude of
the frequency component being analyzed divided
by the root mean square amplitude of the rest of the
domain values.

SNR dBð Þ ¼ 20 log10
Asignal

Anoise

� 	
ð7Þ

where Asignal is the amplitude of the voice fre-
quency contained in the noise-free image in the
local spectrum at the central pixel,

Asignal ¼ S128;128 px; py
� � ð8Þ

and Anoise is the RMS amplitude of the remaining
frequency components, not present in the noise-

Fig. 5. The nine Brodatz texture images used for texture analysis experiments.
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free image, but introduced with the addition of
Gaussian noise,

Anoise ¼
Xlog2 N
i 6¼px
i¼0

Xlog2 N
j 6¼py
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S128;128 i; j½ �
log2 Nð Þ2�2

s
ð9Þ

We analyzed the accuracy of the primary fre-
quency estimation by determining what fraction of
image pixels were correctly classified in the single-
frequency images. For this experiment, we used a
10×10 pixel region in the center of the image or
100 test pixels per image (for a total of 26,000
pixels). For each pixel within the central 10×10
region, we recorded the primary frequency as
found by the 2D-DOST and compared it to the
true frequency of the image. The number of
misclassifications were recorded.

Classification Experiment

To test the ability of the rotation-invariant DOST
to classify textures, we performed an experiment on
nine images from the Brodatz texture library shown
in Figure 5: grass, straw, herringbone weave,
woolen cloth, pressed calf leather, beach sand,
wood grain, raffia, and pigskin, obtained from33.
We tested the ability of the invariant DOST spectra
to classify the images when: (1) trained and tested
on non-rotated images, (2) trained on rotated and
tested on non-rotated images, and (3) trained and
tested on a variety of angles. We extracted
multiple sub-images from each 512×512 texture
image; each sub-image was of size 64×64 pixels.

We then calculated the invariant DOST spectrum
for each sub-image.
We compared the classification results using the

DOST to those obtained using the invariant wavelet
transform described in34. The DWT of each image
was computed in Matlab with a db4 mother wavelet
at five levels of decomposition using wavedec2.m.
The invariant coefficients were calculated by
averaging the horizontal and vertical coefficients
for each level of decomposition (obtained using
detcoef2.m) and computing the L1 norm, given by

en ¼ 1

M 2

XM
i¼1

XM
j¼1

wn i; jð Þj j ð10Þ

where the wn is the wavelet decomposition for
level n of dimensions M×M.
Classification was performed in Matlab using

linear discriminant analysis (classify.m). We used
two different types of discriminant functions: a
linear classifier that fits a multivariate normal density
to each group with a pooled estimate of covariance
and a quadratic function that fits multivariate normal
densities with covariance estimates stratified by group
(texture).
For the first experiment, we extracted 64 sub-

images of size 64×64 from each texture oriented at
0°. We trained the classifier on 56 sub-images of
each texture (56 images×9 textures=504 total) and
tested the classification on eight sub-images of each
texture (8 images×9 textures=72 total). In the
second case, we tested the ability of the DOST and
wavelet methods to classify images oriented at a

(a) (b)

Fig. 6. a The 2D-DOST of a delta function and b its local domain at the central point of the image (128,128).

704 DRABYCZ ET AL.



different angle than the classifier was trained on. For
this experiment, we extracted texture images orient-
ed at angles: 0°, 30°, 60°, 90° and 120°.We extracted
25 sub-images of size 64×64 pixels from each 512×

512 image at each angle (25 sub-images×5 angles×
9 textures=1,125 images in total). We then calculat-
ed the invariant DOST spectrum for each image and
the invariant wavelet spectrum. The classifier was
trained on the DOST spectra from the 25 sub-images
at angles 30°, 60°, 90°, and 120° (25 sub-images×4
angles×9 textures=900 images) and tested on the 0°
images (25 sub-images×1 angle×9 textures=225
images). Finally, we trained the classifier on DOST
spectra from 20 sub-images of each texture at each
angle (0°, 30°, 60°, 90°, and 120°; 20 sub-images×5
angles×9 textures=900 images) and tested on five
images of each texture at each angle (5 sub-images×
5 angles×9 textures=225 images).

RESULTS

The 2D-DOST of the delta function and the local
frequency domain of the pixels at location (128,128)
are shown in Figure 6. In part b of the figure, we can
see the square root increase in DOST amplitude
with increasing frequency. We found that the L1
difference between the inverted and original images
was close to machine epsilon (mean=8.45×10−14,
median=6.74×10−14). Figure 7 illustrates the dra-
matic reduction in memory and computation re-
quirements for the DOST, as compared to the ST
for square images of size N×N. For example,
calculation of the ST of a 128×128 image required
approximately 8 min and 1 GB of memory;
calculation of the DOST required only 0.02 s and
65 kB of memory. We were unable to compute the

(a)

(b)

Fig. 7. a The calculated increase inmemory required to store the
STand the DOSTof a realN×N image. The ST requires N4 floating
point values, while the DOST requires only N2 (double for
complex images). b The measured time to compute the ST and
DOST. We were unable to compute the ST of images larger than
128×128 since the memory requirements became too large.

(a) (b)

Fig. 8. a The SNR (dB) of the main frequency peak of the local DOST domain at the center of a 256×256 image containing a single
horizontally oriented frequency component. b The SNR of the main peak when examining an image with a horizontally and vertically
oriented single frequency component. Note that the SNR of these peaks drops more quickly with increasing noise and increasing
frequency than when only one component is present.
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ST of images sized 256×256 or larger since more
than 17 GB of memory was required.
We found that the SNR of the main DOST peak

was inversely proportional to frequency and noise, as
shown in Figure 8. The SNR of the main peak
dropped more quickly with increasing noise and
increasing frequency when there are horizontal and
vertical frequency components than when only one
component is present. The misclassification rate for
all horizontally oriented frequencies was zero. The
diagonally oriented frequencies had a zero misclas-
sification rate for all cases of σG0.4 and for all
frequencies less than 70, as shown in Table 1.
The classification accuracy using the DOST is

higher than that of the invariant wavelet for each case
studied (Table 2). We obtained the most accurate
results with the linear classifier using the DOST
when training and testing on a single angle (91.7%
DOST vs. 83.3% wavelet). The best results using
the quadratic classifier were obtained when training
on the rotated images and testing on the zero-degree
images (94.7% DOST vs. 84.4% wavelet). The
classification accuracy decreased slightly for the
DOST when training and testing on all angles but
remained higher than the wavelet case for both
linear and quadratic classifiers. We observed poorer

performance from the invariant wavelet transform
than previously noted34. The discrepancy may be
related to the difference in sub-image size (64×64
pixel as opposed to 16×16), the specific texture
images used or the ratio of training to testing
images used in the classification.

DISCUSSION AND CONCLUSIONS

We have presented a frequency-domain imple-
mentation of the 2D-DOST by partitioning the
frequency domain in a dyadic sampling scheme.
We showed that the DOST can provide a pixel-by-
pixel texture description of an image by creating
local spectra, containing the horizontal and vertical
frequency information from the FT of the image.
The DOST is straightforward and fast to calculate,
allowing us to analyze every pixel in a large image
under a second on standard computers. We
confirmed that the DOST can be very accurately
inverted to recover the original image. The DOST
is robust in the presence of low to moderate noise
levels and single frequency components can be
accurately identified from the local spectra. Rota-
tionally invariant texture features can be extracted

Table 1. Misclassifications (/100) of the Primary Frequency Component (Oriented Diagonally)

Frequency (diagonal)

Standard deviation of Gaussian (σ)

total0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 36 32 43 35 62 208
80 0 0 0 0 4 0 0 6 70 55 61 196
90 0 0 0 0 0 0 0 14 34 31 64 143
100 0 0 0 0 0 0 0 18 42 91 70 221
110 0 0 0 0 0 0 8 75 33 87 87 290
120 0 0 0 0 0 0 8 41 13 13 24 99
Total 0 0 0 0 4 0 52 186 235 312 386 1,157

Table 2. Classification Accuracy for Invariant Wavelet (db4) and Invariant DOST on 9 Brodatz Texture Images

Method Number of features Classifier Train test on 0° (%) Train on rotated, test on 0° (%) Train and test on all angles (%)

Invariant DOST 21
Linear 91.7 91.1 86.2
Quadratic 91.7 94.7 88.0

Invariant wavelet 6
Linear 83.3 84.9 83.1
Quadratic 77.8 84.4 86.7

706 DRABYCZ ET AL.



by combining horizontal and vertical frequency
information from either the entire 2D-DOST or the
local DOST spectrum corresponding to a single
pixel. The invariant 2D-DOST provides higher
classification accuracy on texture images than the
comparable invariant wavelet approach. The tex-
ture information produced by the DOST may help
discriminate between normal and abnormal tissues
in medical images.
One limitation of the DOST in our work is that

ringing artifacts are caused due to the use of
rectangular windows in the analysis. A future step
will be to employ apodizing windows and over-
sampling algorithms, as mentioned in32, which
would resolve these issues. Furthermore, our current

implementation of the DOST, given in Appendix, is
only suitable for images of size 2n×2n. As outlined
in32, dyadic sampling can be applied to any size
data. Arbitrary sampling schemes can also be
devised, for images of any size. Future work will
include: extension of our code to apply dyadic
sampling to arbitrary sized images, the evaluation of
new sampling schemes, application of the DOST to
clinical data, and comparison to previous continuous
ST-based texture analysis.

APPENDIX

The following Python source code was used to
calculate the 2D-DOST of a real N×N image im:
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