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Abstract

Background: The complex history of Southeast Asian islands has long been of interest to biogeographers. Dispersal and
vicariance events in the Pleistocene have received the most attention, though recent studies suggest a potentially more
ancient history to components of the terrestrial fauna. Among this fauna is the enigmatic archaeobatrachian frog genus
Barbourula, which only occurs on the islands of Borneo and Palawan. We utilize this lineage to gain unique insight into the
temporal history of lineage diversification in Southeast Asian islands.

Methodology/Principal Findings: Using mitochondrial and nuclear genetic data, multiple fossil calibration points, and
likelihood and Bayesian methods, we estimate phylogenetic relationships and divergence times for Barbourula. We determine
the sensitivity of focal divergence times to specific calibration points by jackknife approach in which each calibration point is
excluded from analysis. We find that relevant divergence time estimates are robust to the exclusion of specific calibration
points. Barbourula is recovered as a monophyletic lineage nested within a monophyletic Costata. Barbourula diverged from its
sister taxon Bombina in the Paleogene and the two species of Barbourula diverged in the Late Miocene.

Conclusions/Significance: The divergences within Barbourula and between it and Bombina are surprisingly old and
represent the oldest estimates for a cladogenetic event resulting in living taxa endemic to Southeast Asian islands.
Moreover, these divergence time estimates are consistent with a new biogeographic scenario: the Palawan Ark Hypothesis.
We suggest that components of Palawan’s terrestrial fauna might have ‘‘rafted’’ on emergent portions of the North Palawan
Block during its migration from the Asian mainland to its present-day position near Borneo. Further, dispersal from Palawan
to Borneo (rather than Borneo to Palawan) may explain the current day disjunct distribution of this ancient lineage.
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Introduction

In the species-rich islands of Southeast Asia, the temporal

patterns of biological diversification remain largely unexplored.

Much of the biodiversity in this region is presumed to be the product

of geological events and/or climatic processes in the Pliocene or

Pleistocene [1–3]. Yet several recent studies suggest an older history

to components of this diverse flora and fauna [4–6]. Understanding

the temporal patterns of faunal diversification in this geologically

complex region might require careful re-evaluation of previous

hypotheses of historical biogeography. We present the first

molecular phylogenetic analysis for the frog genus Barbourula and

reveal a surprisingly ancient origin consistent with a largely ignored

biogeographic hypothesis for one island in Southeast Asia.

Among living frogs, few have remained as enigmatic as the

genus Barbourula. Since its description by Taylor & Noble [7],

Barbourula has been known from few specimens and relatively few

localities, and little to nothing is known of its natural history or

reproductive mode [8]. Adding to its unusual reputation, B.

kalimantanensis was recently discovered to be the only frog species

lacking lungs [9]. The two known species of Barbourula are endemic

to the Southeast Asian islands of Borneo (B. kalimantanensis) and

Palawan (B. busuangensis). Morphological studies suggest that

Barbourula is closely related to the genus Bombina from Europe

and eastern Asia [10–13]. The distributions of these two genera,

with one endemic to the islands of Southeast Asia and the other

restricted to the Laurasian mainland, make this lineage particu-

larly interesting for addressing temporal and spatial patterns of

diversification in Southeast Asia.

Several hypotheses, couched in a biogeographic framework, exist

for the timing of divergence between Barbourula and Bombina. Savage

[14] proposed a pre-Oligocene divergence between these genera on

the Asian mainland, but that adaptation to tropical habitats led

Barbourula to be subsequently restricted to the Sunda Shelf. Inger

[15] later suggested that this divergence might have occurred as

early as the late Mesozoic. No explicit hypotheses exist for the
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timing of divergence within Barbourula, though this presumably

occurred when Palawan was in proximity to Borneo [6,16]. We

offer a new biogeographic scenario, the ‘Palawan Ark Hypothesis’

(Fig. 1), that combines aspects of the above: (1) divergence between

Barbourula and Bombina is correlated with and/or precedes isolation

of Barbourula on Palawan with the opening of the South China Sea

(.30 mya; [6,16]); and (2) divergence between B. busuangensis and B.

kalimantanensis occurred when Palawan was near to Borneo (,15

mya; [16]). Significantly, support for this hypothesis would suggest

that some portion of Palawan has been above water since the Late

Paleogene. In this study, we estimate the phylogenetic relationships

of Barbourula based on novel data from the mitochondrial and

nuclear genomes. Then, with estimates of divergence times between

Barbourula and Bombina and within Barbourula, we evaluate these

biogeographic hypotheses.

Materials and Methods

Ethics Statement
Permissions to collect and export specimens were obtained by

the necessary agencies in Borneo and the Philippines: Philippine

Department of Environment and Natural Resources, Palawan

Council for Sustainable Development, Indonesian State Ministry

of Research and Technology (RISTEK), and Bukit Baka-Bukit

Raya National. Protocols for components of this research were

approved by the University of Kansas IACUC (# 158-02).

Data Collection
To determine the phylogenetic relationships, DNA sequence

data were collected from three specimens of Barbourula: two of

Barbourula busuangensis (KU 308965, 324598) and one of B.

kalimantanensis (RMBR 1117). Genomic DNA was extracted from

tissue samples using a guanidine thiocyanate method following the

protocol of Esselstyn et al. [17]. Polymerase chain reaction (PCR)

was used to amplify a region of mitochondrial DNA (,2000 bp)

comprising genes encoding for 12S and 16S ribosomal RNA and

the intervening valine transfer RNA. Three nuclear genes (CXC

chemokine receptor 4–CXCR4; sodium-calcium exchanger 1–

NCX1; solute carrier family 8 [sodium/calcium exchanger],

member 3–SLC8A3) were also amplified by PCR; new primers

were designed for two nuclear genes (NCX1, SLC8A3) based on

previously published data (e.g., [18,19]). All primer details are

provided in Table 1. The PCR conditions used were standard and

the thermal cycle profile was as follows: 94uC (3 min; 35 cycles of

94uC (30 s), 50uC [for mt genes] or 55uC [for nuc genes] (30 s),

72uC (1 min); 72uC (7 min). Purification and sequencing follows

Figure 1. Proposed ‘‘Palawan Ark Hypothesis’’ based on reconstructions of geological history of Southeast Asia [16]. Pale red
represents submarine continental margins. Large black arrows indicate proposed dispersal routes; small gray arrows indicate sea-floor spreading.
doi:10.1371/journal.pone.0012090.g001
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Esselstyn et al. [17]. Consensus sequences were generated in

Sequencer v.4.7 (Gene Codes Corporation) and manually vetted.

Resulting sequence lengths and GenBank accession numbers are

provided in Tables 2 and 3.

Taxon Sampling
In choosing taxa for the phylogenetic analyses, we sought to

include genera from all major lineages of extant non-neobatra-

chian frogs (i.e., Archaeobatrachia sensu [20]) as well as

representatives of the Neobatrachia. Data are available for the

mitochondrial and nuclear genes sequenced for Barbourula for

every family of archaeobatrachian frog as well as all currently

recognized genera except Pseudhymenochirus (Pipidae) and a number

of megophyrid taxa (Borneophrys, Leptobrachella, Megophrys, Ophryo-

phryne, Oreolalax, Scutiger, and Xenophrys). Two representative

neobatrachian genera (Heleophryne, Pyxicephalus) were chosen to

span the deepest divergence within Neobatrachia [19,21,22]. We

are confident that the design of this analysis allows for a rigorous

test of the phylogenetic relationships of Barbourula. Last, two

representative salamander genera were included as outgroups

(Proteus and Salamandra).

Phylogenetic Analyses
For phylogenetic analysis, newly collected sequences were

included in a data matrix with previously published sequences

available in GenBank (Table 2). For each gene region, a multiple

alignment, comprising DNA sequences of unequal length for 26

terminal taxa, was generated using default parameters in Clustal X

v.1.83.1 [23]. The resulting alignment of the mitogenomic region

was trimmed such that the 59 and 39 positions correspond,

respectively, to positions 2478–4540 of the Xenopus laevis mito-

chondrial genome (GenBank NC-001573). Alignment lengths for

the nuclear genes used in the analysis were as follows: CXCR4–

655 bp; NCX1–1015 bp; and SLC8A3–980 bp.

The combined dataset of 4733 bp was partitioned and the best-

fit model of sequence evolution was applied to each partition. The

data were divided into ten partitions (Table 4): one partition

containing all mitochondrial data, and one for each codon position

for each of three nuclear genes. The best-fit model of sequence

evolution for each partition was selected using the Akaike

information criterion (AIC) in MrModeltest v.2.3 [24]; selected

models are presented in Table 4.

We employed both Bayesian and maximum-likelihood (ML)

estimates of phylogeny. A Bayesian estimate of phylogeny was

obtained using MrBayes v.3.1.2 and the models of sequence

evolution selected above for each partition. The C rate

parameters, proportions of invariant sites, substitution rate

matrices, and nucleotide frequencies were unlinked between

partitions. Four runs of four MCMC chains were run for 20

million generations, sampled every 2000 generations, using a

temperature of 0.2 and default priors. The first two million

generations were discarded as burn-in following examination of

trends and distributions of log-likelihoods and parameter values

using Tracer v.1.4 [25]; effective sample sizes (ESS) from each run

were all above 1,500. Convergence was assessed by examining

correlations of split frequencies among runs in AWTY [26]. The

phylogeny and posterior probabilities were estimated from the

post-burn-in trees. Split support was calculated using SumTrees

[27] and the maximum clade credibility tree (MCCT—the post-

burn-in tree with the maximum product of the posterior clade

probabilities) was estimated using TreeAnnotator v.1.5.3 [28].

Topologies with posterior probabilities (PP)$95% were considered

Table 1. Primers used for PCR in this study.

Primer Name Genome Directionality Sequence Reference

12L1 mt 59 R AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT [96]

16SH mt 39 r GCTAGACCATKATGCAAAAGGTA [97]

12SM mt 59 R GGCAAGTCGTAACATGGTAAG [98]

16SA mt 39 r ATGTTTTTGGTAAACAGGCG [99]

16SC mt 59 R GTRGGCCTAAAAGCAGCCAC [98]

16SD mt 39 r CTCCGGTCTGAACTCAGATCACGTAG [98]

CXCR4-G nuc 59 R AGCAACAGTGGAARAANGC [100]

CXCR4-N nuc 39 r GGTCATGGGTTATCARAARAARTC [100]

NCX1-Barb1f nuc 59 R CCCTTATGGCTCTTGGYTC This study

NCX1-Barb1r nuc 39 r AKCCCARRCWTGCAAGAGGT This study

SLC8A3-Barb1f nuc 59 R ACRTCACAGGARCGAGAGAT This study

SLC8A3-Barb1r nuc 39 r TCCTTTTGGGTTTCYCCWGA This study

doi:10.1371/journal.pone.0012090.t001

Table 2. Lengths of DNA sequences generated in this study (GenBank numbers reported in Table 3).

Taxon Catalog # 12S–16S (mt) CXCR4 (nuc) NCX1 (nuc) SLC8A3 (nuc)

B. busuangensis KU 308965 2018 bp 723 bp 960 bp 991 bp

B. busuangensis KU 324598 2005 bp 722 bp 1036 bp 998 bp

B. kalimantanensis RMBR 1117 1971 bp 724 bp 1017 bp 980 bp

doi:10.1371/journal.pone.0012090.t002
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well-supported following [29]. ML analyses were conducted on the

aligned sequence data in RAxML v.7.0.4 [30] using a random

starting tree, the faster rapid hill-climbing algorithm of [31], and a

GTR+C+I model of sequence evolution for each partition; similar

analyses were conducted with a GTR+C model resulting in an

identical preferred topology and similar support values (GTR+C
2ln L = 42591.173; GTR+C+I ln L = 242487.327; additional

data not shown). One hundred search repetitions of this ML

analysis were carried out and the phylogenetic estimate with the

smallest 2ln likelihood score was used as the preferred ML

phylogeny. One thousand nonparametric bootstrap replicates

were performed in RAxML using the same partitions and models

of sequence evolution with one search replicate per bootstrap

replicate and a random starting tree; branch lengths and model

parameters were optimized during the bootstrap analysis. Split

support was calculated using SumTrees. Nodes present in $70%

of the bootstrap replicate phylogenies (BS) were considered well-

supported following [32].

Divergence Time Estimation
Divergence times were estimated by generating chronograms

using the preferred topology from ML and Bayesian analyses and

five fossil calibration points. In contrast to a number of recent

studies [18,19,22,33–35], we do not use paleobiogeographic

calibration points or fossils that have not been included in a

cladistic analysis. Amphibians are often presumed to have limited

Table 3. GenBank accession and relevant catalog numbers for taxa included in this study.

Taxon Order Family Catalog # 12S–16S (mt) CXCR4 (nuc) NCX1 (nuc) SLC8A3 (nuc)

Alytes obstetricans Anura Alytidae DQ283112 AY364170 AY523703 EF107345

Ascaphus montanus Anura Leiopelmatidae AY236830 AY523698 AY523730 EF107399

Ascaphus truei Anura Leiopelmatidae AJ871087 AY523695 AY523731 AY948893

Barbourula busuangensis Anura Bombinatoridae KU 308965 HM769265 HM769268 HM769271 HM769274

Barbourula busuangensis Anura Bombinatoridae KU 324598 HM769264 HM769267 HM769270 HM769273

Barbourula kalimantanensis Anura Bombinatoridae RMBR 1117 HM769263 HM769266 HM769269 HM769272

Bombina orientalis Anura Bombinatoridae EU531351 AY364177 AY523715 AY948867

Bombina variegata Anura Bombinatoridae EU531355 AY523693 AY523705 EF107347

Brachytarsophrys feae Anura Megophryidae AY236799 AY523690 AY523725 EF107359

Discoglossus pictus Anura Alytidae DQ283435 AY364172 AY523708 AY948858

Heleophryne purcelli Anura Heleophrynidae AY843593 AY364191 AY948833 AY948892

Hymenochirus boettgeri Anura Pipidae AY341700 AY523685 AY523702 EF107344

Leiopelma archeyi Anura Leiopelmatidae DQ283215 AY523700 AY523723 EF107408

Leiopelma hochstetteri Anura Leiopelmatidae DQ283217 AY523696 AY523734 AY948902

Leptobrachium montanum Anura Megophryidae EU180881 AY523688 AY523713 EF107352

Leptolalax arayai Anura Megophryidae DQ642119 AY523689 AY523714 EF107353

Pelobates cultripes Anura Pelobatidae AY236801 AY364171 AY523707 AY948857

Pelodytes punctatus Anura Pelodytidae DQ283111 AY364173 AY523709 AY948859

Pipa pipa Anura Pipidae AY581621 AY364174 AY523711 EF107351

Pyxicephalus edulis Anura Pyxicephalidae DQ283157 EF107494 EF107274 EF107438

Rhinophrynus dorsalis Anura Rhinophrynidae AY581620 AY523699 AY523722 AY948894

Scaphiopus hurterii Anura Scaphiopodidae AY236828 AY523692 AY523720 EF107392

Spea multiplicata Anura Scaphiopodidae AY236823 AY523701 AY523724 AY948903

Xenopus tropicalis Anura Pipidae NC006839 AY523697 AY523721 AY948891

Proteus anguinus Caudata Proteidae GQ368659 EF107467 EF107243 EF107402

Salamandra salamandra Caudata Salamandridae DQ283440 EF017999 EF018024 EF107368

doi:10.1371/journal.pone.0012090.t003

Table 4. Partitions and models used in phylogenetic
analyses.

Gene Model

12S–16S GTR + I + C

CXCR4 1st pos. GTR + C*

CXCR4 2nd pos. GTR + I + C

CXCR4 3rd pos. GTR + I + C

NCX1 1st pos. GTR + I + C

NCX1 2nd pos. GTR + I + C

NCX1 3rd pos. GTR + I + C

SLC8A3 1st pos. GTR + I + C

SCL8A3 2nd pos. HKY + I + C

SLC8A3 3rd pos. GTR + C

*For the partition corresponding to the first codon position of CXCR4, the best-
fit model was the SYM substitution model rather than GTR. However, because
SYM is a subset of the GTR model in which base frequencies are equal, we
decided to estimate the base frequencies from the data. Inspection of the base
frequencies estimated during Bayesian analysis revealed that these frequencies
are very similar for this partition (data not shown).
doi:10.1371/journal.pone.0012090.t004
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dispersal ability over oceanic barriers. As such, a number of studies

of amphibian diversification utilize paleobiogeographic calibra-

tions based on the timing of separation of landmasses as estimates

of the minimum divergence time between two taxa or clades. Yet,

because so many recent studies have inferred the dispersal of

amphibians over oceanic barriers [36–44], we believe that such

calibration points should be abandoned. We restricted our

calibration points to fossil taxa for which taxonomic affinities

have been demonstrated by phylogenetic analyses. Thus, a fossil

was used to date a particular clade of extant taxa if cladistic

analysis suggested that the fossil taxon is part of that clade. Data

on fossil calibration points are provided in Table 5. As precise

dates (in millions of years) are not available for these calibration

points, the dates used are the most recent dates associated with the

geological time intervals from which the fossils were collected. In

addition, to allow the possibility that stratigraphic assignment of

fossil taxa might be incorrect, we relaxed the strict minimum

divergence time calibration by using a normal distribution around

the minimum date for a particular stratigraphic interval. If biased,

it should only underestimate the divergence time; in other words, a

poorly dated fossil from the Lower Cretaceous might be 130

million years old, but we would recognize it as being ‘‘at least 99

million years old.’’ We view this methodology as inherently

conservative.

Divergence times were estimated using the uncorrelated relaxed

clock method [45] as implemented in BEAST v.1.5.2 [46].

Because the phylogenetic analyses resulted in a single topology

(i.e., ML and MCCT tree) with generally high support, we

constrained the BEAST analyses to estimate divergence times on

only this preferred topology. The Yule speciation prior was used

for branching patterns and the partitions and corresponding

models of sequence evolution implemented for each partition were

the same as the analyses in MrBayes (Table 4). MCMC analyses

were run for 50 million generations with MCMC steps and

divergence times recorded every 1000 generations. Each fossil

calibration point provided a ‘‘relaxed’’ minimum divergence time

estimate (see above) and assigned a prior with a normal

distribution around a mean that was set to a time corresponding

to the most recent age of the stratigraphic level estimated for the

fossil based on the relevant literature. We utilized the normal

distribution on the calibration priors to allow for potential

uncertainty in both cladistic relationships and stratigraphic

assignments [47]. We also explored the effect of three different

standard deviations for the normal distributions assigned to these

calibration priors to (i.e., 1.0, 3.0, 5.0). Convergence and effective

sample sizes were assessed in Tracer. The 95% highest posterior

density interval (HPD) for divergence times were calculated using

TreeAnnotator. To evaluate the effect of priors in the analysis, we

also conducted an analysis with all five calibration points (normal

distributions with standard deviation of 5.0) but in which there

were no sequence data. This resulted in substantially different

inferred divergence times and 95% HPD intervals (data not

shown), which we take as evidence that the data, rather than the

priors, are driving the results of these analyses.

We evaluated whether the estimation of divergence times at

three specific nodes were sensitive to the calibration points used by

utilizing a jackknife approach. These nodes are: (1) the most recent

common ancestor (MRCA) of Barbourula, Bombina, Alytes, and

Discoglossus; (2) MRCA of Barbourula and Bombina; and (3) MRCA

of Barbourula busuangensis and B. kalimantanensis. We conducted

analyses in BEAST in which each of the calibration points was

removed from the analysis (i.e., five analyses each with four

calibration points). Specific combinations are listed in Table 6.

Results of divergence time analyses were evaluated by

examining effective samples sizes and burn-in using Tracer and

then calculating the median node heights using TreeAnnotator.

The median node heights and 95% HPD were compared for

divergences across the tree with specific attention to those between

Barbourula and Bombina and within Barbourula.

Results

Phylogeny
Bayesian and ML analyses resulted in the same preferred

phylogenetic topology (MCCT and ML tree) and most nodes

receive high support from both Bayesian and ML analyses

(Figs. 2, S1). Though the preferred topology from both Bayesian

and ML analyses were identical, several nodes related to the

placement of the Neobatrachia received low support from ML

non-parametric bootstrapping analyses. In addition, the preferred

topology from both Bayesian and ML analyses contains a sister-

relationship between Xenopus and Hymenochirus, though this

receives low support from both analyses (PP = 0.6, BS = 44%).

However, all nodes related to the placement of Barbourula

received high support, including the Bombinatoridae (Barbour-

ula+Bombina, PP = 1.0, BS = 100%; sensu [48]) and the Alytidae

(Alytes+Discoglossus, PP = 1.0, BS = 100%; sensu [21]). Monophyly

of the Costata (i.e., Alytidae+Bombinatoridae; sensu [21]) is also

Table 5. Calibration points used for divergence time analyses.

Calibration Clade Fossil Taxon Est. Age Calibration Age Age Reference Cladistic Analysis

1 Batrachia Triadobatrachus Early T 245.0 mya [101] [102]

2 Costata Eodiscoglossus Middle J 164.0 mya [103] [13]

3 Xenoanura Rhadinosteus Late J 151.0 mya* [104] [104]

4 Neobatrachia Arariphrynus,
Eurycephalella

Early K 99.0 mya [105] [105]

5 Pelobatoidea Eopelobates Eocene 48.6 mya** [106–107] [108]

*This date differs from Wiens [22] use of 144 mya because he attributes the fossil to Tithonian rather than Kimmeridgian.
**Whereas Roček and Rage [109] retained the identification by Antunes and Russell [106] of anurans from the lower Eocene of Silveirinha, Portugal as Eopelobates, Rage
and Augé [107] have cast some doubt over this identification in stating that ‘‘identification of Eopelobates should rest on cranial bones’’ (p. 105). As our calibration age
for Pelobatoidea, we have used 48.6 mya corresponding to the end of the Ypresian in the Early Eocene. However, if the slightly younger age for a Middle Eocene
Eopelobates locality is used, or even if the younger age for Elkobatrachus [108] was used, we expect that our results would be comparable; this is supported by analyses
in which this calibration point is removed from divergence time analyses.
doi:10.1371/journal.pone.0012090.t005

Ancient Frogs in SE Asia

PLoS ONE | www.plosone.org 5 August 2010 | Volume 5 | Issue 8 | e12090



strongly supported (PP = 1.0, BS = 100%). Barbourula busuangensis

and B. kalimantanensis form a strongly supported clade (PP = 1.0,

BS = 100%; Fig. 2) that is sister to the genus Bombina (PP = 1.0,

BS = 100%).

Divergence Time Estimation
Using all five calibration points and the broadest standard

deviation for the related priors (5.0), the estimated time of

divergence between Barbourula and Bombina is 47.1 mya (95%

HPD: 34.5–60.6 mya). The divergence time between the two

species of Barbourula is 10.8 mya (95% HPD: 6.0–16.2 mya),

whereas the intraspecific divergence within B. busuangensis is 0.7

mya (95% HPD: 0.3–1.7 mya). These divergence times are

robust to the use of alternative standard deviations for

calibration priors and to the exclusion of each calibration point

(Table 6; Fig. 3). In summary, median estimates for the

divergence of Barbourula and Bombina range from 43.6–49.2

mya (cumulative 95% HPD: 32.5–63.3 mya) and those between

the two species of Barbourula range from 9.5–11.6 mya

(cumulative 95% HPD: 5.5–17.0 mya).

Discussion

Systematics
Our findings that Barbourula is monophyletic and that Barbourula

and Bombina are sister taxa (Fig. 2) are not surprising. A close

relationship between these genera has been proposed since the

discovery of Barbourula [7,10,12,15,49] and has been supported by

morphological phylogenetic analyses [11,13]. In fact, based on

morphological comparisons [50,51], there has been some previous

suggestion that Barbourula kalimantanensis may be more closely

related to Bombina than to B. busuangensis [51]. However, our

analysis provides unequivocal support for the monophyly of

Barbourula.

Table 6. Divergence time estimates (median and 95% HPD, in mya) for Barbourula–Bombina and Barbourula busuangensis–B.
kalimantanensis.

Calibrations St. Dev. Barbourula–Bombina B. busuangensis–B. kalimantanensis

1, 2, 3, 4, 5 1.0 47.08 (34.67–62.01) 11.57 (6.24–16.88)

1, 2, 3, 4, 5 3.0 47.61 (34.68–61.78) 11.58 (6.24–17.01)

1, 2, 3, 4, 5 5.0 47.12 (34.52–60.56) 10.82 (5.97–16.16)

1, 2, 3, 4 5.0 49.21 (37.40–63.23) 10.78 (6.63–15.61)

1, 2, 3, 5 5.0 47.60 (35.12–63.26) 10.92 (6.21–16.40)

1, 2, 4, 5 5.0 46.48 (34.56–59.57) 10.70 (6.30–15.70)

1, 3, 4, 5 5.0 43.57 (32.51–56.19) 9.54 (5.50–15.12)

2, 3, 4, 5 5.0 48.89 (35.76–63.31) 11.10 (6.03–16.48)

For each analysis listed, the combination of calibration points (numbers corresponding to Table 5) and standard deviations for prior of calibration points are provided.
doi:10.1371/journal.pone.0012090.t006

Figure 2. Time-calibrated phylogeny of Barbourula. Depicted is the MCCT and ML topology with divergence times (in mya) estimated using all
five calibration points and standard deviations of 5.0 for their prior distributions. Nodes are at the inferred median heights with gray bars at selected
nodes indicating the 95% HPD. Closed circles indicate high Bayesian and ML support (PP = 1.0; BS.90%); open circles indicate high Bayesian support
only. Three of the five divergence time calibration points are indicated by crosses; the remaining two are either within Anomocoela or between Anura
and Urodela (outgroup Urodela taxa are not shown; see also Figure S1).
doi:10.1371/journal.pone.0012090.g002
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Last, the precise relationship of Barbourula and Bombina to other

anurans has long remained uncertain [11,13,52–59]. Recent

molecular phylogenetic studies have unequivocally resolved

Bombina as the sister to a clade comprising Alytes and Discoglossus

[18,19,21,22,33,60,61]. Our results support this conclusion by

inferring Barbourula + Bombina to be the sister to Alytes + Discoglossus.

Divergence Time Estimates
In contrast to the phylogenetic relationships, the estimated

divergence times are unexpected as these reveal a great antiquity to

the endemism of these Southeast Asian frogs. Divergence between

Barbourula and Bombina occurred in the Paleogene, most likely before

the Oligocene (Fig. 2; Table 6). To our knowledge, this is the oldest

estimate for a cladogenetic event resulting in living taxa endemic to

the islands of Southeast Asia (for comparisons, see [4,62–65]).

Similarly, the two species of Barbourula diverged in the Late

Miocene, thus substantially predating other estimates of divergence

between taxa endemic to Borneo and Palawan [5,6,66].

The divergence between the two specimens of Barbourula

busuangensis appears to have occurred during the Pleistocene.

These specimens were collected ,100 km apart and have an

uncorrected p distance for the mitochondrial DNA sequence of

1.3%; the nuclear gene sequences for these two specimens are

nearly identical. Though admittedly based on little data, this

estimated timing of divergence within B. busuangensis supports

previous assertions that the Pleistocene was an important period

for the generation of diversity, including phylogeographic

structure, in the Philippines and associated islands [2,67].

Previous estimates based on molecular data of the divergence

time for the last common ancestor of Barbourula, Bombina, Alytes,

and Discoglossus found a mid-Mesozoic divergence. However, these

estimates still differ substantially from one another with some

finding this divergence to be in the Lower Cretaceous [22,68] and

others in the Late Triassic or Early Jurassic [19,33]. Our estimates

are broadly consistent with these previous studies by inferring this

divergence to be in the mid-Mesozoic (Fig. 2), but still considerably

younger (Late Jurassic or Early Cretaceous) than some previous

estimates [19,33]. We believe that these differences are most likely

due to the use by other studies of calibration points based on

paleobiogeographic events or fossil taxa that have not been

demonstrated via cladistic analysis to be nested within the clade to

which the calibration was applied. Our results are most consistent

with those inferred by Wiens [22] who restricted nine of his ten

anuran calibration points to fossils. However, our analysis reveals

that such inferences might be led astray even by calibration points

based on fossil taxa for which affinities to extant taxa have been

demonstrated. For example, in analyses in which the calibration

point for the most recent common ancestor of Costata (calibration

2) is removed, divergence time estimates are considerably younger

(Fig. 3). This could be due to differing rates of evolution across the

phylogeny or error in the inferred phylogenetic relationships of the

fossil taxa used. We believe that the latter is more likely in many

cases for anurans. In the present case, Eodiscoglossus was used to

calibrate the origin of the Costata based on the phylogenetic

results of Gao & Wang [13], yet it is possible that Eodiscoglosus is

sister to the clade containing extant members of the Costata.

While the removal of fossil calibration points did not affect the

divergence times of interest (i.e., Barbourula–Bombina and within

Barbourula), this analysis serves to underscore the need to critically

evaluate calibration points as well as the importance of divergence

estimation methods that incorporate uncertainty, including

‘‘relaxed’’ minimum divergence time calibrations [47].

Geological Context
Based on evidence supplied by Taylor & Hayes [69] and

Holloway [70], Heaney [2] summarized Palawan’s geological

history in developing a framework for understanding its biogeog-

raphy. Heaney’s [2] summary is as follows:

The islands of the Palawan Arc are a composite of old

continental crustal rocks (from the northern half of Palawan

Island to southern Mindoro and northern Panay) and more

recent fragments of oceanic crust. The continental rocks are

Palaeozoic and Mesozoic in age and consist of some clastic

sediments and limestone. Limestone sediments containing

fossils of marine invertebrates on top of the continental rocks

indicate that shallow marine conditions existed from the

Jurassic to the Eocene. Recent data suggest a mid-Oligocene

to early Miocene (32 to 17 Ma BP) rifting of this material

away from the Asian continent [69,70]; no evidence yet

suggests subaerial (emergent) islands before the Miocene.

Sedimentary material of Pliocene and Quaternary origin on

the edge of the Palawan trench suggests the presence of

Figure 3. Congruence of divergence times estimated using different calibration points. Graphical representation of the data presented in
Table 6; divergence times are given in mya.
doi:10.1371/journal.pone.0012090.g003
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islands by the Pliocene. The subduction zone has been

inactive since the Miocene. (p. 139)

Nearly 25 years later, reconstructions of Palawan’s geological

history incontrovertibly place at least its northern portion (referred

to as the Northern Palawan Block) as originating on the margin of

the South China continental crust with rifting between these

beginning in the Late Oligocene ([69–72]; reviewed in [16]). Recent

work suggests that the differences between northern and southern

Palawan might be the results of differential uplift and erosion [73]

leading to the inference that some portion of southern Palawan may

also have a continental origin; indeed, Milsom et al. [74] state that

continental rocks are widely exposed south of Ulugan Bay. Because

of the presence of onshore limestone deposits in northern Palawan

([75] cited in [70]; see also [76]), portions of present-day emergent

Palawan are believed to have been below water at some point in the

Tertiary (probably as recently as the late Oligocene to early

Miocene ([77] cited in [72]). Consequently, it is implied that a

terrestrial fauna did not inhabit the island until after this period

[2,78]. Although some portions of northern Palawan were likely

below water, there is relatively little evidence for or against the

hypothesis that at least some portion of the Palawan continental

fragment was above water during the migration of the Northern

Palawan Block from the Asian mainland. The complicated

biogeography and geology of these islands and high levels of

taxonomic distinctiveness of Palawan endemics suggest that

northern Palawan may have been an oceanic island before uplift

of southern Palawan created an effective bridge to northern Borneo

[3,6,36,79–84]. Taylor & Hayes [69] suggest that absence of strata

from before the mid-Oligocene on the South China margin is

consistent with pre-rifting tectonic uplift at this time. Further,

reconstructions by Mitchell et al. (see Fig. 9 of [72]) suggest that at

least some portion of the Northern Palawan Block might have been

emergent as early as the Late Eocene as evidenced by clastic

deposits. Other information suggesting that emergent portions

existed at least by the Early Miocene include evidence of sediments

derived from this region during this time period [85] and granite in

northern Palawan [86], the origin of which requires a thickened

crust that is suggestive of emergent land (R. Hall, pers. comm).

Taken together, various geological studies imply both a complicated

composition and potentially significant topography in this region

preceding the rifting leading to the creation of the South China Sea

and the movement of the Northern Palawan Block away from the

mainland. Thus, there is the possibility that a portion of this

Northern Palawan Block remained continuously above water

forming an oceanic island with habitat suitable for terrestrial

organisms since possibly the Late Paleogene (see also [87]).

Biogeography
The estimates of divergence time between Barbourula and Bombina

are consistent with several components of proposed biogeographic

hypotheses. Divergence between Barbourula and Bombina occurred

after the Mesozoic but, as proposed by Savage [14], predating the

Oligocene, contra Inger [88]. Savage [14] hypothesized that

Barbourula originated in tropical habitats on the Asian mainland

and was later restricted to the Sunda Shelf as a consequence of

cooling in continental Asia beginning at the Eocene–Oligocene

transition [89–92]. Yet if Barbourula has been a component of the

Sunda Shelf fauna for the past 30 million years, then it is anomalous

in this fauna by not also occurring on other nearby islands that have

been in close association throughout the Cenozoic [16].

As an alternative, we propose that Barbourula may have joined

the Sunda Shelf fauna following ‘‘rafting’’ on Palawan. This

hypothesis is consistent with both the divergence times and the

distribution of Barbourula. First, the Late Miocene divergence

within Barbourula is consistent with Palawan moving into close

proximity to Borneo at this time [16,76]. Second, if Barbourula

colonized Borneo from Palawan, then this lineage has only been

part of the Sunda Shelf fauna for the past ,10 mya rather than

the past ,30+ mya, which might account for its more limited

distribution and apparent lack of diversification. Portions of

present-day Palawan have been land-positive since at least the

Miocene [72] but the evidence for the continuous emergence of

one or more component(s) of Palawan since the Eocene is

admittedly scarce (though see discussion above). However, our

inferred divergence time estimations, especially as these are

consistent with both temporal components of the Palawan Ark

Hypothesis, suggest that this is at least tenable. As such, we

encourage this alternative hypothesis to be further tested with

phylogenetic data from other terrestrial organisms, especially those

with limited dispersal capabilities.

Notably, our estimate of a Late Miocene divergence between the

two species of Barbourula fits the geological record well. The Palawan

Ark Hypothesis specifically posits dispersal to Borneo if Barbourula

entered the islands of Southeast Asia via emergent portions of the

North Palawan Block. However, this divergence time might be

expected regardless of whether the Barbourula dispersed from Palawan

to Borneo or vice-versa. Curiously, Inger [15] postulated that

Barbourula might have entered the Philippines during the Miocene or

earlier, though the species on Borneo was unknown at that time.

The Palawan Ark Hypothesis posits that Barbourula entered the

islands of Southeast Asia via emergent portions of Palawan instead

of through the Sunda Shelf. Unfortunately, the deep-time

geological history of Palawan is too insufficiently known to

determine when and for how long portions of the North Palawan

Block might have been above water. Given the presence of Eocene

limestones on Palawan, it is conceivable that there has never been

an emergent landbridge between the Asian mainland and portions

of the North Palawan Block. If so, and if Barbourula did indeed

disperse to the Southeast Asian islands via Palawan, then this

would imply an overwater dispersal from the mainland to the

emergent portions of the North Palawan Block, possibly as early as

the Eocene [72]. Interestingly, such a vicariant event would be

congruent with our estimated divergence time between Bombina

and Barbourula, though we admit that this scenario is highly

speculative. If the Palawan Ark Hypothesis is not correct, then

Barbourula is truly a ‘‘relict,’’ having become extinct throughout the

Malay Peninsula and Sunda Shelf region through which it must

have once dispersed (as posited by [14]). Support for this might be

garnered from other taxa occurring on the periphery of the Asian

mainland that are sometimes interpreted as relicts of diversifica-

tion events in warm and/or tropical environments before the

Oligocene ([93,94]; see also [87]).

Most previous studies of Palawan biogeography focus on

dispersal between Borneo and the Philippines [2,67,81,95]. Our

estimates of divergence times suggest that portions of Palawan

might have been above-water since the Paleogene and served as an

‘‘ark’’ carrying fauna and flora from the Asian mainland to its

present-day position between the island of Borneo and the

Philippines island archipelago.

Supporting Information

Figure S1 Phylogenetic relationships resolved in this study

showing all of the terminal taxa utilized. Depicted is the MCCT

and ML topology with divergence times estimated using all six

calibration points and standard deviations of 5.0 for their prior

distributions (as in Fig. 2). Nodes are at the inferred median
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heights. Closed circles indicate high Bayesian and ML support

(PP = 1.0; BS.100%); for nodes with lower support, BS is

provided above the branch and PP below it. Each of the six

divergence time calibration points is indicated by a cross.

Found at: doi:10.1371/journal.pone.0012090.s001 (5.11 MB

TIF)
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109. Roček Z, Rage J-C (2000) Tertiary Anura of Europe, Africa, Asia, North

America, and Australia. In Heatwole H, Carroll RL, eds. Amphibian Biology.

Vol. 4. Palaeontology. Chipping Norton: Surrey Beatty, Sons. pp 1332–1387.

Ancient Frogs in SE Asia

PLoS ONE | www.plosone.org 10 August 2010 | Volume 5 | Issue 8 | e12090


