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Abstract
The	gut	microbiomes	of	 the	host	 are	 large	and	complex	 communities,	which	helps	
to	maintain	homeostasis,	 improves	digestive	efficiency,	and	promotes	the	develop-
ment	of	the	immune	system.	The	small	mammals	distributed	in	Sichuan	Province	are	
the	most	popular	species	for	biodiversity	research	in	Southwest	China.	However,	the	
effects	of	different	diets	on	the	structure	and	function	of	the	gut	microbial	commu-
nity	of	these	small	mammals	are	poorly	understood.	In	this	study,	whole-	metagenome	
shotgun	sequencing	has	been	used	to	analyze	the	composition	and	functional	struc-
tures	of	the	gut	microbiota	of	seven	small	mammals	 in	Laojunshan	National	Nature	
Reserve,	 Sichuan	Province,	 China.	 Taxonomic	 classification	 revealed	 that	 the	most	
abundant	phyla	in	the	gut	of	seven	small	mammals	were	Bacteroides,	Proteobacteria,	
and	Firmicutes.	Moreover,	Hafnia,	Lactobacillus,	and	Yersinia	were	the	most	abundant	
genus	in	the	gut	microbiomes	of	these	seven	species.	At	the	functional	level,	we	an-
notated	a	series	of	KEGG	functional	pathways,	six	Cazy	categories,	and	46,163	AROs	
in	the	gut	microbiomes	of	the	seven	species.	Comparative	analysis	found	that	the	dif-
ference	in	the	gut	microbiomes	between	the	Soricidea	and	Muridae	concentrated	on	
the	increase	in	the	F/B	(Firmicutes/Bacteroides)	ratio	in	the	Soricidea	group,	probably	
driven	by	the	high-	fat	and	-	calorie	digestive	requirements	due	to	their	insectivorous	
diet.	The	comparative	functional	profiling	revealed	that	functions	related	to	metabo-
lism	and	carbohydrates	were	 significantly	more	abundant	 in	Muridae	group,	which	
may	be	attributed	to	their	high	carbohydrate	digestion	requirements	caused	by	their	
herbivorous	diet.	These	data	suggested	that	different	diets	in	the	host	may	play	an	
important	role	in	shaping	the	gut	microbiota,	and	lay	the	foundation	for	teasing	apart	
the	influences	of	heritable	and	environmental	factors	on	the	evolution	of	gut	micro-
bial	communities.
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1  |  INTRODUC TION

Many	studies	have	shown	that	the	interaction	between	the	gut	mi-
crobial	mutualisms,	commensalisms,	and	pathogenicity	is	extremely	
critical	to	the	host	(Backhed	et	al.,	2005;	Kau	et	al.,	2011).	The	gut	
microbiomes	 of	 small	 mammals	 have	 displayed	 the	 phylogenetic	
history	of	their	hosts,	 indicating	codiversification	and	evolutionary	
timescales	between	different	 small	mammal	 species	 (Ji	&	Nielsen,	
2015;	Ochman	et	al.,	2010).	For	the	past	10	years,	many	studies	on	
gut	microbial	 community	have	been	conducted	on	small	mammals	
like	 desert	woodrats	 (Kohl	 et	 al.,	 2015),	wild	wood	mice	 (Maurice	
et	 al.,	 2015),	 the	Western	 house	mouse	 (Lorenc	 et	 al.,	 2014),	 pla-
teau	pika	(Li,	Li,	et	al.,	2016;	Li,	Qu,	et	al.,	2016),	and	the	bank	vole	
(Lavrinienko	et	al.,	2018).	These	researches	on	small	mammals	were	
involved	in	the	host	intestinal	peristalsis,	nutrient	absorption,	energy	
metabolism,	and	 immune	homeostasis	 (He	et	al.,	2018;	O'Mahony	
et	al.,	2015).

The	 influences	 of	 host	 phylogeny	 and	 diet	 on	 gut	microbiome	
structure	 and	 function	 have	 been	 widely	 explored.	 A	 compari-
son	 study	 from	 60	 species	 on	 gut	 microbiota	 displayed	 that	 the	
difference	 within	 species	 was	 less	 than	 that	 among	 species	 (Ley	
et	al.,	2008).	Likewise,	a	comparison	of	10	genetically	distinct	inbred	
mouse	strains	with	 sympatric	distribution	 revealed	 that	 there	was	
some	convergence	of	gut	microbiota	between	the	strains,	but	each	
mouse	strain	retained	a	distinct	microbiota	(Campbell	et	al.,	2012).	
In	wild	mice,	the	patterns	of	microbiota	diversity	were	primarily	ex-
plained	by	the	geographical	location	of	the	mice,	with	weaker	effects	
from	the	population	structure	of	the	mice	and	their	genetic	distance	
(Linnenbrink	et	al.,	2013;	Wang	et	al.,	2014).	When	wild	mice	were	
transferred	to	the	laboratory	and	maintained	for	a	year,	the	diversity	
of	the	gut	microbiota	was	relatively	declining	over	time	(Kohl	et	al.,	
2015;	Wang	et	al.,	2014),	suggesting	that	short-	term	and	dramatic	
dietary	 interventions	 could	 alter	 the	 microbiota	 diversity	 quickly	
(Leeming	et	al.,	2019).	Diet	is	a	key	modifiable	factor	influencing	the	
composition	of	 the	 gut	microbiota.	Robust	 findings	displayed	 that	
the	gut	microbiota	responded	rapidly	to	diet	alteration	appeared	to	
be	temporary	when	the	dietary	changes	were	permanent	(Tebani	&	
Bekri,	2019;	Wu	et	al.,	2011).	Permanent	alteration	of	the	diet	may	
induce	new	species	and	proliferate	others,	 increasing	the	diversity	
and	richness	of	taxa	 in	gut	microbiota	(Linnenbrink	et	al.,	2013).	A	
diverse	diet,	and	in	particular,	the	number	of	different	types	of	plant	
foods	 consumed	 (Johnson	 et	 al.,	 2019),	 has	 been	 associated	with	
greater	microbial	diversity	thought	to	provide	an	increased	variety	
of	substrates	for	numerous	taxa	proliferation	(Heiman	&	Greenway,	
2016;	McDonald	et	al.,	2018).	Animal	fat	and	protein	predominant	
diets	have	been	clearly	associated	with	specific	changes	in	gut	mi-
crobial	composition	when	compared	to	plant-	based	diets	 (Johnson	
et	al.,	2019).	For	example,	changes	in	the	Firmicutes:	Bacteroidetes	
ratio	 have	 been	 reported	 in	 individuals	who	 lost	weight,	whether	
they	 were	 consuming	 low-	calorie,	 fat-		 or	 carbohydrate-	restricted	
diets	(Ley	et	al.,	2006).

The	 mammalian	 gut	 microbiota	 is	 a	 collection	 of	 all	 host	 gut-	
related	microorganisms,	and	it	is	a	complex	and	diverse	ecosystem	

that	is	obtained	through	vertical	transmission	and	environmental	ex-
posure	(Norman	et	al.,	2014;	Stappenbeck	&	Virgin,	2016).	In	small	
mammals,	environmental	exposure	may	cause	the	occurrence	of	an-
timicrobial	resistance	(AMR),	referring	to	the	physical	or	biochemical	
ability	of	microorganisms	(usually	pathogenic)	to	develop	ineffective	
antibacterial	 agents,	which	 is	 increasingly	prevalent	 (Butaye	et	 al.,	
2015).	The	capacity	of	small	mammals	to	act	as	reservoirs	and	vec-
tors	of	AMR	indicates	their	potential	use	as	sentinels	of	AMR	occur-
rence,	 transmission,	and	potential	human	health	risks.	Sentinels	or	
bioindicators	are	organisms	with	the	potential	to	be	used	as	an	early	
warning	system	for	human	health	risks	(Gwenzi	et	al.,	2021).	A	few	
studies	showed	that	small	animals,	including	mice,	voles,	and	insecti-
vores,	are	effectively	used	as	sentinels	of	antimicrobial-	resistant	mi-
croorganisms	and	their	antibiotic	resistance	genes	(ARGs)	(Furness	
et	al.,	2017;	Kmet	et	al.,	2018).

Laojunshan	National	Nature	Reserve	 in	Sichuan	Province	 is	 lo-
cated	on	the	southern	edge	of	the	Sichuan	Basin	connected	to	the	
hills	 of	 Southern	 Sichuan	Basin	 and	 the	Yunnan	Plateau.	 Previous	
research	studies	on	gut	microbiomes	of	small	mammals	 in	Sichuan	
Province	have	been	 conducted	based	on	 the	 analysis	 of	 the	 com-
position	and	function	of	the	gut	microbiota,	which	was	involved	in	
habitat	and	seasonal	changes	(Maurice	et	al.,	2015;	Tang	et	al.,	2021).	
As	 the	sampled	populations	 in	 these	studies	are	ecologically,	geo-
graphically,	and	seasonally	distinct,	it	is	unclear	of	the	key	functional	
bacteria	and	their	mechanism	in	the	gut	and	the	impact	of	different	
diets	on	sympatric	small	mammals.	Therefore,	species	with	different	
diets	in	Laojunshan	National	Nature	Reserve	can	provide	reference	
for	the	study	of	the	gut	microbiomes	of	small	mammals	under	sym-
patric distribution.

Due	 to	 the	elusive	predatory	behavior	and	various	habits,	 it	 is	
difficult	to	accurately	and	effectively	evaluate	the	gut	microbes	of	
wild	animals	 (Dettki	et	al.,	2014;	Rosshart	et	al.,	2017).	 It	 is	nearly	
impossible	 to	 identify	gut	microbe	with	high	 taxonomic	 resolution	
by	using	traditional	methods	such	as	microbial	plate	method,	micro-
scopic	analysis,	and	phospholipid	fatty	acid	analysis	(Tannock,	2000;	
Wang	et	al.,	2017;	Xu	et	al.,	2009).	With	the	development	of	high-	
throughput	sequencing,	many	targeted	amplicon	sequencing	 tech-
nologies	have	been	widely	adopted	 for	 the	 study	of	microbiomes,	
including	 16S	 rRNA	 gene	 and	 shotgun	 metagenomics	 (Kau	 et	 al.,	
2011;	Li,	Li,	et	al.,	2016;	Maurice	et	al.,	2015;	Wang	et	al.,	2017).	The	
main	difference	in	these	two	methods	is	that	16S	rRNA	sequencing	
data	cannot	provide	further	 insight	 into	the	functional	capabilities	
of	 these	 gut	microbiota,	while	 the	metagenomics	 can	 analyze	 the	
function	of	the	gut	microbes	(Ji	&	Nielsen,	2015;	Lesker	et	al.,	2020).	
There	 is	 limited	 information	on	 the	 functional	diversity	of	 gut	mi-
crobiome	in	wild	small	mammals.	Therefore,	accurate	identification	
of	gut	microbiota	 is	a	prerequisite	 to	 fully	understand	 the	 feeding	
ecology	of	a	species.

In	this	study,	we	used	whole-	metagenome	shotgun	sequencing	at	
the	Illumina	high-	throughput	sequencing	platform	NovaSeq	6000	to	
profile	the	gut	microbiomes	inhabiting	the	digestive	system	of	seven	
sympatric	 small	 mammals	 and	 identify	 the	 functional	 attributes	
encoded	 in	 the	 gut	microbiomes.	We	 chose	 five	Muridae	 species:	
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Eurasian	Harvest	Mouse	 (Micromys minutus),	Confucian	Niviventer	
(Niviventer confucianus),	Indochinese	Arboreal	Niviventer	(Niviventer 
fulvescens),	Oriental	House	Rat	(Rattus tanezumi),	and	Apodemus ni-
grus.	These	five	species	have	been	regarded	as	herbivorous	animals	
(Du	et	al.,	2017;	Parr	et	al.,	2014;	Romer,	1966)	with	a	dental	sys-
tem	adapted	to	gnawing	and	grinding	vegetable	 food	 (Butet	et	al.,	
2011;	Hansson,	1985;	Luckett	&	Hartenberger,	1985).	Another	two	
species	were	carnivorous	Soricidea	species:	Indochinese	short-	tailed	
shrew	(Blarinella griselda)	and	the	Chinese	mole	shrew	(Anourosorex 
squamipes).	Both	species	have	been	revealed	to	be	insectivore	ani-
mals,	and	they	belong	to	carnivorous	animals,	which	live	on	diverse	
invertebrates	 with	 a	 preponderance	 of	 earthworms	 (Churchfield	
et	al.,	2012;	Pascual	&	Ascencao,	2000;	Peng	et	al.,	2018;	Tang	et	al.,	
2021).	This	study	can	help	better	understand	the	composition	and	
function	of	the	gut	microbiomes	of	the	wild	small	mammals	and	lay	
the	foundation	for	future	research	on	how	different	feeding	strate-
gies	affect	the	interaction	of	the	small	mammals	and	gut	microbes.

2  |  MATERIAL S AND METHODS

2.1  |  Ethics approval

The	research	complied	with	the	protocols	established	by	the	China	
Wildlife	 Conservation	 Association	 and	 the	 legal	 requirements	 of	
China.	 The	 research	 protocol	 was	 reviewed	 and	 approved	 by	 the	
Ethical	Committee	of	Sichuan	University.

2.2  |  Sample collection and gut content samples

The	samples	of	small	mammals	were	collected	from	June	20	to	June	
26,	2020,	using	the	snap-	trap	cage	at	night	in	Laojunshan	National	
Nature	Reserve,	 Sichuan	Province,	 Southwest	China.	We	 selected	
the	samples	to	be	analyzed	according	to	the	following	criteria.	First,	
samples	were	 collected	 from	 family	Muridae	 and	 Soricidea	 at	 the	
same	site	in	1	week.	Second,	each	species	has	at	least	three	samples.	
Third,	the	samples	had	complete	stomach,	intestine,	and	anal	canal.	
A	total	of	seven	species,	and	three	sample	replicates	for	each	species	
were	analyzed	in	this	study	(Table	S1).	The	sampling	sites	occupied	a	
range	of	elevations	from	1460	to	1861	m,	longitudes	from	103.99°E	
to	104.22°E,	and	 latitudes	from	28.60°N	to	28.70°N.	The	 internal	
organs	and	digestive	tract	of	samples	were	collected	and	placed	in	
100	ml	sterilized	plastic	bottles	and	sealed	with	pure	alcohol.	In	addi-
tion,	part	of	the	muscle	tissue	is	collected	in	a	2	ml	EP	tube	with	pure	
alcohol.	The	fur	specimens	were	labeled	and	stored	at	10%	forma-
lin	solution.	As	soon	as	animal	specimens	were	collected,	the	sam-
ples	were	immediately	transported	to	the	College	of	Life	Sciences,	
Sichuan	University,	and	stored	at	−80°C.	The	entire	sampling	pro-
cess	was	aseptic.	The	luminal	gut	contents	were	collected	at	a	super	
clean	bench.	Due	to	the	dehydration	effect	of	pure	alcohol,	we	di-
rectly	dissected	the	stomach	and	intestines	of	the	samples,	collected	
their	contents,	and	stored	them	in	pure	alcohol.

2.3  |  DNA extraction, library preparation, and 
metagenomics sequencing

Metagenomic	DNA	was	isolated	from	approximately	1	g	of	gut	con-
tent	sample	with	the	Magnetic	Bead	Method	Soil	and	Fecal	Genomic	
DNA	Extraction	Kit	(DP712,	TIANGEN	Biotech,	Beijing,	China),	fol-
lowing	the	manufacturer's	instruction.	DNA	concentration	and	qual-
ity	 were	 assessed	 by	 three	 methods:	 agarose	 gel	 electrophoresis	
analyzed	the	purity	and	 integrity	of	DNA;	Nanodrop	detected	 the	
purity	of	DNA	(OD	260/280	ratio);	and	Qubit	2.0	quantified	DNA	
concentration.	 DNA	 samples	 were	 randomly	 interrupted	 using	 a	
Covaris	ultrasonic	disruptor,	and	the	entire	library	preparation	was	
constructed	 through	 end	 repair,	 A-	tailing,	 sequencing	 adapters,	
purification,	 and	 PCR	 amplification.	 We	 then	 used	 Qubit	 2.0	 for	
preliminary	quantification.	To	ensure	the	quality	of	 the	 library,	we	
used	Agilent	2100	to	detect	the	inserts	in	the	library	and	the	Q-	PCR	
method	 to	 accurately	 quantify	 the	 effective	 concentration	 of	 the	
library.	Different	qualified	libraries	were	pooled	to	flowcell	accord-
ing	to	the	effective	concentration	and	target	data	volume	require-
ments.	After	the	cBOT	was	clustered,	the	Illumina	high-	throughput	
sequencing	platform	NovaSeq	6000	was	used	for	sequencing.	The	
details	of	data	analysis	are	attached	in	Table	S2.

2.4  |  Quality control and genome assembly

To	obtain	the	clean	data	for	subsequent	analysis,	the	raw	data	from	
the	 Illumina	NovaSeq	 sequencing	platform	were	 processed	by	 re-
moving	the	reads	that	contain	low-	quality	bases	more	than	a	certain	
percentage	(default	is	40	bp);	the	reads	in	which	the	N	base	reached	
a	certain	percentage	(default	length	of	10	bp);	and	the	reads	whose	
overlap	with	 the	 adapter	 exceeded	 a	 certain	 threshold	 (default	 is	
15	 bp).	 Because	 the	 sequencing	 data	 had	 host	 contamination,	we	
compared	with	the	reference	genome	sequence	from	NCBI	(https://
www.ncbi.nlm.nih.gov/)	 (Muridae:	 GCF_011064425.1;	 Soricidea:	
GCF_000181275.1)	 to	 filter	 out	 the	 possible	 source	 of	 the	 host	
reads.	We	used	MEGAHIT	to	assemble	 the	metagenomics	data	 (Li	
et	 al.,	 2015)	 (https://github.com/voutc	n/megahit).	 Then,	 the	 as-
sembled	sequences	were	further	analyzed	by	QUAST	producing	ge-
nomes	with	contigs	of	300	bp	or	more,	which	was	used	for	further	
gene	prediction	and	annotation	(Gurevich	et	al.,	2013).

2.5  |  Gene prediction and gene abundance analysis

The	gene	prediction	was	performed	with	the	help	of	Prodigal	(ver-
sion	 2.60;	 Hyatt	 et	 al.,	 2000).	 All	 genes	 predicted	 to	 have	 95%	
sequence	 identity	 (90%	 coverage)	 were	 clustered	 using	 CD-	HIT	
v4.6.8	 software	 (Fu	 et	 al.,	 2012),	 and	 representative	 sequences	
containing	 the	 longest	 sequences	 from	each	 cluster	were	 used	 to	
construct	 non-	redundant	 gene	 catalogs.	 The	 gene	 abundance	 of	
the	metagenomics	data	was	evaluated	and	quantified	with	Salmon	
(Patro	et	al.,	2017).	The	abundance	information	of	each	gene	in	each	

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://github.com/voutcn/megahit
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sample	was	calculated	 from	the	number	of	 reads	and	gene	 length	
(Villar	et	al.,	2015).

2.6  |  Species annotation

For	each	sample,	taxonomy	annotation	was	done	using	the	Kraken2	
v2.1.2	software	package	with	MiniKraken2_v2	database	(Kubiritova	
&	Gardlik,	2019;	Wood,	2014).	The	number	of	genes	supporting	reads	
in	each	species	and	each	family	were	merged	by	the	MetaPhlAn2	to	
obtain	the	final	gene	catalogue	for	subsequent	analysis	(Duy	et	al.,	
2015).	Multiple	alignment	results	for	each	sequence	arose	after	fil-
tering,	yielding	different	species	classification	information.	Thus,	to	
ensure	its	biological	significance,	the	alignment	was	conducted	using	
mpa	 format	 for	each	 sequence	alignment	 for	 subsequent	analysis.	
Before	the	cluster	analysis,	we	used	the	Python	script	to	merge	the	
gut	microbial	abundance	of	these	seven	species.	Based	on	the	an-
notation	results	and	the	gene	abundance	table,	the	abundance	infor-
mation	of	each	sample	at	each	classification	level	was	obtained.	The	
cluster	analysis	selected	the	top	35	genera	of	the	relative	abundance	
table	for	visualization.	The	abundance	of	a	species	was	determined	
as	the	average	of	the	gene	abundance	of	the	three	samples.	For	each	
sample,	the	abundance	of	gut	microbiota	in	a	sample	was	equal	to	
the	number	of	reads	with	abundances	greater	than	0.	Therefore,	the	
relative	abundance	of	gut	bacterial	at	the	family	and	genus	taxonom-
ical levels was conducted.

2.7  |  Bioinformatics and statistical analysis

Based	 on	 the	 relative	 abundance	 table	 of	 different	 classification	
levels,	 principal	 co-	ordinates	 analysis	 (PCoA)	was	 conducted	with	
vegan	packages	and	anosim()	function,	non-	metric	multidimensional	
scaling	(NMDS)	was	conducted	with	vegan	packages	and	metaMDS()	
function,	 LDA	effect	 size	 analysis	 (LefSe)	was	 conducted	with	 the	
MASS,	 and	ggplot2	packages	 in	R	 (https://www.R-	proje	ct.org/)	 to	
analyze	 the	main	 distribution	 characteristics	 and	 the	 similarity	 of	
community	samples.

2.8  |  Functional database and resistance 
gene annotation

Several	methods	were	 used	 for	 function	 annotation	 in	 this	 study.	
First,	 functional	annotation	of	metagenomes	was	conducted	using	
the	online	KEGG	automatic	annotation	server	(KAAS;	http://www.
genome.jp/kegg/kaas/)	to	blast	unigenes	to	KEGG	database	(Moriya	
et	 al.,	 2007).	 Gene	 ontology	 (GO)	 annotation	 of	 all	 the	 unigenes	
was	performed	by	the	hypergeometric	distribution	algorithm	based	
on	molecular	 function,	biological	process,	and	cellular	component.	
Converted	KEGG	Orthology	(KO)	was	compared	among	the	groups.	
After	 calculating,	 integrating,	 and	 standardizing	 the	 abundance	 of	
each	category	in	the	KEGG	pathway,	we	used	the	ggplot2	package	in	

R	to	draw	a	stacked	histogram.	Next,	we	used	stamp	v2.1.3	software	
for	KEGG	differential	analysis	(Parks	et	al.,	2014).

To	further	understand	the	carbohydrate	enzymes	presented	 in	
the	gut	microbiome,	we	submitted	the	samples	to	the	Carbohydrate-	
Active	enZYmes	database	(CAZy,	Lombard	et	al.,	2014).	DIAMOND	
v0.9.31	software	 (Buchfink	et	al.,	2021)	was	used	to	compare	uni-
genes	with	each	functional	database	(blastp,	evalue ≤1e−5).	Searching	
the	unique	genes	against	the	CAZy	database	(Carbohydrate-	Active	
Enzymes	database),	 the	number	of	genes	corresponding	to	the	six	
categories	of	carbohydrate	enzymes	was	obtained.	Based	on	the	re-
sults	of	 the	 functional	annotations	and	the	gene	abundance	table,	
the	number	of	genes	in	each	sample	at	six	CAZy	classification	levels	
was	obtained.	The	number	of	genes	with	a	certain	function	in	a	sam-
ple	was	calculated	as	the	number	of	genes	with	non-	zero	abundance.	
Based	on	the	abundance	table	at	each	classification	level,	analyses	
of	 the	 number	 and	 relative	 abundance	 of	 annotated	 genes	 were	
conducted.

Resistance	 Gene	 Identifier	 (RGI	 v5.2.0)	 software	 provided	 by	
CARD	was	employed	to	compare	unigenes	with	the	CARD	database	
(RGI	built-	in	blastp,	evalue ≤1e−30)	(Qin	et	al.,	2010).	Based	on	the	
comparison	 results	 of	 RGI	 and	 the	 abundance	 information	 of	 uni-
genes,	 the	 relative	 abundance	 of	 antibiotic	 resistance	 ontologies	
(ARO)	was	calculated.	Employing	the	ARO	abundance	data,	a	heat	
map	 of	 abundance	 distribution	 was	 constructed,	 and	 ARO	 differ-
ences	between	groups	were	analyzed	by	ANOVA,	using	aov()	 and	
TukeyHSD()	functions	in	R.

3  |  RESULTS

3.1  |  General characteristics of the metagenomic 
datasets

The	output	data	encompassed	a	total	of	290.82	Gb	raw	data,	with	an	
average	of	13.85	Gb	per	sample.	After	size	filtering	and	quality	con-
trol,	a	total	of	286.52	Gb	clean	data	was	obtained,	which	accounted	
for	more	than	98%	of	the	raw	data,	showing	that	the	data	met	the	
quality	requirements	for	subsequent	analysis.	The	de novo	assembly	
of	these	clean	reads	resulted	in	a	total	of	24.60	Gb	of	scaftigs,	and	a	
total	of	28.10	kb	of	N50	(Table	1).	Based	on	these	scaftigs,	unigenes	
with	an	average	length	of	333.92	bp	and	an	average	GC	content	of	
49.86%	were	 obtained.	 These	 unigenes	were	 then	 used	 for	 taxo-
nomic	analysis	and	functional	annotation,	and	the	results	of	which	
were	summarized	in	Table	1.

3.2  |  Characteristics of the gut microbial 
diversity of these sympatric species

A	total	of	2897	classification	levels	were	shared	by	these	seven	spe-
cies	and	3297	classification	levels	were	shared	by	the	group	Muridae	
and	Soricidea	(Figure	S1).	Based	on	the	relative	abundance	table	of	
different	classification	 levels,	 the	 top	16	phyla	and	24	genera	and	

https://www.R-project.org/
http://www.genome.jp/kegg/kaas/
http://www.genome.jp/kegg/kaas/
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their	abundance	 information	were	selected	to	construct	a	stacked	
column	 (Figure	 1,	 Figure	 S4).	 Bacteroidetes,	 Firmicutes,	 and	
Proteobacteria	were	the	most	abundant	phyla	in	these	seven	sym-
patric	 species.	 In	 the	Muridae	 group,	 the	 top	 two	 Bacteria	 phyla	
were	 Firmicutes	 (45.52%)	 and	 Proteobacteria	 (41.73%),	 and	 the	
most	abundant	genus	was	Lactobacillus,	followed	by	Yersinia.	In	the	
Soricidea	 group,	 Proteobacteria	 also	 held	 the	 overwhelming	 pre-
dominance	in	Bacteria	phyla,	with	the	relative	abundance	of	97.74%,	
and	the	most	abundant	genus	was	Hafnia,	 followed	by	Morganella. 
Difference	 analysis	 showed	 that	 there	 were	 498	 and	 122	 unique	
taxonomy	levels	of	gut	microbiota	in	group	Muridae	and	Soricidea,	
respectively	(Table	S3).	The	F/B	(Firmicutes/Bacteroidetes)	ratio	in	
Muridae	group	had	an	advantage	over	the	Soricidea	group	in	the	gut	
microbiota.	The	F/B	(Firmicutes/Bacteroidetes)	ratio	in	the	Murine	
group	was	12.64,	which	was	twice	than	the	F/B	ratio	(6.02)	of	the	
Soricidea	 group	 (Table	 S4).	 Specifically,	 in	 Figure	 2,	 the	 top	 larg-
est	 difference	 genera	 in	 abundance	 of	 gut	microbes	 between	 the	
Muridae	and	Soricidea	were	Lactobacillus,	Morganella,	Plesiomonas,	
Bacteroides,	 and	 Lachnoclostridium. The genus Lactobacillus and 
Morgannella	were	 significantly	 reversed	by	 these	 two	groups.	The	
number	 of	 over	 2	 showed	 that	 there	was	 a	 significant	 difference	
(Guo	et	al.,	2020).	In	the	cluster	comparison,	the	five	species	of	the	
Muridae	clustered	together,	and	the	two	species	of	Soricidea	located	
outside	of	Muridae	 (Figure	3).	Many	 genera	had	different	 propor-
tions	in	the	Muridae	and	Soricidea.

Pairwise	binary	Bray–	Curtis	 dissimilarities	 reflected	 the	 simi-
larity	between	communities	 in	terms	of	 the	presence/absence	of	
bacterial	 phylotypes.	Because	of	 the	 complexity	 of	 sample	 data,	
differences	 in	 bacterial	 community	 composition	 between	 these	
two	 groups	 were	 estimated	 using	 principal	 coordinates	 analy-
sis	 (PCoA)	 (Figure	 4a)	 and	 non-	metric	 multidimensional	 scaling	

(NMDS)	 (Figure	4b)	 to	 reduce	 and	 simplify	 the	 sample	data.	The	
results	 of	 PCoA	 showed	 that	 there	 were	 significant	 differences	
between	 Muridae	 and	 Soricidea,	 and	 the	 difference	 between	
groups	was	greater	than	the	difference	within	groups	(R =	0.5409;	
p =	.002).	The	results	of	NMDS	showed	that	the	map	of	NMDS	was	
very	representative	(stress	=	0.07).

3.3  |  Alternative pathway of metabolism in 
microbiota with different species

The predicted unique genes were searched against the KEGG 
functional	database,	and	a	total	of	29,243,519	unigenes	were	ob-
tained	 across	 all	 samples	 (Table	 2).	 These	 unigenes	 matched	 to	
eight	level_1	KEGG	functional	categories,	which	could	be	assigned	
to	KEGG	ortholog	group	(KOs)	and	344	KEGG	pathways	(Table	2).	
KEGG	annotation	results	showed	that	the	genes	related	to	Human	
disease in Blarinella griselda	had	the	highest	abundance,	while	the	
genes	related	to	Metabolism	had	highest	abundance	in	other	spe-
cies	(Figure	S2).	Except	for	Organismal	Systems,	functions	related	
to	 Metabolism,	 Genetic	 Information	 Processing,	 Environmental	
Information	Processing,	and	Cellular	Processes	were	significantly	
more	 abundant	 in	Muridae	 than	 that	 in	 Soricidea.	 In	 the	 level_2	
of	category,	 the	genes	related	to	carbohydrate	metabolism	were	
the	most,	which	indicated	that	the	metabolic	potential	of	the	gut	
microbiota	related	to	these	two	groups	was	highly	active.	Besides,	
at	the	KEGG	differential	analysis,	Metabolism	in	Muridae	had	the	
most	obvious	difference	from	that	in	Soricidea	in	the	level_1	cat-
egory.	And	at	 the	 level_2	 category,	Carbohydrate	metabolism	 in	
Muridae	had	 the	most	obvious	difference	 from	 that	 in	Soricidea	
(Figure	5).

F I G U R E  1 Taxonomic	profiles	of	the	microbial	communities	at	the	(a)	phylum	level	and	(b)	genus	level	in	each	sample.	Sequences	that	
could	not	be	shown	into	any	known	groups	and	that	were	detected	with	low	abundance	were	grouped	as	"others"

(a) (b)
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3.4  |  Diversity microbial functions in 
CAZymes and CARD

A	 total	 of	 12,950,338	 annotation	 results	 were	 obtained	 for	 the	
CAZy	database.	Based	on	the	annotation	results,	the	relative	abun-
dances	of	genes	belonging	to	the	six	carbohydrate	enzyme	catego-
ries	were	plotted	 in	a	bar	chart	 (Figure	6a).	Among	 the	six	 largest	
functional	CAZy	classes,	GHs	 (glycoside	hydrolases)	had	 the	high-
est	abundance,	reaching	48.52%	of	the	total	number	of	annotation	
results,	 followed	by	GTs	 (glycosyltransferases,	 29.62%)	 and	CBMs	
(carbohydrate-	binding	 modules,	 16.48%).	 The	 difference	 analysis	
of	CAZymes	in	gut	microbiome	showed	that	CAZymes	significantly	
reduced	 in	 the	 Soricidea	 group	 (Figure	 6b).	 In	 addition,	 based	 on	
the	annotation	results	of	the	CAZy	database,	a	network	diagram	of	
species	 associated	with	CAZymes	was	 constructed.	 In	 the	 further	
functional	subclasses,	GT2,	GT77,	and	CBM50	were	the	most	three	
abundant	subclasses.	At	the	top	10	functional	subclasses,	Muridae	
gut	microbiota	harbored	more	CAZymes	than	that	of	the	Soricidea	
(Figure	S3).

We	 detected	 a	 total	 of	 46,567	 ARGs.	 ARGs	 presented	 more	
abundant	in	Soricidea	than	that	in	Muridae.	We	found	an	abundance	
of	multiple	drug-	resistant	ontologies,	in	which	46,163	antibiotic	re-
sistance	 ontologies	 (AROs)	were	 identified	 and	 2,009	AROs	were	

shared	by	 theses	seven	species,	and	N. confucianus	displayed	high	
abundance.	The	top	35	AROs	distribution	and	abundance	were	dis-
played	 in	 cluster	 heat	map	 (Figure	 7).	 EF-	Tu,	 adeF,	 and	PBP3	har-
bored	 the	biggest	difference	 in	 the	comparison	of	AROs	between	
these	two	groups.	Regarding	the	functions	of	genes	in	the	category	
ARO	 gene	 families,	 the	 resistance-	nodulation-	cell	 division	 (RND)	
antibiotic	efflux	pump	was	associated	with	 the	highest	number	of	
genes,	accounting	for	14.64%	of	the	total	ARO	genes	of	all	samples.	
Moreover,	 the	 difference	 analysis	 of	 antibiotic	 resistance	 genes	
(ARGs)	 showed	 that	 there	was	no	 significant	 difference	 in	 the	 re-
sistance	genes	in	the	gut	microbiota	of	these	two	groups	(ANOVA,	
p =	.558,	Figure	8).

4  |  DISCUSSION

4.1  |  Convergent gut microbial communities of the 
seven sympatric species

The	gut	microbiomes	can	form	a	barrier	to	pathogens	and	partici-
pate	in	vital	physiological	and	immune	processes	like	maintaining	
energy	homeostasis	and	metabolism	(O'Hara,	2006).	The	compari-
son	of	sympatric	species	allows	us	to	study	the	relative	influence	

F I G U R E  2 LDA	distribution	histogram	
at	genus	level.	The	different	colored	bands	
represented	that	the	gut	microbiota	had	
a	difference	between	the	Muridae	group	
and	Soricidea	group
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of	 genetic	 and	 environmental	 factors	 on	 the	 composition	 in	 the	
gut	 microbial	 community	 of	 the	 species	 (Moeller	 et	 al.,	 2012).	
Previous	 researches	have	 shown	 that	 the	dominant	phyla	 exclu-
sively	by	species	living	in	sympatry	spanned	the	four	major	phyla	
of	 gut	 bacteria	 (i.e.,	 Bacteroidetes,	 Firmicutes,	 Proteobacteria,	
and	Actinobacteria)	 (Huttenhower	et	 al.,	 2012;	Yan	et	 al.,	 2020;	
Ye	et	al.,	2016).	Proteobacteria	and	Firmicutes	are	the	most	wide-
spread	phyla	of	gut	microbiota,	and	they	are	commonly	observed	
within	gut	environments	of	many	mammals,	such	as	human,	mouse,	
and	the	ruminant	animal	(Lavrinienko	et	al.,	2018;	Maurice	et	al.,	
2015).	 Our	 results	 displayed	 that	 the	 major	 phyla	 of	 the	 seven	
sympatric	species	were	similar	to	the	previous	studies,	which	were	

Proteobacteria,	 Firmicutes,	 and	 Bacteroidetes.	 Seven	 sympatric	
shared	 partially	 overlapping	 gut	microbial	 communities	 spanned	
the	three	major	phyla	and	some	of	the	most	common	taxonomic	
orders.	 The	 environmental	 factors	 experienced	 exclusively	 by	
these	two	sympatric	groups	had	brought	the	number	of	bacteria	
shared	 by	 2897	 taxonomy	 levels,	 leading	 to	 the	 convergence	 of	
the	relative	abundance	of	bacterial	groups	within	 the	gut	micro-
biota	(Figure	S1).	The	gut	microbiota	of	Muridae	with	the	Soricidea	
converged	in	most	of	the	taxonomic	levels.	There	are	several	pos-
sible	 explanations	 for	 the	 convergence	 of	 the	 gut	microbiota	 of	
these	 seven	 species,	 one	 of	 which	 is	 that	 the	 gut	 bacteria	 can	
be	 shaped	 by	 the	 symbiosis	 environmental	 conditions	 and	 has	

F I G U R E  3 Cluster	heat	map	of	relative	
abundance	at	genus	level.	The	color	of	the	
bar	is	mapped	to	the	abundance	of	genera	
in	gut	microbes.	The	positive	value	is	high	
abundance,	and	the	negative	value	is	low	
abundance
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shifted	between	hosts	of	different	species	(Campbell	et	al.,	2012;	
Yatsunenko	et	 al.,	 2012).	 For	 instance,	 the	gut	bacteria	of	unre-
lated	hosts	in	the	same	family	tend	to	have	similar	bacterial	sets	in	
human	experiments	(Yatsunenko	et	al.,	2012);	and	in	mice,	hosts	
kept	 in	 the	same	cage	also	 tend	 to	 share	gut	bacteria	 (Campbell	
et	al.,	2012).	Sympatric	small	mammals	may	come	into	contact	with	
each	other	accidentally,	which	provides	a	way	for	the	direct	trans-
mission	of	microorganisms	between	individuals.	Another	possible	
source	of	the	convergence	of	the	gut	microbial	community	in	the	
symbiotic	system	is	dietary	overlap	and	biological	characteristics	
of	the	hosts.	Firstly,	host	diet	can	affect	the	presence	or	absence	
and	 relative	 abundance	 of	 the	 gut	microbiota	 (Ley	 et	 al.,	 2008).	
Secondly,	sympatric	species	may	develop	similar	gut	environments	

due	to	their	shared	diet,	which	may	favor	specific	bacterial	compo-
nents	(Ley	et	al.,	2008;	Moeller	et	al.,	2012).

4.2  |  Dominance of the Bacteroidetes in gut 
microbiota of the Muridae group compared with the 
Soricidea group

Our	results	displayed	that	the	main	phyla	had	different	proportions	
in	the	two	groups,	in	which	Soricidea	contained	more	Proteobacteria	
and	 less	 Firmicutes	 and	 Bacteroidetes	 proportions	 than	 Muridae	
(Table	S4).	The	F/B	 (Firmicutes/Bacteroidetes)	 ratio	 in	 the	Murine	
group	was	 twice	 than	 that	 in	 the	Soricidea	group.	 In	other	words,	
Firmicutes	 were	 more	 dominant	 in	 Muridae	 than	 the	 Soricidea	
group.	 The	 F/B	 ratio	 may	 also	 be	 considered	 as	 a	 useful	 obesity	
biomarker	(De	Filippo	et	al.,	2010).	As	members	of	polysaccharide-	
degrading	consortia,	Firmicutes	members	are	associated	with	insolu-
ble	fiber	degradation	(Berry,	2016),	which	contributes	to	the	release	
of	energy	from	dietary	fiber	and	starch,	and	they	are	likely	to	be	a	
major	source	of	propionate	(Thomas	et	al.,	2011).	Characterization	
of	 less	 Bacteroidetes	 has	 also	 been	 reported	 in	 some	mammalian	
species,	 including	 small	mammals	and	carnivorous	 species	 such	as	
bears,	 cheetahs,	 giant	 pandas,	 red	 pandas,	 hedgehogs,	 and	 echid-
nas	(Ley	et	al.,	2008).	Studies	have	shown	that	the	presence	of	few	
Bacteroidetes	was	 not	 common,	 but	 it	 may	 be	 observed	 in	 some	
carnivorous	mammals	 (Hu	et	al.,	2017;	Shinohara	et	al.,	2019).	For	
instance,	 although	 giant	 pandas	 and	 red	 pandas	 are	 herbivores,	
their	bodies	still	retain	the	characteristics	of	carnivorous	ancestors	
such	as	smaller	stomachs	and	alternative	digestive	tracts	(Xue	et	al.,	
2015).	Therefore,	 they	are	not	very	suitable	 for	digesting	bamboo	
(Dierenfeld	et	al.,	1982;	Wei	et	al.,	1999).	Moreover,	previous	studies	
have	shown	that	the	ratio	of	Firmicutes	to	Bacteroidetes	differs	in	

F I G U R E  4 Statistical	analysis	of	data	in	this	study.	(a)	PCoA	plot	indicating	the	microbial	phyla	distribution	between	the	two	groups.	(b)	
NMDS	plot	indicating	the	microbial	phyla	distribution	between	the	two	groups
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TA B L E  2 Summary	of	the	number	of	unigenes	used	for	
functional	annotation

Number of matched 
unigenes Ratio

Unigenes 29,243,519 –	

Functional	Annotation

Annotated	on	KEGG 6,456,428 22.08%

Annotated	on	KO 3,686,189 12.61%

Annotated	on	KO	
number

214,456	(KOs	identified) –	

Annotated	on	pathway 1,553,040 5.31%

Annotated	on	pathway	
number

344	(pathways	identified) –	

Annotated	on	CAZymes 7,671,381 26.23%

Annotated	on	CARD 46,567 0.16%

Annotated	AROs 46163	(AROs	identified) –	
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obese	and	lean	humans,	and	this	proportion	decreases	with	weight	
loss	on	low-	calorie	diet	(Ley	et	al.,	2006).	It	is	therefore	reasonable	
to	surmise	that	the	increase	in	the	F/B	(Firmicutes/Bacteroides)	ratio	

in	the	Soricidea	group,	probably	driven	by	the	high-	fat	and	-	calorie	
digestive	 requirements	 due	 to	 their	 insectivorous	 diet.	 Despite	
the	sympatric	distribution,	 the	difference	 in	 the	abundance	of	gut	

F I G U R E  5 Differential	analysis	of	KEGG	pathways	in	the	two	groups
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microbes	displayed	the	difference	in	the	diet	of	the	host,	which	may	
reduce	the	competitive	pressure	of	the	sympatric	species,	thereby	
facilitating	the	coexistence	of	species	(Bagchi	&	Sankar,	2003).

4.3  |  Species- specific microbiota and different 
abundance of CAZymes may enhance the ability of 
Muridae to extract calories from an herbivorous diet

Gut	bacteria	play	a	key	role	in	the	digestion	of	dietary	polysaccha-
rides	by	producing	a	large	number	of	carbohydrate-	active	enzymes	
(CAZymes)	 that	 the	host	does	not	produce	 (Kaoutari	et	al.,	2013).	
Grains	and	crops	are	concentrated	sources	of	dietary	fiber,	resistant	
starch,	 and	 oligosaccharides	 (Garron	&	Henrissat,	 2019).	 Complex	
carbohydrates	are	converted	into	polysaccharides	through	primary	
degradation,	 and	 then	 into	 oligosaccharides	 (Yadav	 et	 al.,	 2018).	
The	 plant-	derived	 complex	 carbohydrates	 are	 provided	 by	 veg-
etables,	cereals,	fruits,	and	leguminous	seeds,	whereas	the	animal-	
derived	dietary	glycans	are	provided	by	the	cartilage	and	tissue	of	
animals	 (Koropatkin	 et	 al.,	 2012;	 Tasse	 et	 al.,	 2010).	 In	 this	 study,	
the genera Propionimicrobium,	 Coprothermobacter,	 Acutalibacter,	
and Methanohalobium,	 and	 the	 species	 Candidatus Coxiella and 
Methanothrix	were	exclusive	 to	 the	 five	 species	 in	Muridae	group,	
indicating	 that	 the	 presence	 of	 a	 bacterial	 community	 using	 glu-
cose,	 lactose,	 pectin,	 C5	 and	 C6	 sugars,	 and	 acetate	 produced	
high	 levels	 of	 the	 complex	 carbohydrates	 in	 the	 Muridae	 group	
(Flint	et	al.,	2008).	These	bacteria	can	ferment	both	xylan	and	cel-
lulose	 through	 carbohydrate-	active	 enzymes	 such	 as	 xylanase,	

carboxymethylcellulase,	and	endoglucanase	 (http://www.cazy.org).	
The	functional	comparation	revealed	that	functions	related	to	car-
bohydrate	metabolism	and	the	abundance	of	CAZymes	were	signifi-
cantly	more	abundant	in	Muridae	group	(Figure	6).	Therefore,	these	
results	of	functional	profiling	suggested	that	the	gut	microbiota	of	
Muridae	group	often	 took	 advantage	of	 these	digestible	 carbohy-
drates	 as	 its	 main	 energy	 source	 (Gentile	 &	Weir,	 2018),	 and	 the	
herbivorous	diet	in	metabolic	pathways	was	beneficial	to	the	use	of	
carbohydrates	as	fuel	to	sustain	energy	expenditure	for	the	Muridae	
group.	 These	 findings	were	 consistent	with	 the	 fact	 that	 the	 her-
bivorous	Muridae	digested	plants	more	easily	than	the	insectivorous	
Soricidea.

4.4  |  Similar ontologies and concentrations of 
antimicrobial resistance in the sympatric environment

Highly	mobile	wild	 small	mammals	 are	 exposed	 to	man-	made	 an-
tibacterial	 residues,	 and	 can	 acquire,	 carry,	 and	 spread	multidrug-	
resistant	bacteria	(Forsberg	et	al.,	2012;	Hansen	et	al.,	2016).	Based	
on	sequence	alignment	using	a	non-	redundant	CARD	database,	we	
detected	resistance	genes	to	commonly	used	antibiotics	in	the	gut	
bacteria	of	all	 samples	and	 found	 that	 these	seven	species	shared	
all	AROs.	Previous	studies	on	the	impact	of	agricultural	pollution	on	
antimicrobial	resistance	have	shown	that	interactions	with	livestock	
can	 lead	 to	 the	 spread	 of	 antimicrobial	 resistance	 to	wild	 animals	
(Furness	et	al.,	2017).	Moreover,	wild	animals	may	be	exposed	to	nat-
ural	antibiotics	produced	by	bacteria	and	fungi	(Poeta	et	al.,	2007).	

F I G U R E  6 The	detected	CAZymes	in	this	study.	(a)	Relative	abundance	of	carbohydrates.	(b)	Different	composition	of	the	six	CAZymes	
categories	in	gut	microbiota	of	the	two	groups

http://www.cazy.org
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F I G U R E  7 The	top	35	AROs	
distribution and abundance cluster heat 
map.	The	right	vertical	axis	is	the	name	of	
AROs

F I G U R E  8 Plot	of	Tukey's	HSD	for	
differences	in	AROs	of	seven	species
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These	may	be	the	sources	of	resistance	to	these	antibiotics	in	wild	
small	mammals.	In	addition,	there	is	no	significant	difference	in	the	
ARO	carrying	rate	of	the	seven	species.	This	may	be	due	to	the	fre-
quency	of	antimicrobial	resistance	in	wild	animals	is	similar	to	that	in	
residential	environments	(Jardine	et	al.,	2010).

In	sum,	we	present	the	use	of	whole-	metagenome	shotgun	se-
quencing	 to	 analyze	 the	 composition	 and	 functional	 structures	 of	
the	gut	microbiota	 in	 seven	 small	mammals.	Our	 results	displayed	
that	 the	gut	microbial	composition	and	functional	structures	were	
consistent	with	 the	 diet	 of	 species.	 The	 convergence	 observed	 in	
sympatric	species	implies	that	evolutionary	differentiation	of	small	
mammal	 gut	microbiomes	has	been	maintained	by	 the	geographic	
isolation	among	host	species.	We	mapped	the	obtained	sequences	
to	genes	or	pathways	 in	existing	databases,	 such	as	KEGG,	CAZy,	
and	 CARD.	 The	 functional	 annotation	 showed	 that	 herbivorous	
Muridae	gut	microbiota	harbors	more	CAZymes	than	that	of	the	in-
sectivorous	Soricidea.	These	enzymes	participate	in	the	degradation	
and	modification	of	carbohydrates	and	the	formation	of	glycosidic	
bonds.	 Furthermore,	 our	 results	 stress	 the	 importance	 of	 wildlife	
species	 as	bioindicators	 for	ARO	surveillance	programs	 in	 ecosys-
tems.	Comparing	 sympatric	 species	 enabled	 us	 to	 tease	 apart	 the	
influences	of	heritable	and	environmental	factors	on	the	evolution	
of	small	mammal	gut	microbial	communities.	These	results	illustrate	
the	use	of	different	diets	to	resolve	potentially	relevant	host	char-
acteristics,	such	as	geographic	and	phylogenetic	differences,	provid-
ing	nuanced	insights	into	the	manner	by	which	gut	microbes	assort	
among	host	species.
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