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Abstract

The search persists for a safe and effective agent to lyse arterial thrombi in the event of

acute heart attacks or strokes due to thrombotic occlusion. The culpable thrombi are com-

posed either primarily of platelets and von Willebrand Factor (VWF), or polymerized fibrin,

depending on the mechanism of formation. Current thrombolytics were designed to target

red fibrin-rich clots, but may be not be efficacious on white VWF-platelet-rich arterial

thrombi. We have developed an in vitro system to study the efficacy of known and proposed

thrombolytic agents on white clots formed from whole blood in a stenosis with arterial condi-

tions. The agents and adjuncts tested were tPA, ADAMTS-13, abciximab, N-acetyl cysteine,

and N,N’-Diacetyl-L-cystine (DiNAC). Most of the agents, including tPA, had little thrombo-

lytic effect on the white clots. In contrast, perfusion of DiNAC lysed thrombi as quickly as 1.5

min, which ranged up to 30 min at lower concentrations, and resulted in an average reduc-

tion in surface area of 71 ± 20%. The clot burden was significantly reduced compared to

both tPA and a saline control (p<0.0001). We also tested the efficacy of all agents on red

fibrinous clots formed in stagnant conditions. DiNAC did not lyse red clots, whereas tPA sig-

nificantly lysed red clot over 48 h (p<0.01). These results lead to a novel use for DiNAC as a

possible thrombolytic agent against acute arterial occlusions that could mitigate the risk of

hyper-fibrinolytic bleeding.

Introduction

An acute ischemic stroke is a catastrophic event resulting from the occlusion of an artery sup-

plying blood to the brain. Approximately 700,000 cases of ischemic stroke occur in the United

States yearly, resulting in a financial burden of more than US$70 billion [1, 2]. Additionally,

stroke survivors and their families are devastated by the disabling aftereffects, and many

elderly patients admit to fearing survival more than death [1, 3]. Therefore, treatment of an

acute stroke in a safe, efficacious, and expedient manner is a current major priority for the

field.

The goal of ischemic stroke treatment is the expeditious clearance of the occluding throm-

bus to regain perfusion of the downstream vessel bed (reperfusion). The current clinical
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standard for stroke treatment is the use of the intravenous (IV) tissue plasminogen activator

(tPA) [1, 4]. tPA was first discovered in 1947 [5], and was tested with different types of in vitro
assays (e.g. a fibrin plate [6], a circulating plasma system [7]). The high thrombolytic efficacy

of tPA found in in vitro assays led to an in vivo study [8], a small clinical study [9], and large

clinical trials [10–12]. Still, tPA is the only Food and Drug Administration (FDA) approved

thrombolytic agent in the United States [13]. However, patients must receive treatment within

3–4.5 h of the onset of stroke symptoms, and many individuals have contraindications, such as

a recent surgery or bleeding [1, 4]. A clinical study found that tPA has a limited recanalization

rate of less than 30% [14]. Another clinical trial demonstrated a 30% relative risk reduction

versus the placebo in stroke patients, but ultimately, there was no statistically significant

improvement in the overall mortality with use of tPA [13].

tPA is a serine protease that catalyzes the conversion of plasminogen to its active form,

plasmin, in the vicinity of a hemostatic plug. Plasmin then cleaves fibrin, thus breaking

down or lysing the thrombus [4, 15]. However, thrombi causing an arterial occlusion may

not be fibrin-rich, and thus tPA may not be effective in this setting. Arterial thrombi form

under very high shear stress hemodynamics prior to occlusion, and are structurally very dif-

ferent from a fibrin gel [16]. The two major contributors to occlusive stroke are ischemia

from thrombotic occlusion of an atherosclerotic carotid stenosis (either in situ or thrombo-

embolic) or the formation of embolic clots within the heart, such as in patients with atrial

fibrillation (cardioembolic) [4]. Because of the shear-dependent mechanisms of thrombus

formation, these situations likely produce thrombi of very different compositions: high shear

white von Willebrand Factor (VWF)-platelet thrombi in the case of a thromboembolic stroke

and low shear red fibrin clots in the case of a cardioembolic stroke [4, 17–20]. The composi-

tion of the clot may determine the efficacy of a thrombolytic drug. As arterial thrombi are

formed under high shear conditions and are VWF-platelet rich, we hypothesize that tPA

may not be the most efficacious treatment for ischemic strokes of a thromboembolic origin.

In addition, tPA has a high rate of bleeding complications due to the induction of a hyper-

fibrinolytic state, which deter its clinical use [21–23]. Therefore, a great need remains for a

safe and efficacious thrombolytic drug for the treatment of ischemic stroke and myocardial

infarction.

We tested the efficacy of potential novel thrombolytic agents and tPA on VWF-platelet-rich

white thrombi. Additional potential lytic agents were selected based on mechanistic efficacy in

the literature. ADAMTS-13 is the protease that cleaves VWF, the major protein responsible

for capture of platelets under high shear rates, and therefore potentiation of white thrombosis

[20, 24, 25]. Denorme et al. showed the potential use of ADAMTS-13 in acute ischemic stroke

in a FeCl-induced injury mice model [26]. Abciximab inhibits platelet thrombus formation by

blocking the glycoprotein IIb/IIIa through an antibody. Thus, it is considered as an antithrom-

botic drug in general, but also has been used as an adjuvant thrombolytic agent [27, 28]. N-

acetylcysteine (NAC) has been shown to inhibit platelet thrombus formation via the degrada-

tion of plasma VWF multimers [29]. Furthermore, De Lizarrondo et al. demonstrated that

NAC can be used in the thrombolysis of FeCl-induced thrombi [30]. Hastings and Ku (ISTH

2017) reported that NAC lyses platelet-rich thrombi better than do the above-mentioned

thrombolytic agents [31]. However, we have since found a high variability between NAC

batches and the presence of N,N’-Diacetyl-L-cystine (DiNAC) in high-efficacy batches. Thus,

we also explored the use of DiNAC as a thrombolytic agent. DiNAC is the disulfide dimer of

NAC that has been studied for its anti-atherosclerotic effects [32, 33] but not for its use in

thrombolytic therapy. We find that DiNAC has the potential to be a highly efficient, novel

thrombolytic agent.
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Material and methods

Collagen coating

The stenotic glass test sections (inner diameter = 1.5 mm) used in this study were made by the

Chemistry and Biochemistry Glass Shop at Georgia Institute of Technology. The % stenosis by

diameter reduction ranged from 60% to 80%. Fibrillar equine collagen (type I; Chrono-Log

Corporation, Havertown, PA) was diluted 9:1 in NaCl (Sigma-Aldrich, St. Louis, MO) and

incubated in the test section at the stenosis for 24 h in a warm, moist environment [20, 34].

Blood collection

Porcine blood was collected at a local abattoir (Holifield farm, Covington, GA) and did not

require the Animal Care and Use Committees (IACUC) approval. Immediately following

slaughter, the blood was poured into 3.5 U/mL heparin (Thermo Fisher Scientific, Waltham,

MA) or 3.2% sodium citrate (Sigma-Aldrich, St. Louis, MO). Whole blood was gently agitated

using an Orbit LS shaker (Laboratory Supply Network, Atkinson, NH) until perfusion and

used in experiments as soon as possible the same day as collection.

Syringe perfusion

Lightly heparinized whole blood was perfused through the stenotic test section using a syringe

pump. The flow rate was set so that the initial wall shear rate in the stenosis was 3,500 s-1. A

pressure transducer was connected in-line upstream of the stenosis (Fig 1A). A dissecting

Fig 1. The in vitro perfusion system for creating platelet-rich, occlusive thrombi under arterial high shear rates, followed by perfusion of known

and potential lytic agents. A Schematic of the arterial flow setup. B Close-up of the glass capillary tube with stenosis, which is coated with fibrillar

collagen prior to perfusion. The red box denotes the region of interest. C Thrombus formation and subsequent perfusion with a phosphate-buffered

saline (PBS) control, showing no lysis at the end of the experiment.

https://doi.org/10.1371/journal.pone.0247496.g001
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microscope with a camera (PCO-Tech Incorporated, Romulus, MI) was used to capture

images in real-time during perfusion. Blood perfusion continued until the upstream pressure

increased by 30 mmHg (equivalent to an arterial pressure head in vivo) as a result of platelet

thrombus formation in the stenotic section. Perfusion with a syringe pump (constant flow rate

over constant pressure head) ensured that the thrombi were never fully occlusive, allowing

subsequent perfusion for the induction of lysis.

Pharmacologic agents

Recombinant human tPA (Sigma-Aldrich, St. Louis, MO), recombinant human ADAMTS-13

(MyBiosource, San Diego, CA), abciximab (ReoPro was kindly provided by Dr. Kevin Maher

at Emory/CHOA), NAC (Thermo Fisher Scientific, Waltham, MA), and DiNAC (Cayman

Chemical, Ann Arbor, MI) or control (PBS) treatments were perfused for an hour at a flow

rate of 1 ml/min. Agent solutions were made by dissolution or dilution in PBS. The in vitro
flow system setup and image acquisition are shown in Fig 1, and the concentrations of each

agent are detailed in Table 1. Real-time image capture (5 frames per second) of the stenosis

continued throughout treatment perfusion.

Red clot formation and lysis

Platelet rich plasma (PRP) was made by separating citrated whole blood via gravity over a 2 h

period and collecting the supernatant. Separation via gravity was employed instead of centrifu-

gation to avoid platelet damage and activation. Citrated whole blood or PRP was then recalci-

fied with CaCl2 to a final [Ca2+] of 10 mM [35], and 200 ul was transferred into 500 ul

centrifuge tubes and allowed to clot and retract for 30 min. The clot was then incubated with

100 ul of either agent or control solution. The treatment solution was exchanged by removing

the top 100 ul and replacement with fresh solution at 3, 6, 12, 24, and 48 h of incubation. The

weight of the tube was measured immediately post-clot formation and at each timepoint after

removal of old solution and prior to the replacement with fresh solution.

Computational fluid dynamics analysis

Computational fluid dynamics (CFD) was used to calculate the drag force acting on the

thrombi formed in the stenosis under flow. Simulations were performed using Ansys 19.1

(Ansys Inc, PA, USA). Whole blood was assumed to be Newtonian fluid of 3.5 cP and flow was

presumed as laminar, incompressible, steady, continuous, and isothermal due to the low Rey-

nolds number (Re = 16). The capillary tube was modeled with no-slip walls and 1 ml/min flow

rate was applied at the inlet with zero-pressure at the outlet, reflecting experimental condi-

tions. Mesh convergence was achieved at 3.8 million tetrahedral cells yielding a residual error

of 10−9.

Table 1. Agent concentration and replicate number.

Agent Concentration Number of replicates

DiNAC 0.02 mM, 0.2 mM, 2 mM, 20 mM, 20# mM 8, 8, 9, 8, 8

NAC 2 mM, 20 mM 7, 5

tPA 20 μg/mL 4

ADAMTS-13 1 μg/mL 4

Abciximab 35 μg/mL 4

PBS - 10

https://doi.org/10.1371/journal.pone.0247496.t001
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Data analysis

The thrombi surface area (colored green) was calculated using manual pixel counting in the

open-source GNU Image Manipulation Program (GIMP, Version 2.10.8, 1995–2018). Surface

area reduction was calculated by % pixel reduction versus the occlusion image. One-way analy-

sis of variance (ANOVA) with the Tukey’s post hoc test was used to test for statistical differ-

ences between groups using Prism 9 (GraphPad Software, San Diego, CA). Statistical

significance was set at p< 0.05. Data are displayed as mean with error bars denoting standard

error of the mean (SEM).

Results

DiNAC is a more efficacious thrombolytic agent than NAC against arterial

white clots

Initial perfusion with NAC showed promising lytic results [31]. However, replicate perfusion

experiments with solutions made with NAC yielded inconsistent results with minimal lysis.

To further investigate this contradiction, we analyzed the initial solutions with high throm-

bolytic efficacy using mass spectrometry and found a large peak of DiNAC (S1 and S2 Figs).

We then hypothesized that DiNAC, and not NAC, could be the potential thrombolytic agent

capable of platelet-rich white thrombi lysis, which would also account for the inconsistencies

in reports of efficacy of NAC in the field [36, 37]. To test this hypothesis, we modified our

stenotic capillary tube model, which potentiates VWF- and platelet-rich white thrombi in an

arterial setting on a collagen-coated stenosis [16, 20, 34] to test lysis of occlusive white

thrombi (Fig 1) and perfused low (2 mM) and high (20 mM) concentrations of NAC and

DiNAC solutions. Assuming a Poiseuille flow and uniform thrombi growth from the glass

wall, > 80% occlusive white thrombi by area will result in a 30 mmHg pressure gradient.

DiNAC, but not NAC, achieved thrombolysis over 60 minutes of perfusion (Fig 2A–2D). 2

mM and 20 mM DiNAC lysed most of the thrombi (> 95%) within 14 min and 1.5 min,

respectively (Fig 2A and 2B). In contrast, NAC perfusion resulted in minimal lysis (Fig 2C

and 2D, S1 Movie). DiNAC showed a significantly higher thrombus surface area reduction

than NAC after 60 min of perfusion (Fig 2E and 2F) for both concentrations (2 mM

p< 0.001, 20 mM, p< 0.01).

A video of the DiNAC lysis is provided as “S2 Movie.” Large pieces of the thrombus break

off dramatically as it lyses, but the embolizing sections are sometimes tethered by long string-

like structures that eventually release.

DiNAC dose response

To confirm the efficacy of DiNAC, we tested the dose response at increasing concentrations of

0.02, 0.2, 2, and 20 mM. The thrombus area reduction was dependent on the concentration of

DiNAC (Fig 3). The reduction was the highest at 2 mM (71 ± 20%) and slightly decreased at

the highest concentration of 20 mM (59 ± 12%), though this was not significantly different

(p = 0.86). Perfusion with the lowest concentration of 0.02 mM DiNAC was not significantly

different from the control, but 0.2 mM showed a significantly decreased thrombus area

(46 ± 15%, p = 0.02< 0.05). We also found that the 20 mM DiNAC solution was acidic (pH�

2), while 2 mM DiNAC was neutral (pH = 7). Considering the practical use of the DiNAC as a

thrombolytic in a clinical setting, we neutralized the 20 mM DiNAC with sodium bicarbonate

to a final pH = 7. Neutralization of 20 mM DiNAC reduced the variance from 47% to 12% in

surface area reduction (44 ± 47% vs 59 ± 12%, p = 0.77, Fig 3).
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The effect of other thrombolytic agents on platelet-rich white clot

Perfusion with phosphate-buffered saline (PBS; negative control) for 60 min reduced the

thrombus surface area by 9 ± 12% (Fig 1C and see S3 Movie). Perfusion for 60 minutes with

0.02 mg/ml tPA reduced the thrombus surface area by 23±4% (Fig 4A and see S4 Movie),

Fig 2. Perfusion with DiNAC and NAC. Thrombus surface area was determined by pixel counting and is shown in paired images below originals, with

thrombus area highlighted in green. A 2 mM DiNAC perfusion showing complete (> 95% surface area reduction) lysis in 14 min. B 20 mM DiNAC

perfusion showing complete lysis in 1.5 min. C 2 mM NAC perfusion, with minimal lysis (< 20% surface area reduction) after 60 min. D 20 mM NAC

perfusion after 60 min, again with minimal lysis even at increased concentration. E Thrombus area reduction over time. Phosphate-buffered saline

(PBS) is included as a negative control (black line). F Thrombus area after 60 min perfusion with the indicated agent (x-axis). 2 mM and 20 mM

DiNAC cause significantly more lysis than the control, while neither concentration of NAC was more efficacious than PBS. DiNAC was also

significantly different than NAC at each concentration. � p< 0.05; �� p< 0.01; ��� p< 0.001; ���� p< 0.0001.

https://doi.org/10.1371/journal.pone.0247496.g002
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demonstrating a weak thrombolytic effect relative to DiNAC. Perfusion with ADAMTS-13

reduced the thrombus area by 19±8% (Fig 4B and see S5 Movie), and perfusion with Abcixi-

mab resulted in a reduction in thrombus area of 22±11% (Fig 4C and see S6 Movie). None of

these three agents were significantly different than the control (Fig 4E and 4D: tPA, p = 0.43;

ADAMTS-13, p = 0.52; Abciximab, p = 0.31).

DiNAC does not lyse fibrin clots

Clinical use of tPA is associated with bleeding risks due to the induction of a systemic hyper-

fibrinolytic state [21–23]. We generated fibrinous red clots by re-calcifying citrated whole

blood or PRP under stagnant conditions and applied agents to quantify thrombolytic efficacy.

PRP was included to determine if any platelet-specific interactions by agents may be occurring

as the increase in platelet concentration creates clots with greater platelet density. Only tPA

demonstrated significant thrombolytic efficacy on clots formed in these conditions (Fig 5).

tPA significantly reduced both clot volume and weight over the course of 48 h (p< 0.01) com-

pared to the control. In contrast, the other agents (DiNAC, NAC, and ADAMTS-13) did not

cause any reduction in clot size nor volume. Abciximab was expected to have a less bleeding

risk unless used with anticoagulation therapy [38] and excluded due to a limited supply. Coag-

ulated red clots generally form under low shear rate conditions such as in veins or bleeding.

The lack of lytic efficacy on clots formed under stagnant conditions suggests that DiNAC may

mitigate the life-threatening risk of hemorrhage associated with current tPA thrombolytic

therapy.

Platelet-rich thrombi elongate and break during DiNAC thrombolysis

Treatment with DiNAC lyses the intact white thrombus by causing it to break apart in frag-

ments. The fragments were typically towards the center of the lumen, and away from the wall,

and often remained tethered to the main body of the thrombus. The string-like tails stretched,

Fig 3. DiNAC dosage response with concentrations of 0.02, 0.2, 2, and 20 mM. The # denotes the acidic DiNAC 20 mM solution. A Thrombus area

reduction over time. The control is shown in black. 0.02 mM DiNAC was not different from the control (yellow), and 2 mM DiNAC (orange) had the

greatest efficacy B Thrombus area after 60 min perfusion with increasing concentrations of DiNAC. Concentrations of 0.2 mM and greater were

significantly different from the control. Neutralization of DiNAC mitigated variability and increased the surface area reduction (20 vs. 20� mM). �

p< 0.05; ��� p< 0.001; ���� p< 0.0001.

https://doi.org/10.1371/journal.pone.0247496.g003
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yet in some cases persisted for several minutes, before eventual breakage, releasing the frag-

ments to wash downstream (Fig 6A and see S7 Movie).

The flow conditions during the thrombi lysis via fragmentation were modeled using CFD

(Fig 6B) to quantify the shear stresses and drag forces on the fragments. High-velocity jet-like

flow was seen in the stenosis with recirculation downstream (Fig 6C). The elongated thrombi

and fragment tails are visualized in gray in Fig 6C. Shear rate was maximal at the stenosis

reaching over 15,000 s-1 while shear rates of approximately 4,000–8,000 s-1 acted on the surface

of thrombus downstream (Fig 6D). The total drag force was 380 nN for a simulated thinner

fragment and 780 nN for a simulated larger fragment (Fig 6E). Thus, the net attachment force

of the tethers needs to be greater than 380,000 pN, suggesting that the thrombus is held by

many thousands of bonds.

Fig 4. Thrombolysis with the other agents. Thrombus area is highlighted in green. A tPA, B ADAMTS-13, and C abciximab perfusion showed

minimal lysis after 60 min. D Thrombus area reduction over time. E Thrombus area after 60 min perfusion with the indicated agent (x-axis). Perfusion

of tPA, ADAMTS-13, and abciximab had no effect on white clot, with no differences from the control.

https://doi.org/10.1371/journal.pone.0247496.g004
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Discussion

DiNAC, but not NAC, demonstrated the ability to completely lyse platelet-rich thrombi under

perfusion in an arterial setting. These thrombi formed in the setting of arterial shear rates over

fibrillar collagen are composed of VWF and platelets [16, 19]. Other agents, such as tPA,

ADAMTS-13, and abciximab showed a limited ability to achieve VWF-platelet thrombus lysis

and did not reduce thrombus surface area any no more than the PBS control.

tPA achieves thrombolysis by converting plasminogen to plasmin, which in turn, cleaves

fibrin. This process requires the presence of endogenous plasminogen and takes some time in

the local setting for the kinetics of biochemical reactions to occur [39, 40]. We were therefore

concerned about the efficacy of tPA against VWF-platelet white clots where fibrin may be less

structural to the clot, and in the arterial setting where high flow rates may inhibit enzymatic

reactions due to the dominance of convection. Indeed, tPA has produced mixed results against

ischemic strokes from clinical arterial occlusions [41]. Post-analysis of occlusive thrombi from

Fig 5. Lysis results on fibrin clots formed under stagnant conditions (n = 3 per agent). DiNAC and NAC were tested at a concentration of 2 mM. A

Whole blood clot lysis over 48 h. tPA showed a large decrease in clot volume. B PRP clot lysis over 48 h. tPA again showed a large decrease in clot

volume. C and D Whole blood and PRP clot weight change over 48 h. tPA lysed clots resulting in a weight change significantly different from baseline

after 6 h for whole blood and 12 h for PRP (26% and 36% reduction, respectively, ��p< 0.01). DiNAC, NAC, and ADAMTS-13 had no effect on red

clots, with no differences from baseline nor control.

https://doi.org/10.1371/journal.pone.0247496.g005
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patients have been unable to determine a correlation between origin and composition. Marder

et al. examined 25 thrombi retrieved from the cerebral circulation of patients and did not find

consistency among the suspected etiologies and compositions, but they demonstrated a large

variety of structural components [4, 42]. However, because of flow cessation, coagulation cas-

cades that may not have caused the occlusive event are likely triggered post-occlusion in the

vicinity of the original culprit thrombus.

We did observe some lysis of VWF- and platelet-rich thrombi under tPA perfusion. tPA

may lyse these thrombi more efficaciously with the addition of circulating plasminogen to the

system. Tersteeg et al. suspected that plasmin is a possible back-up enzyme for ADAMTS-13.

They found that plasmin indeed possesses some ability to degrade platelet-VWF complexes

[43]. We were surprised that ADAMTS-13 did not seem to have a thrombolytic effect on the

occlusive thrombi. ADAMTS-13 is a metalloprotease that reduces VWF adhesion by cleavage

of ultra-large VWF multimers [21, 44] and porcine VWF has same cleavage site (A2) as

Fig 6. Simulation of flow and force through the stenosis using Computational Fluid Dynamics (CFD). A Structure of a thrombus during elongation

and breakage at 0, 15, and 30 minutes of DiNAC perfusion. Black arrows denote points of tether breakage. B Computer model of the attached thrombus

fragments at 15 min. C Velocity streamlines showing a jet-like flow and recirculation downstream of the elongated thrombus colored in gray. D Shear

strain rate around the thrombus. A maximum shear of 15,000 s-1 (red) was observed in the throat of stenosis. E Drag force acting on the thrombi

surface. The thrombus 2 fragment experiences a maximum force of> 4 nN.

https://doi.org/10.1371/journal.pone.0247496.g006
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human VWF [45]. ADAMTS-13 has been shown to have some antithrombotic activity in vivo
with potential as a thrombolytic agent [21, 26]. ADAMTS-13 may require the VWF molecule

be under tension to work. In the static clot, the normal length VWF may not be forcefully

stretched for ADAMTS-13 cleavage [46, 47]. Steric hindrance might also prevent penetration

of ADAMTS-13 (molecular weight 190 kDa) into the thrombus compared with a small mole-

cule like DiNAC (molecular weight 324 Da). In a study by Crescente et al., both tPA and

ADAMTS-13 were shown to reduce thrombus size (by 53.2% and 62.3%, respectively) after a

60 min treatment [21]. That model used the FeCl3 injury to induce the thrombus in vivo and

also involved treatment with a higher concentration of ADAMTS-13 (4 μg/mL), which may

account for the differences in our results. Our trials were limited in concentration by the level

of ADAMTS-13 in normal plasma (1 μg/mL) [48] due to the prohibitively high cost of

ADAMTS-13. The cost could ultimately limit its clinical use. Abciximab has been shown to

have a positive effect as an adjuvant to thrombolytic therapy, as it inhibits the heightened plate-

let activation and aggregation observed in patients treated with tPA [27, 28]. We did not see a

significant thrombolytic effect with abciximab alone. In the future, testing abciximab together

with other agents may be informative. Lysis/reperfusion studies post myocardial infarction

have been previously performed in domestic pigs, suggesting this model is relevant [49]. How-

ever, species differences between human and porcine blood response may exist.

NAC is known to reduce mucin multimers, and VWF is strikingly similar to mucins in

structure [29, 50]. NAC is currently used as a treatment for chronic obstructive lung disease

and acetaminophen overdose. Chen et al. demonstrated VWF degradation by NAC, leading to

our use of this agent in the present study [29]. De Lizarrondo et al. showed the potential use of

NAC as a thrombolytic agent using an in vivo mice model [30], but they found limited reperfu-

sion with NAC treatment alone (< 40%).

We found high thrombolytic efficacy of DiNAC. The marked ability of DiNAC, and not

NAC, to lyse platelet thrombi is a surprising discovery. DiNAC is a disulfide dimer of two

NAC monomers, that has previously been studied for its anti-atherosclerotic effects [32, 33].

DiNAC showed a dose-response effect for concentrations of 0.02, 0.2, and 2 mM, but showed

slightly decreased thrombolytic efficacy at 20 mM. The 20 mM DiNAC solution was very

acidic and had high variability in efficacy. The variability was attenuated by neutralization.

Thrombolysis by DiNAC created macroscopic fissures in the thrombus body, followed by the

formation of tethered fragments and finally an eventual break with tolerable micro emboli

passing downstream. The initial fracture is away from the wall, suggesting that the point of

lysis is not a collagen bond. The strings are presumably VWF since the length is on the order

of a millimeter. We quantified the drag force on thrombi fragments to be between 380 and 780

nN. To hold the thrombi in place would require approximately 3,800 to 7,800 bonds from

either GpIba [51] or GpIIb/IIIa at ~100 pN/bond, consistent with our prior estimates of the

number of bonds need to grow the thrombus [52]. The mechanism of thrombolysis of white

clot by DiNAC is an interesting topic as DiNAC does not contain a free thiol, which is essential

for NAC to cleave VWF multimers [29] or any other blood components that has sulfide bonds

which could limit delivery of NAC to VWF. Instead, DiNAC has a sulfide bond that can be

reversed to two thiols [53]. Thus, DiNAC may be delivered into the clot and converted to two

NACs before reacting with VWF, or there could be a new reaction that induces switching

between two disulfide bonds. We leave this topic for a future study.

Clots may form via different mechanisms, thus with different resulting morphologies, and

different relative content of fibrin v. VWF. Thus, different types of clot may require different

thrombolytic agents. Hyper-fibrinolytic states induced by thrombolytic treatment are associ-

ated with increased mortality in many disease etiologies. We therefore performed studies of in
vitro red clot lysis under static conditions over 48 h with the same agents. Only tPA showed
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significant thrombolytic efficacy on fibrin clots, dissolving the clot with an approximate front

speed of 3.5 μm/min that is comparable to the other in vitro fibrinolytic assays [54, 55]. The

other agents, including DiNAC, did not show any significant red clot lysis. Thus, DiNAC may

not cause severe bleeding, which has limited the use of tPA in patients due to iatrogenic hyper-

fibrinolysis. The limited effect of DiNAC on PRP clots, which would have greater platelet con-

centration than those formed with WB, suggests that DiNAC is not reacting with platelets, but

may be interacting with VWF or the VWF-platelet bond to achieve thrombolysis.

This study is limited in some ways. Heparin was used to block coagulation in whole blood

samples used for creation of white clots to minimize the cross-effects against VWF and plate-

lets seen frequently with citrate. Heparin is an indirect thrombin inhibitor, and therefore

allows high shear platelet-rich thrombi to form uninhibited but may have other small down-

stream effects on clot formation. Porcine whole blood was used and may have species differ-

ences with human whole blood, though we expect these to be minimal [56]. ADAMTS-13 and

abciximab may have had a limited thrombolytic efficacy in porcine blood compared to human

blood. The thrombi were viewed top-down through the test section, and the 2-dimensional

area was estimated by pixel counts that does not measure the volume distribution. Other 3-D

high-resolution imaging techniques in real time may reveal the location of fractures to provide

different insights into thrombus lytic mechanisms. Our experiments were not performed on

mature clots that may have contracted, reducing porosity. Small reductions in surface area

over 30 minutes were observed in the negative controls, which may at least partially represent

concomitant contraction during agent perfusion. Although there was mixing between whole

blood and agents right after switching the syringe, the lack of added plasma may have hindered

the potential effect of tPA (plasminogen) or ADAMTS-13 (calcium ions). This model also

requires prohibitively expensive amounts of ADAMTS-13. In the future, an in vivo model

could be used to impose more physiologic conditions and examine toxicity. A mouse in vivo
and microfluidic in vitro models that require less volume could be used to further study

ADAMTS-13 lysis. In this study, we focused on reporting the efficacy of agents, while future

work exploring mechanisms behind the thrombolytic behavior of DiNAC may be a commu-

nity endeavor. Interactions between VWF-DiNAC and VWF-platelet-DiNAC are left for a

future study. We also leave the challenge of delivery to completely occluded sections for future

investigation.

Conclusions

DiNAC, and not NAC, was highly efficacious in the lysis of VWF-platelet-rich thrombi created

in a stenotic coronary artery analog system perfused under high shear stress. Other agents

demonstrated a limited ability to lyse arterial thrombi in this setting, including tPA and

ADAMTS-13. DiNAC was unable to lyse red fibrinous clot in a stagnant setting, while tPA was

highly efficacious in the latter system. These results indicate the possibility of DiNAC as an

effective thrombolytic agent against arterial occlusions, with the potential to mitigate life-

threatening side effects of hemorrhage associated with current thrombolytic therapies.
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S1 Fig. Mass spectrometry result of DiNAC.
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S2 Fig. Mass spectrometry result of NAC.
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S1 Movie. High shear white thrombus formation and subsequent NAC perfusion.
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S3 Movie. High shear white thrombus formation and subsequent PBS perfusion.
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S4 Movie. High shear white thrombus formation and subsequent tPA perfusion.
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S5 Movie. High shear white thrombus formation and subsequent ADAMTS13 perfusion.
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