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ABSTRACT The honeybee possesses a limited number of bacterial phylotypes that play
essential roles in host metabolism, hormonal signaling, and feeding behavior. However,
the contribution of individual gut members in shaping honeybee brain profiles remains
unclear. By generating gnotobiotic bees which were mono-colonized by a single gut bac-
terium, we revealed that different species regulated specific modules of metabolites in
the hemolymph. Circulating metabolites involved in carbohydrate and glycerophospholi-
pid metabolism pathways were mostly regulated by Gilliamella, while Lactobacillus Firm4
and Firm5 mainly altered amino acid metabolism pathways. We then analyzed the brain
transcriptomes of bees mono-colonized with these three bacteria. These showed distinc-
tive gene expression profiles, and genes related to olfactory functions and labor division
were upregulated by Lactobacillus. Interestingly, differentially spliced genes in the brains
of gnotobiotic bees largely overlapped with those of bees unresponsive to social stimuli.
The differentially spliced genes were enriched in pathways involved in neural develop-
ment and synaptic transmission. We showed that gut bacteria altered neurotransmitter
levels in the brain. In particular, dopamine and serotonin, which show inhibitory effects
on the sensory sensitivity of bees, were downregulated in bacteria-colonized bees. The
proboscis extension response showed that a normal gut microbiota is essential for the
taste-related behavior of honeybees, suggesting the contribution of potential interactions
among different gut species to the host’s physiology. Our findings provide fundamental
insights into the diverse functions of gut bacteria which likely contribute to honeybee
neurological processes.

IMPORTANCE The honeybee possesses a simple and host-restricted gut community
that contributes to the metabolic health of its host, while the effects of bacterial
symbionts on host neural functions remain elusive. We found that the colonization
of specific bee gut bacteria regulates distinct circulating metabolites enriched in car-
bohydrate, amino acid, and glycerophospholipid metabolic pathways. The brains of
bees colonized with different gut members display distinct transcriptomic profiles of
genes crucial for bee behaviors and division of labor. Alternative splicing of genes
related to disordered bee behaviors is also mediated. The presence of gut bacteria
promotes sucrose sensitivity with major neurotransmitters being regulated in the
brain. Our findings demonstrate how individual bee gut species affect host behav-
iors, highlighting the gut-brain connections important for honeybee neurobiological
and physiological states.
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The honeybee has been widely used as a model animal for perception, cognition,
and social behavior studies (1). As eusocial insects, honeybees have distinct behav-

ioral structures characterized by a complex range of interactive behaviors within the
hive. These sophisticated behaviors rely heavily on sensory sensitivity. For example, it
is critical for foraging bees to perceive visual, olfactory, gustatory, and mechanosensory
cues at feeding sites (pollen and nectar sources). Bees can also use social information
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to recognize nestmates and avoid potential predators, behaviors which also depend
on sensory systems (2). To study the neurobiology and behavioral physiology of hon-
eybees, a set of established methods is available to quantify their sophisticated behav-
iors, such as sensory responsiveness, associative appetitive learning and memory, and
hive behavioral observation (3). It has been documented that nutrients such as carbo-
hydrates, amino acids, and lipids are required for normal behaviors (4). Cognitive per-
formance can be impaired due to polyunsaturated fatty acid deficiency (5). Moreover,
behavioral shifts are associated with changes in brain gene expression levels in honey-
bees (6, 7). Neurotransmitters, such as biogenic amines, have an arousing effect on
sensitivity to sensory inputs, learning performance, and foraging behavior (8).

The bidirectional microbiota-gut-brain axis influences various complex aspects of
behavior across the animal kingdom. The gut microbiota can modulate homeostasis
and behavior in its animal host through chemical communication with the nervous sys-
tem. Previous studies have suggested that the honeybee gut microbiota contributes to
host brain physiology and behavior phenotypes. Specifically, the gut microbiota can al-
ter endocrine signaling and thus sucrose sensitivity in honeybees (9), as well as nest-
mate recognition involving cuticular hydrocarbon profiles (10). The levels of biogenic
amines (serotonin, dopamine, octopamine) implicated in bee behaviors are lower in
newly emerged bees, which have an immature gut community (11).

Like mammals, honeybees harbor a highly specialized but simple gut microbiota that
has evolved specific interactions with the host. The gut community of honeybees is domi-
nated by 8 to 10 bacterial phylotypes comprising over 97% of the community (12–14).
Gilliamella, Snodgrassella, Bifidobacterium, Lactobacillus Firm4 and Firm5, and Bartonella are
the major bacterial phylotypes, and can be cultivated in the laboratory. Recently, the causal
roles of honeybee gut bacteria in host nutrition, weight gain, and endocrine signaling have
been extensively studied (15), and these studies benefit from the availability of microbiota-
free (MF) bees (9, 16). In particular, Gilliamella, Bifidobacterium, and Lactobacillus Firm5 can
degrade diet polysaccharides in the honeybee gut, which might assist pollen perforation,
resulting in the release of nutrient-rich content (17–19). In addition, interspecies interactions
facilitate carbohydrate metabolism and amino acid synthesis, thus benefiting the host (18,
20). Untargeted metabolomics have revealed that a plethora of organic acids accumulate in
the presence of gut bacteria, which may have pivotal functional consequences for the host’s
physiology (16, 18). Indeed, the gut microbiota affects the host metabolism in both the gut
and the hemolymph (9, 16). It has been shown that the honeybees with a conventional (CV)
gut microbiota are more sensitive to sugars and possessed increased levels of insulin-related
genes (9). However, a detailed understanding of how specific honeybee gut members con-
tribute to host behavior and neurological processes is needed.

Here, we established gnotobiotic bees mono-colonized with different gut bacteria
to disentangle the distinct roles of honeybee gut members on the host’s metabolism
and neurological functions. Multiomics analysis revealed that gut bacteria impact circu-
lating metabolic profiles and transcriptional programs in the brain. Our results showed
that the presence of specific gut bacteria was sufficient to alter neurotransmitter con-
centrations and promote host perception and cognition.

RESULTS
Gut bacteria alters circulating metabolomic profiles. To reveal microbiota-induced

circulating metabolome changes, we colonized newly emerged bees with six honeybee
core gut bacteria, Gilliamella apicola (Gi), Bifidobacterium asteroides (Bi), Snodgrassella alvi
(Sn), Lactobacillus Firm4 (F4) and Firm5 (F5), and Bartonella apis (Ba) (Fig. 1A and Fig. S1 in
the supplemental material). Then, we performed quasi-targeted metabolomics analysis of
hemolymph samples from gnotobiotic bees. In total, we identified 326 metabolites among
different bee groups (Table S1 in the supplemental material). Orthogonal partial least
squares discriminant analysis (OPLS-DA) showed that the metabolic signatures of hemo-
lymph samples were significantly different between groups (Fig. 1B). To associate clusters
of metabolites highly correlated with particular gut members, we performed weighted
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correlation network analysis (WGCNA). Bees inoculated with different gut microbes were
used as the sample traits. Based on interaction patterns among the 326 metabolites,
WGCNA clustered them into eight modules (M) (Table S2). Interestingly, only three modules
(red, pink, and black) were significantly correlated with bees mono-colonized by Gilliamella,
Lactobacillus Firm4, and Lactobacillus Firm5 (P, 0.01; Fig. 1C).

The relatedness of bacteria-colonized groups with significantly altered metabolites
often comprises an intramodular connectivity within the network module. The red and
pink M were significantly associated with the Gilliamella group. The metabolites that
comprised the red and pink M were mainly involved in carbohydrate, glycerophospho-
lipid, and amino acid metabolism (Fig. 2A). Specifically, the primary driving metabolites
from the red M were glycerophosphocholine, choline, and glycerol-3-phosphocholine,
which are involved in the glycerophospholipid metabolism pathways (Fig. 2B). In the
pink M, the significantly related metabolites were sucrose, trehalose, galactinol, glu-
cose, and isomaltose, which are enriched in carbohydrate metabolism (Fig. 2C). This is
consistent with the potential of G. apicola for carbohydrate metabolism in the gut (17,

FIG 1 Hemolymph metabolome influenced by different honeybee gut community members. (A) Experimental design: newly emerged bees
were either kept microbiota-free (MF) or mono-colonized with one bacterial isolate of each of the six species separately. Hemolymph and
brain samples were collected for further analysis on day 7. (B) Orthogonal partial least squares discriminant analysis (OPLS-DA) based on all
metabolites detected in the hemolymph of bees. Group differences were tested by permutational multivariate analysis of variance
(PERMANOVA). (C) Weighted correlation network analysis identified eight modules (M) of metabolites highly correlated with different bee
groups. Color names represent metabolite modules assigned by the WGCNA pipeline. Heatmap colors indicate positive/negative Spearman’s
correlation coefficients. Correlation coefficients and P values are shown within the squares (yellow font, P , 0.01). Gi, Gilliamella apicola; Bi,
Bifidobacterium asteroides; Sn, Snodgrassella alvi; F4, Lactobacillus Firm4; F5, Lactobacillus Firm5; Ba, Bartonella apis.
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FIG 2 Hemolymph metabolic profile altered by Gilliamella. (A) Network diagrams of differential metabolites in the red and pink M.
Circle colors indicate different classes of metabolites in each module. Circle size is proportional to the total abundance of metabolites

(Continued on next page)
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18). When we reanalyzed published metabolomic data obtained from the guts of
mono-colonized bees (16), we found that certain pathways, including purine metabo-
lism, glycolysis/gluconeogenesis, and alanine, aspartate, glutamate, glycine, serine, and
threonine metabolism, were stimulated in both hemolymph and gut samples by the
colonization of Gilliamella (Fig. 2D and Fig. S2A).

Both Lactobacillus Firm4 and Firm5 were significantly correlated with the black M of
metabolites enriched in amino acid metabolism (Fig. 3A). Interestingly, the most-related
circulating metabolite, homovanillic acid (Fig. 3B and C), is an index of brain dopamine
metabolism for assessing neurologic and psychiatric illnesses, such as Parkinson’s and
Huntington’s diseases (21–23). Pathways including lysine degradation and pyrimidine,
tryptophan, and purine metabolism were consistently upregulated in the hemolymph
and gut of F4- and F5-colonized bees (Fig. 3D and Fig. S2B–C). Altogether, these data
indicate that distinctive gut members regulate specific metabolic pathways.

Gut bacteria impact gene expression in the brain. We have shown that metabo-
lites in the circulatory system are regulated by honeybee gut bacteria. These small mole-
cules can influence gene expression and neuronal function in the brain (24). Since the
hemolymph metabolome was only modulated in bees colonized with Gi, F4, and F5, these
three groups were used for brain transcriptome analysis. Our data revealed that 713 genes
in total were differentially expressed in bees colonized with gut members compared to MF
bees (jlog2-fold changej .1, false discovery rate [FDR] , 0.05, Table S3), and different bee
groups exhibited distinctive brain gene expression profiles (Fig. S3A). Specifically, the heat
shock protein gene (loc410620) was upregulated in the Gi group (Fig. 4A). The odorant-
binding protein gene Obp14 was upregulated both in the F4 and F5 group (Fig. 4B and C).
Insect odorant-binding proteins are essential for detection and distinguishing of specific
odors (25). In addition, several mrjp family genes of the major royal jelly protein (MRJP)
encoded in the A. mellifera genome were significantly upregulated in the F4 and F5 groups,
while bees colonized with Gilliamella exhibited decreased expression ofmrjp genes (Fig. 4A–
C). MRJPs have polyfunctional properties and participate in all major aspects of eusocial
behavior in honeybees, such as caste determination and age polyethism (26).

Enrichment analysis of differentially expressed genes determined that KEGG path-
ways, including those for alpha-linolenic, arachidonic acid, linoleic, vitamin, and glycer-
ophospholipid metabolism, were upregulated in the brains of F4 and F5 groups
(Fig. 4D). The glycolysis/gluconeogenesis and glucagon signaling pathway, which is
critical for brain physiology as it provides the fuel for brain functions (27), was only up-
regulated in bees colonized with Gilliamella. A KEGG pathway involving RNA processing
by the spliceosome was upregulated in Gi and F4 bees. These results showed that the
transcriptomic programs were differentially altered in the bacteria-colonized groups.

We then performed Pearson correlation analysis to analyze the relationship
between gene expression and the metabolites which are significantly regulated by Gi,
F4, and F5 separately (Fig. S3B–D). In the Gi group, carbohydrate metabolites showed
significantly positive correlations (P , 0.05) with upregulated genes in the brain, while
metabolites involved in glycerophospholipid metabolic pathways showed significantly
negative correlations with those genes (Fig. S3B). In the F4 and F5 groups, fexofena-
dine, cholesteryl sulfate, and 29-hydroxy-59-methylacetophenone showed significantly
positive correlations with upregulated genes in the brain, while homovanillic acid and
gamma-caprolactone showed significantly negative correlations with those genes
(Fig. S3C–D). These results suggest that upregulated genes in the brain were correlated
with specific metabolites altered by different gut bacteria, indicating the potential
roles of circulating metabolisms in host-bacteria interactions.

Gut bacteria impacts alternative splicing of genes in the brain. Shpigler et al.
(28) have reported that the gene expression signatures of honeybees with disordered

FIG 2 Legend (Continued)
in each module. (B to C) Correlation analysis between metabolite-module connectivity (x axis) and metabolites significantly correlated
with the Gi group (y axis): (B) red M and (C) pink M. (D) The most significantly enriched KEGG pathways upregulated in the
hemolymphs of Gilliamella-inoculated bees.
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FIG 3 Hemolymph metabolic profile altered by Lactobacillus Firm4 and Firm5. (A) Network diagram of differential metabolites in the black M. Circle
colors indicate different classes of metabolites in each module. Circle size is proportional to the total abundance of metabolites in each module. (B to C)
Correlation analysis between metabolite-module connectivity (x axis) and metabolites significantly correlated with different bee groups (y axis): (B) black
M with F4 group and (C) black M with F5 group. (D) The most significantly enriched KEGG pathways upregulated in the hemolymph of Lactobacillus
Firm4- and Firm5-inoculated bees.
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social behaviors are significantly enriched for human autism spectrum disorder (ASD)-
related genes. Likewise, the differentially expressed genes in bacteria-colonized bees
overlapped with those from human ASD patients (Fig. 4E), implying the involvement
of gut microbiota in host behaviors. However, the differentially expressed genes pres-
ent in the SFARI data set did not overlap the gene set for bees with disordered behav-
iors, as defined by Shpigler et al. (28).

Voineagu et al. (29) have shown that dysregulation of alternative splicing (AS) in
ASD-related genes is also associated with the psychiatric disorder. Given evidence for
spliceosome alterations, we investigated whether gut bacteria-colonized bee brains
showed different AS events compared with those of MF bees. rMATS analysis of alter-
native splicing events of brain genes detected a total of 18,985 events in 4,929 genes,
and skipped exon (SE) was the most abundant of the different types of AS. About 10 to
25% of events for each type of AS showed significantly different inclusion rates in bac-
teria-colonized bees (Fig. S4A). The relative abundance of different AS event types was
similar across bee groups (Fig. S4A). However, the UpSet plot shows that the vast ma-
jority of events do not intersect between sets, indicating that multiple AS events can
occur in a single gene and that the gut members cause different events (Fig. S4B).

Next, we examined the overlap of genes showing significantly differential AS events
between MF and bacteria-colonized bees with the ASD risk genes from the SPARK and
SFARI gene data sets (30). Fifty-nine of the 2,128 differentially spliced genes in MF bees
are associated with human autism (Fig. 5A). Interestingly, almost all identified homo-
logs belong to the high-confidence SFARI gene list (category 1) implicated in ASD
(Table S4). Specifically, genes related to the pathophysiology of ASD are differentially
spliced in MF bees compared with bacteria-colonized bees. For example, genes
belonging to the functional terms of postsynaptic membrane (Ank2, Fmr1) and

FIG 4 Gut microbiota impacts gene expression in the honeybee brain. (A to C) Volcano plot showing differentially regulated genes. Genes significantly
enriched in bacteria-colonized bees are shown in red, and those enriched in MF bees are in blue. (D) KEGG pathways upregulated in the brains of mono-
colonized bees based on differentially expressed genes. Fold change enrichment describes the proportion of genes belonging to a KEGG pathway (KO3
level) among differentially expressed genes in brains between MF and mono-colonized bees (FDR , 0.05, jlog2-fold changej . 1). (E) Venn diagram of
differentially expressed genes in brains between MF and mono-colonized bees (gnotobiotic bee genes; FDR , 0.05, Wald test with Benjamini-Hochberg
correction), and their overlap with SPARK and SFARI gene data sets.
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FIG 5 Gut microbiota impacts alternative splicing of high-confidence ASD genes in the honeybee brain. (A) Venn diagram of differentially spliced genes in
the brains between MF and mono-colonized bees (gnotobiotic bee spliced genes; P , 0.05), and their overlap with SPARK and SFARI gene data sets. (B)
Differentially splicing events (P , 0.05) in Ank2 present in both SPARK and SFARI gene data sets. Differential splicing events were identified by rMATS.
A3SS, alternative 39 splice site; A5SS, alternative 59 splice site; MXE, mutually exclusive exon; RI, retained introns; SE, skipped exon. (C) KEGG pathways
regulated in the brains of mono-colonized bees based on differentially spliced genes. Fold change enrichment describes the proportion of genes belonging
to a KEGG pathway (KO3 level) among differentially spliced genes in the brains between MF and mono-colonized bees (gnotobiotic bee spliced genes;
FDR , 0.05, jlog2-fold changej . 1).
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voltage-gated ion channel (Scn1a) showed different inclusion rates, and these are
mostly regulated in the Gi groups compared to in the MF bees (Fig. 5B). Taking these
findings together, we identified that gut microbes induce differential gene expression
profiles and mediate AS, resulting in specific gene isoforms in the honeybee brain. The
genes essential for bee social behaviors and related to human ASD disease are affected
especially by Gilliamella, confirming the similarities of genes associated with social
responsiveness in humans and honeybees (28).

Gut microbiota alters brain neurotransmitter level. The enrichment analysis of
differentially spliced genes identified that KEGG pathways, including the neurotrophin,
MAPK, and calcium signaling pathways, as well as ion channels and the GABAergic, do-
paminergic, and serotonergic synapses, were regulated in the brains of the Gi, F4, and
F5 groups (Fig. 5C). Therefore, we investigated changes in the brain neurochemistry of
MF and mono-colonized bees. The concentrations of three major neurotransmitters,
GABA, 5-HT, and dopamine, which are important modulators of honeybee feeding
behavior, were determined (31–33). The concentration of the inhibitory transmitter
GABA was significantly higher in the brains of F4 bees (Fig. 6A). In contrast, the concen-
trations of dopamine and 5-HT were significantly lower in bees mono-colonized with
Gi, F4, and F5 than in the MF bees (Fig. 6B and C).

Gut bacteria affects sucrose responsiveness. So far, our results have illustrated the
impact of gut bacteria on the brain transcriptomic profile and neurochemistry of the
honeybee. Finally, we tested whether the colonization of specific gut species alters host
behavior. Proboscis extension response (PER) is a taste-related behavior that is funda-
mental for olfactory discrimination and colony performance in honeybees (34). We then
measured the PER of MF bees, conventional (CV) bees, and bees mono-colonized with
Gi, F4, and F5 to determine whether specific gut members influence host behavior.

FIG 6 Gut microbiota alters the concentration of neurotransmitters in the brain and honeybee behavior. (Ato C) Concentrations
of (A) GABA, (B) dopamine, and (C) 5-HT in the brains of MF (n = 8), Gi (n = 8), F4 (n = 8), and F5 (n = 8) bees. (D) Distribution of
gustatory response scores of MF bees (n = 31) and bees mono-colonized with different core gut bacteria: Gi (n = 43), F4 (n = 46),
F5 (n = 27), and conventional bees (CV, n = 46). Each circle indicates a bee response to the provided sucrose concentration.
Differences between bacteria-colonized and MF bees were tested by Mann-Whitney U test (*, P , 0.05; **, P , 0.01; ***, P ,
0.001).
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Compared with that of the MF group, sucrose sensitivity was significantly elevated in
bacteria-colonized bees (Fig. 6D). Interestingly, CV bees were more sensitive to low su-
crose concentrations compared to mono-colonized bees, implying an integrative effect
of gut bacteria on honeybee behavior. Our findings indicate that colonization of either
the normal gut microbiota or single core gut member can affect neurotransmitter levels
in the brain, which might be associated with altered olfactory sensitivity.

DISCUSSION

The influence of gut community members on the host is mainly driven by the mi-
crobial metabolism, specifically the amino acid, lipid, and carbohydrate metabolic
pathways, which can further influence the circulation and synthesis of neuroactive
molecules in the host. We found that distinct gut members regulated different sets of
metabolites in the hemolymph and intestine. These specialized bee gut bacteria with
distinct functions might be the results of long-term coevolution with the host (35),
which provides an optimized benefit to the host. Specifically, Gilliamella regulate host
carbohydrate metabolism, which consistent with its capability to digest mono- and
polysaccharides in the bee gut (18, 36). Lactobacillus Firm4 and Firm5 were significantly
correlated with amino acids. Among these, homovanillic acid, an indicator of brain do-
pamine metabolism for assessing neurologic and psychiatric illness (21–23), was mostly
regulated, corroborating with the altered dopamine level in the brain. Similar gut-brain
communication has been recently demonstrated in Drosophila. For example, the gut
symbiont of Drosophila modulates trehalose levels through xylose isomerase, resulting
in downregulated octopamine production and decreased locomotor behavior (37).
Oral infection with Erwinia carotovora can stimulate the production of gut-derived Upd
proteins, which further promote lipid production and accumulation in neurons and
modulate olfaction in aging flies (38).

The homologous molecular mechanism of social responsiveness between honey-
bees and humans has been well documented (28). Bees with disordered social behav-
iors show a transcription profile in the brain which is distinct from that of normal bees.
The differentially expressed genes in unresponsive individuals are enriched for human
ASD-related genes. In the halictid bee Lasioglossum albipes, these genes are also regu-
lated in the solitary individuals compared to those in social populations, indicating
their implications in social behaviors (39). Despite the disturbed gene expression level,
the aberrant alternative splicing of ASD-related genes is also involved in mental disor-
ders (40). In our data set, the analysis of alternative splicing of genes identified differ-
ences between bacteria-colonized bees. The altered genes compared to those of MF
bees overlapped with the SFARI gene data set for autism and those associated with
disordered bee social responsiveness (Fig. 5). The mutually exclusive exon (MXE) and
SE events of a high-confidence ASD risk gene, Ank2, were predominantly affected by
the gut bacteria, especially Gilliamella. This gene is also affected in the brains of mice
colonized by ASD-human gut microbiota (40). Correspondingly, our enrichment analy-
sis of differentially expressed genes revealed that the KEGG pathway related to spliceo-
some was upregulated in the Gi and F4 groups, supporting the contribution of gut
bacteria to splicing regulation in the brain. All these findings demonstrate the deep
conservation of genes related to social responsiveness in humans and distantly related
insect species, indicating the potential role of gut microbes in social evolution (41).

Neurotransmitters that carry and pass information between neurons are essential
for brain functions, which are important modulators of behaviors. In honeybees, four
monoamine neurotransmitters play important roles in olfactory sensitivity (31–33).
Specifically, dopamine and 5-HT inhibit appetitive learning and decrease sucrose sensi-
tivity in foragers (31, 32). Also, GABA and acetylcholine have been physiologically char-
acterized as inducing currents between neurons within the olfactory pathways and
contributing to odor memory formation (42). The inhibitory transmitter GABA is also
required for fine odor discrimination (33). The concentrations of most identified neuro-
transmitters were regulated by different gut members, corroborating with the roles of
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gut microbiota in altered behavior. Notably, we only analyzed the concentrations of
GABA, dopamine, and 5-HT in this study, although acetylcholine is also pivotal for the
integration of sensory information in honeybees. Specifically, cholinergic signaling via
muscarinic receptors is critical for olfactory associative learning and foraging behaviors
(43). Moreover, stimulation of the muscarinic receptor in the honeybee increases the
volume of the mushroom body neuropil, which mimics the reinforcement of choliner-
gic neurotransmission in foraging bees (44). A reduced mushroom body calycal growth
has also been associated with lower learning performance in bumblebees through
microcomputed tomography scanning (45). It would be interesting to investigate
whether gut microbes impact structural changes of the brain in future studies.

Although mono-colonization is sufficient to affect host behaviors, ecological inter-
actions in bacterial communities cannot be neglected. In the honeybee gut, individual
community members occupy different metabolic niches which contribute to the over-
all output of an integrative gut microbiota (16). In particular, cross-feeding exists
between Gilliamella and Snodgrassella, which may form a symbiotic network for the
utilization of nutrient resources (20). Different strains of Bifidobacterium and Gilliamella
cooperate to digest diet polysaccharides for the honeybee host (18). Interactions
between the main species in the gut enable efficient substrate metabolism as well as
community stability, thus benefiting the host. We observed that the CV bees showed
the highest gustatory responsiveness, which indicates that potential interactions of
gut members contribute to the host physiology (Fig. 6D). Thus, we hypothesized that
the coexistence and interaction of bacteria in host-associated microbial communities
have a greater impact on host physiology and behavior than that of individual commu-
nity members. In addition, we studied honeybees mono-colonized with single bacterial
strains, which is a gut dysbiosis to some extent. In consistent with the findings for
taste-related behavior, mono-colonized bees exhibited inferior performance in a PER
assay compared with CV bees. Further experiments using an artificial community with
defined gut members may advance our understanding of the actual roles of different
bacteria in the microbiome.

In summary, our mono-colonization experiments provide unprecedented insights
into the impact of honeybee gut bacteria on host behavior. In particular, we disen-
tangled the contributions of different community members to the host, from circulating
the metabolome to transcriptional and neurochemical changes in the brain. Our results
highlight the important roles of gut microbiota in honeybee behaviors and the complex
interactions of different bee gut members contributing to the host physiology.

MATERIALS ANDMETHODS
Generation of microbiota-free and mono-colonized honeybees. Microbiota-free bees were

obtained as described by Zheng et al. (18) with modifications (Fig. S1). Late-stage pupae were removed
manually from brood frames and placed in sterile plastic bins. The pupae emerged in an incubator at
35°C, with humidity of 50%. Newly emerged MF bees (day 0) were kept in axenic cup cages with steri-
lized sucrose syrup (50%, wt/vol) for 24 h and divided into three groups: (i) MF, (ii) mono-colonized (MC),
and (iii) CV bees. For each setup, 20 to 25 MF bees (day 1) were placed into one cup cage and fed on the
corresponding solutions or suspensions for 24 h. For the MF group, 1 mL of 1� phosphate-buffered sa-
line (PBS) was mixed with 1 mL of sterilized sucrose solution (50%, wt/vol) and 0.3 g sterilized pollen. For
the MC group, stocks of Gilliamella apicola (W8127), Snodgrassella alvi (W6238G3), Bifidobacterium aster-
oides (W8113), Bartonella apis (B10834G6), Lactobacillus Firm4 (W8089), and Lactobacillus Firm5 (W8172)
in 25% glycerol stock at280°C were resuspended in 1 mL 1�PBS (Solarbio, Beijing, China) at a final opti-
cal density at 600 nm (OD600) of 1, and then mixed with 1 mL sterilized sucrose solution (50%, wt/vol)
and 0.3 g sterilized pollen. For the CV group, 5-mL homogenates of freshly dissected hindguts of nurse
bees from their hives of origin were mixed with 1 mL 1�PBS, 1 mL sterilized sucrose solution (50%, wt/
vol), and 0.3 g sterilized pollen. Then, MF, MC, and CV bees were provided sterilized sucrose (0.5 M) with
sterile pollen and kept in an incubator (35°C, RH 50%) until day 7. Brains, guts, and hemolymph of bees
were collected on day 7 for further analysis. All bees used for behavior experiments and tissue collection
came from the same colony. Bees coming from the same cup cage for each group were considered a
single replicate. Here, we used n = 3 replicates per group, 20 to 30 bees per replicate. Colonization levels
of MF and MC bees were determined by CFU from dissected guts, as described by Kwong et al. (46).

Tissue collection. Whole guts were dissected by tweezers sterilized with 75% alcohol. Dissected guts
were directly crushed in 25% (vol/vol) glycerol on ice for bacterial load quantification or collected into an
empty 1.5-mL centrifuge tube for metagenomic sequencing and metabolomics analysis. All gut samples
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were frozen at 280°C until analysis. Honeybee brains were collected using a dissecting microscope
(Canon). Individual bees were fixed on beeswax using two insect needles through the thorax. After re-
moval of the head cuticle, the whole brain was placed on a glass slide and soaked in RNAlater (Thermo;
Waltham, MA, USA) or proteinase inhibitor (Roche; Mannheim, Germany) for gene expression profiling,
proteome analysis, and neurotransmitter concentration quantification. Then, the hypopharyngeal glands,
salivary glands, three simple eyes, and two compound eyes were carefully removed. Dissected brains were
kept frozen at 280°C. Hemolymph was collected using a 10-mL pipettor (Eppendorf; Hamburg, Germany)
from an incision above the median ocellus. A minimum of 50 mL hemolymph was collected from 10 bees
into a 1.5-mL centrifuge tube. During the collection process, tubes were temporarily preserved on dry ice
and subsequently stored at 280°C until analysis. Brain and hemolymph samples were collected from dif-
ferent individual bees following the same colonization step.

Quasi-targeted metabolomics analysis. Hemolymph metabolites were determined by quasi-tar-
geted metabolomics using high-pressure liquid chromatography (HPLC)-tandem mass spectrometry
(MS-MS). First, 50 mL of hemolymph samples were mixed with 400 mL prechilled methanol by vortexing.
All samples were incubated on ice for 5 min and then centrifuged at 15,000 � g at 4°C for 10 min. The
supernatant was diluted to a final concentration containing 53% methanol by liquid chromatography-
mass spectrometry (LC-MS) grade water. The samples were then transferred to a fresh vial and centri-
fuged at 15,000 � g at 4°C for 20 min. Finally, the supernatant was injected into the LC-MS-MS system,
and the analyses were performed using an ExionLC AD system (SCIEX) coupled with a QTRAP 65001
mass spectrometer (SCIEX). Samples were injected onto a BEH C8 column (100 mm � 2.1 mm � 1.9 mm)
using a 30-min linear gradient at a flow rate of 0.35 mL/min for the positive-polarity mode. Eluent A was
0.1% formic acid-water, and eluent B was 0.1% formic acid-acetonitrile. The solvent gradient was set as
follows: 5% B, 1 min; 5 to 100% B, 24.0 min; 100% B, 28.0 min; 100 to 5% B, 28.1 min; 5% B, 30 min. The
QTRAP 65001 mass spectrometer was operated in positive-polarity mode with curtain gas at 35 lb/in2, colli-
sion gas at medium, ion-spray voltage at 5,500 V, temperature at 500°C, ion source gas at 1:55, and ion
source gas at 2:55. For negative-ion mode, samples were injected onto aHSS T3 Column (100 mm� 2.1 mm)
using a 25-min linear gradient at a flow rate of 0.35 mL/min. The solvent gradient was set as follows: 2% B,
1 min; 2 to 100% B, 18.0 min; 100% B, 22.0 min; 100 to 5% B, 22.1 min; 5% B, 25 min. The QTRAP 65001
mass spectrometer was operated in negative polarity mode with curtain gas at 35 lb/in2, collision gas at me-
dium, ion-spray voltage at 24,500 V, temperature at 500°C, ion source gas at 1:55, and ion source gas
at 2:55.

Detection of the experimental samples using MRM was based on the Novogene in-house database.
Q3 (daughter) was used for the quantification. Q1 (parent ion), Q3, retention time, declustering poten-
tial, and collision energy were used for metabolite identification. Data files generated by HPLC-MS/MS
were processed with SCIEX OS (version 1.4) to integrate and correct the peaks. A total of 326 compounds
were identified in the hemolymph samples. Metabolomics data analysis was then performed using
MetaboAnalyst 4.0 (47).

Weighted gene coexpression network analysis. R software package WGCNA 1.69 (48) was used to
identify key phenotype-related metabolic modules based on correlation patterns. The Pearson correla-
tion matrix was calculated for all possible metabolite pairs and then transformed into an adjacency ma-
trix with soft thresholding power set to 5 for the best topological overlap matrix. A dynamic tree cut
algorithm was used to detect groups of highly correlated metabolites. The minimum module size was
set to 14, and the threshold for merging module was set to 0.25 as default. Each module was assigned a
unique color and contained a unique set of metabolites. After modules had been obtained from each
group, module eigenmetabolite was calculated with the “ModuleEigengenes” function. Association anal-
ysis between a module and the trait of each group was performed using the “corPvalueStudent” func-
tion based on the module eigenmetabolite. Statistical significance was set at P , 0.01. Metabolites in
each module were annotated on the KEGG database and classified into major categories using
MetaboAnalyst 4.0 (47) for enrichment analysis. Finally, the network connections among metabolites in
modules were visualized using Cytoscape 3.7.0 (49).

Brain gene expression analysis. Total RNA was extracted from individual brains using the Quick-
RNA MiniPrep kit (Zymo; Irvine, CA, USA). RNA degradation and contamination were monitored on 1%
agarose gels, and the purity was checked with the NanoPhotometer spectrophotometer (IMPLEN; CA,
USA). RNA integrity was assessed using the RNA Nano 6000 assay kit of the Bioanalyzer 2100 System
(Agilent Technologies; Santa Clara, CA, USA). RNA sequencing libraries were generated using the
NEBNext Ultra RNA Library Prep Kit for Illumina (New England BioLabs; Ipswich, MA, USA), and index
codes were added to attribute sequences to each sample. Clustering of the index-coded samples was
performed on the cBot Cluster Generation System using a TruSeq PE Cluster Kit v3-cBot-HS (Illumina;
San Diego, CA, USA), and the library preparations were then sequenced on an Illumina NovaSeq 6000
platform (Illumina; San Diego, CA, USA) and 150-bp paired-end reads were generated.

The sequencing quality of individual samples was assessed using FastQC version 0.11.5 with default
parameters. An index of the bee reference genome (Amel_HA version 3.1) was built using HISAT2 ver-
sion 2.0.5 (50), and the FastQC trimmed reads were then aligned to the built index using HISAT2 version
2.1.0 with default parameters. Gene expression was quantified using HTSeq version 0.7.2 (51) with
‘union’ mode, and only reads mapping unambiguously to a single gene were counted. In contrast, reads
aligned to multiple positions or overlapping more than one gene were discarded. If it were counted for
both genes, the extra read from the differentially expressed gene might have caused the other gene to
be wrongly identified as differentially expressed, so we chose ‘union’ mode.

Differential gene expression analysis was performed using the DESeq2 package (52) in R. We mod-
eled read counts following a negative binomial distribution with normalized counts and dispersion. The
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proportion of the gene counts in the sample to the cDNA concentration was scaled by a normalization
factor using the median-of-ratios method. The variability between replicates was modeled by the disper-
sion parameter using empirical Bayes shrinkage estimation. For each gene, we fit a generalized linear
model to obtain the overall expression strength of the gene and the log2-fold change between the MC
and MF groups. For significance testing, differential gene expression was determined by the Wald test.
The resulting P values were corrected for multiple comparisons using the Benjamini-Hochberg FDR
method (53). Genes with an adjusted P value of ,0.05 and a jlog2-fold changej of .1 were assigned as
differentially expressed.

To get a better annotation of the honeybee reference genome, we reannotated it using eggNOG-
mapper version 5.0 (54). A total of 6,269 out of 12,375 honeybee genes were successfully assigned to a
KO entry with ‘diamond’ mode, and hierarchy information for the KEGG metabolic pathway was
extracted. Functional analysis of differentially expressed genes was performed based on KEGG
Orthologue (KO) markers. The percentages of KO markers belonging to each category (KEGG class at
level 3) out of the total MC- and MF-enriched KO markers were designated as comparison parameters.
The significance level was calculated by Fisher’s exact test using clusterProfiler version 3.10.1 (55).
Correlation analysis between regulated hemolymph metabolites and upregulated genes was performed
using Pearson’s correlation analysis. The correlation coefficients and the corresponding P values were
calculated in R.

Analysis of event-level differential splicing was performed using rMATS version 4.0.2 (56) based on
the bee reference genome. An exon-based ratio metric, commonly defined as percent-spliced-in (PSI)
value, was employed to measure the alternative splicing events. An effective length of l was used for
normalization. The PSI value was calculated for several classes of alternative splicing events, including
skipped exon (SE), alternative 59 splice site (A5SS), alternative 39 splice site (A3SS), mutually exclusive
exons (MXE), and retained introns (RI). Events with a P of ,0.05 were considered to be differentially
spliced across gnotobiotic bees and microbiota-free bees.

To find overlaps between the differentially expressed or spliced genes of bee brain and those from
human autism spectrum disorders, a total of 3,531 high-quality reference protein sequences correspond-
ing to 948 known autism risk genes (SFARI: https://gene.sfari.org/, SPARK for autism: http://spark-sf.s3
.amazonaws.com/SPARK_gene_list.pdf) were aligned against protein sequences of the honeybee ge-
nome using BLASTP (57) with a two-way best matching strategy. In total, 649 autism protein sequences
obtained a match (similarity . 30% and E value , 0.000394). Then we calculated the intersection of the
autism risk genes and the differentially expressed or spliced genes between bacteria-colonized and MF
bees (P, 0.05).

Targeted metabolomics for brain neurotransmitters. Brain tissues dissected from MF and MC
bees were sent to Biotree Biotech Co. Ltd. (Shanghai, China) for targeted metabolomics analysis of
GABA, dopamine, and serotonin. Six brain tissues from one treatment group were put into one tube and
centrifuged (2,400 g � 1 min at 4°C). A 100-mL volume of acetonitrile containing 0.1% formic acid and
20 mL ultrapure water was added and the tubes were vortexed thoroughly. Metabolites were sonicated
in an ice-water bath for 30 min, followed by subsiding at 220°C for 2 h. Supernatants were collected af-
ter centrifugation (14,000 g � 10 min at 4°C). Next, 20 mL of supernatant was transferred to a new vial
followed by incubation for 30 min after the addition of 10 mL sodium carbonate solution (100 mM) and
10 mL 2% benzoyl chloride acetonitrile. Then, 1.6 mL internal standard and 20 mL 0.1% formic acid was
added and the samples were centrifuged (14,000 g � 5 min at 4°C). A total of 40 mL of the supernatants
was transferred to an auto-sampler vial for downstream UHPLC-MS/MS analysis. Serotonin hydrochlor-
ide,g-aminobutyric acid, and dopamine hydrochloride (Aladdin Bio-Chem Technology; Shanghai, China)
derivatized with benzoyl chloride (Sigma-Aldrich; Saint Louis, MO, USA) were used for the construction
of the calibration standard curve. The internal standards mixtures (g-aminobutyric acid, dopamine hydro-
chloride, and serotonin hydrochloride) derivatized with benzoyl chloride-d5 (Sigma-Aldrich; Saint Louis,
MO, USA) (58) of the corresponding concentrations were prepared.

The UHPLC separation was carried out using an ExionLC System (AB SCIEX; Framingham, MA, USA),
and samples were analyzed on the QTRAP 6500 LC-MS/MS system (AB SCIEX). Two mL of samples was
directly injected onto an ACQUITY UPLC HSS T3 column (100 mm � 2.1 mm � 1.8 mm; Waters
Corporation; Milford, Ma, USA). The column temperature was set at 40°C, and the auto-sampler tempera-
ture was set at 4°C. Chromatographic separation was achieved using a 0.30 mL/min flow rate and a lin-
ear gradient of 0% to 2% B in 2 min; 2 to 98% B in 9 min, 98% B for 2 min, and equilibration for 2 min.
Solvent A was 0.1% formic acid and solvent B was acetonitrile. For all multiple-reaction monitoring
(MRM) experiments, 6500 QTrap acquisition parameters were as follows: ion-spray voltage at 5,000 V,
curtain gas setting of 35, nebulizer gas setting of 60, and temperature at 400°C. Raw data were analyzed
using Skyline (59).

Gustatory responsiveness. Seven-day-old MF, MC, and CV bees were used to measure responses to
different concentrations of sucrose solution as previously described, with some modifications (9). Before
the test, bees were starved for 2 h in the incubator by removing sugar syrup and bee bread from the
cup cage. Bees were then mounted to modified 2.0-mL centrifuge tubes using Parafilm M (Bemis;
Sheboygan Falls, WI, USA), and they could only move their heads and propodeum for antennae sanita-
tion. Individual responsiveness was measured by presenting a series of sucrose solution concentrations
(0.1, 0.3, 1, 3, 10, 30, and 50%; wt/vol) to the antennae of bees (60). Before each sucrose solution presen-
tation, all bees were tested for their response to pure water to control for the potential effects of
repeated sucrose stimulations, which could have led to either sensitization or habituation (61). The inter-
stimulus interval between water and sucrose solution was 4 min. When a bee’s antenna is stimulated
with a sucrose solution of sufficient concentration, the bee reflexively extends its proboscis. The lowest
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sucrose concentration at which an individual responded by extending its proboscis was recorded and
interpreted as its sugar response threshold. At the end of the experiment, a gustatory response score
was obtained for each bee based on the sucrose concentrations to which the bees responded. The
response was arbitrarily quantified with scores of 1 to 7, where 1 represented a bee that only responded
to the highest sucrose concentration and 7 represented an individual that responded to all concentra-
tions tested. Bees that did not respond to any of the sucrose concentrations were excluded from further
analyses. Additionally, bees that responded to all concentrations of sucrose solutions and all water pre-
sentations were also excluded, as they appeared to be unable to discriminate between sucrose and
water (61).

Data availability. Raw sequence reads have been deposited in the NCBI SRA database under the
BioProject accession no. PRJNA783076.
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