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Abstract: Hyperoside (Hyp), also known as quercetin-3-O-galactoside or 3-O-β-D-galactopyranosyl,
is a well-known flavonol glycoside that is abundant in various fruits, vegetables, and medicinal
plants. Hyp has been suggested to exhibit a wide range of biological actions, including cardiovascu-
lar, renal, neuroprotective, antifungal, antifibrotic, and anticancer effects. Accumulating evidence
supports the pharmacological activities of Hyp in improving liver pathophysiology. Hence, the
present literature review aims to summarize preclinical data suggesting the beneficial effects and
underlying mechanisms of Hyp. In addition, our study focuses on hepatic antioxidant defense signal-
ing to assess the underlying mechanisms of the biological actions of Hyp that are closely associated
with liver diseases. Experimental findings from an up-to-D-ate search showed that Hyp possesses
hepatoprotective, antiviral, antisteatotic, anti-inflammatory, antifibrotic, and anticancer activities
in cellular and animal models related to liver dysfunction by enhancing antioxidant responses. In
particular, hepatocellular antioxidant defense via activation of erythroid-related nuclear factor 2 by
Hyp chiefly explains how this compound acts as a therapeutic agent in liver diseases. Thus, this
review emphasizes the therapeutic potential of Hyp as a strong antioxidative substance that plays a
crucial role in the regulation of various liver disorders during their pathogenesis.
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1. Introduction

Liver diseases, characterized by various liver injuries from steatosis to cancer, have
steadily increased the global burden as one of the leading causes of morbidity and mortality
worldwide. The prevalence of chronic liver disease (CLD) is currently estimated to reach
1.5 billion across the world, and CLD ranks fourth among diseases causing death in middle-
aged adults (45–64 years) [1,2]. Common risk factors that can develop and aggravate
various liver diseases include viral infection, heavy alcohol use, toxin exposure, drug
overuse, overnutrition, and autoimmune responses.

Among them, excessive alcohol intake, viral hepatitis, and obesity-related metabolic
disorders are three crucial risk factors, accounting for over 90% of patients with CLD [3].
While viral infection has been commonly regarded as the main etiology of CLD in the past,
current issues in hepatology have frequently focused on nonalcoholic fatty liver disease
(NAFLD) and alcoholic liver disease (ALD) [4,5].

Several signaling pathways can be intricately intertwined among pathophysiological
mechanisms that cause liver diseases, and oxidative stress induced by reactive oxygen
species (ROS) is considered to be one of the main pathways associated with various liver
disorders [6]. In particular, the liver is vulnerable to ROS attack, and it is also known
as a crucial regulator that plays key roles in the development of liver diseases with high
prevalence, including NAFLD, ALD, and drug-induced liver injury (DILI) [7–9].

Thus, some antioxidants, such as vitamin C/E and N-acetylcysteine (NAC), have
been used to control oxidative-stress-induced liver dysfunction. However, evidence is
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yet to confirm the efficacy and safety of antioxidants as curative therapies to prevent and
treat liver diseases [9,10]. Considering the potential of antioxidative strategies for the
treatment of liver diseases, natural antioxidants, to some extent, can be rational candidates
with the possibility of beneficial actions. Hyperoside (Hyp, quercetin-3-O-galactoside), a
flavonol glycoside, can serve as a promising antioxidant to control hepatic oxidation in
liver diseases.

Hyp has been known to be derived from many herbal plants, including Crataegus
pinnatifida, Abelmoschus manihot, Hypericum perforatum, Geranium carolinianum, Zanthoxylum
bungeanum, the flowers of Acacia melanoxylon, Rosaceae, Rhododendraceae, Werspearaceae, and
Leguminosae [11–14]. As a potential medicinal constituent, Hyp has been reported to possess
a wide range of pharmacological activities against lung cancer, cardiac injury, renal injury,
lung fibrosis, and diabetes [15–17].

Notably, recent studies have shown that Hyp can act as an effective agent that can
ameliorate various liver injuries triggered by toxin exposure, drug overuse, viral infection,
and a high-fat diet. However, to the best of our knowledge, previous studies have not
reviewed the pharmacological activities of Hyp in diverse liver diseases. Moreover, the
association between antioxidant defenses in the liver and the central mechanisms involved
in the biological actions of Hyp in treating liver diseases has not yet been identified.
Therefore, the present study reviews the recent experimental results on the beneficial role
of Hyp and the underlying molecular mechanism by which it regulates various conditions
related to liver diseases to provide preclinical evidence for further well-D-esigned studies
that can be applied in clinical settings and drug development.

2. Methods

A comprehensive search for relevant preclinical studies on Hyp and pharmacological
effects related to liver diseases published from inception to May 2022 was performed using
PubMed (http://pubmed.ncbi.nlm.nih.gov/, accessed on 1 June 2022), EMBASE (https://
www.embase.com/, accessed on 1 June 2022), CNKI (https://oversea-cnki-net-ssl.openlink.
khu.ac.kr/index/, accessed on 1 June 2022), and Google Scholar (http://scholar.google.
com/, accessed on 1 June 2022). The following key search terms were entered: (“hyperoside”
OR “hyperin” OR “quercetin-3-O-galactoside” OR “3-O-β-D–galactopyranosyl”) AND
(“liver” OR “hepato” OR “hepatic”) NOT (“human” OR “clinical”). To retrieve as many
related articles as possible, all studies obtained from reference lists as well as the above two
databases were manually reviewed. After excluding duplicated or inapplicable studies,
35 articles were reviewed meticulously in this study.

3. Phytochemistry of Hyperoside

Hyp (PubChem CID: 5281643), a synonym for 3-O-galactoside of quercetin, is a
well-known antioxidant flavonoid frequently found in many herbal plants. The for-
mal name is 2-(3,4-D-ihydroxyphenyl)-3-(β-D–galactopyranosyloxy)-5,7-D-ihydroxy-4H-
1-benzopyran-4-one, and its molecular formula is C21H20O12 with a molecular weight of
464.3793 g/mol (Figure 1). Hyp is a type of flavonoid possessing many biological functions
and a secondary metabolite serving a role as valuable natural products [18]. It is reported
that the genera Hypericum, Arbutus, Abelmoschus, Zanthoxylum, Houttuynia, etc. are rich in
Hyp, and it has been extracted from over 30 herbal plants [14,19–24].

http://pubmed.ncbi.nlm.nih.gov/
https://www.embase.com/
https://www.embase.com/
https://oversea-cnki-net-ssl.openlink.khu.ac.kr/index/
https://oversea-cnki-net-ssl.openlink.khu.ac.kr/index/
http://scholar.google.com/
http://scholar.google.com/
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For instance, high-performance liquid chromatography (HPLC) chromatography for
detecting Hyp contents showed the quantification of Hyp at 353 nm of UV and 16.13 min of
retention time. The leaf parts of the plant showed larger amount of Hyp than the parts of the
flower and stem. In addition, the content of Hyp in Hypericum perforatum was superior over
that in Hypericum leptophyllum [24]. Similarly, 96% ethanol extract of Hypericum perforatum
showed higher contents of Hyp compared with rutin and quercetin [23].

The isolation of Hyp from medicinal plant extracts mostly used ethanol solvent
and the extraction methods of reflux and ultra-sonication with a range of purity from
1.91–91.41% [14]. As depicted in Figure 1, the molecular structure of Hyp is composed of
multiple polar groups that include one carbonyl group, three ether linkages, and eight
hydroxyl groups [25].

A recent study reported that Hyp contents obtained from Hypericum species can be
analyzed quantitatively and qualitatively using high-performance thin-layer chromatogra-
phy (HPTLC) methods [26]. However, the intact detection of Hyp using high-performance
liquid chromatography-ultraviolet (HPLC-UV) or liquid chromatography-tandem mass
spectrometry (LC-MS-MS) methods is nearly impossible because of the galactose sugar
moiety of Hyp. Instead, the use of HPLC-UV analysis to detect quercetin following enzy-
matic hydrolysis with β-glucuronidase and sulfatase is able to show the pharmacokinetic
profiles of Hyp, including tmax and Cmax [27].

However, compared to isoquercitrin (quercetin-3-O-glucoside), the absorption rate in
the gastrointestinal tract and hydrolyzation of Hyp were poorer owing to the type of sugar
moiety [28]. Thus, there are some limitations to the clinical application of Hyp, owing to
its poor solubility, low bioavailability, and instability. Therefore, several novel tools, such
as nanotechnology, microencapsulation, and eutectic mixtures, have been investigated to
enhance the bioavailability and clinical potential of Hyp [29]. Moreover, further researches
on the optimized extraction method, structure-based analysis, and technology improving
yield of Hyp need to be conducted for clinical use.

4. Pharmacological Effects of Hyperoside in Liver Diseases
4.1. Hepatoprotective Effects

The liver is involved in various physiological functions, including the metabolism,
immune responses, excretion, and detoxification [30]. Many factors, such as overnutrition,
ethanol, drugs, and xenobiotics, lead to dysregulation of liver function. Hepatic injury is
a major health problem worldwide [31]. Usually, liver injury leads to pathological mani-
festations in which abnormal serum markers and histological deterioration are observed
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due to hepatocyte death and the activation of hepatic stellate cells (HSCs) and Kupffer
cells [31]. Considering that liver injury has been chiefly implicated in triggering various
liver disorders, the beneficial roles of hepatoprotective agents have been emphasized for
the treatment or prevention of liver and biliary tract diseases [32,33].

When rodents or liver cells are exposed to toxic chemicals, such as carbon tetra-
chloride (CCl4), hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BHP), alcohol,
and D-galactosamine (D-GalN), significant alterations in their liver function are observed,
with substantial evidence that elevated serum liver enzymes correlate with the severity
of liver injury. These high levels of serum aspartate aminotransferase (AST) and ala-
nine aminotransferase (ALT) are mostly accompanied by histological deterioration of the
liver tissue [34–39].

As depicted in Figure 2, Hyp serves as an effective hepatoprotective agent by reducing
hepatocellular damage due to oxidative stress induced by chemicals [34–37,40–43]. Similar
antioxidative properties of Hyp were shown in H2O2-induced intracellular oxidative stress
in HepG2 cell [44]. Notably, the regulation of hepatic heme oxygenase-1 (HO-1), nuclear
factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) in
the presence of Hyp may potentiate anti-apoptosis and eventually counteract chemical-D-
riven hepatotoxicity in rodents [34–38,43].
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Figure 2. Hepatoprotective effects of hyperoside (Hyp) via the regulation of oxidative stress triggered
by toxic chemical, drug, and various diseases; CCl4, carbon tetrachloride; H2O2, hydrogen peroxide;
t-BHP, tert-butyl hydroperoxide; D-GalN, D-galactosamine; HO-1, heme oxygenase-1; Nrf2, nuclear
factor erythroid 2-related factor 2; MAPK, mitogen-activated protein kinase; Bax, Bcl-2-associated X
protein; Bcl-2, B-cell lymphoma 2; GCLC, glutamate-cystein ligase catalytic subunit; NQO1, NAD(P)H
quinone dehydrogenase 1; ATF3, cyclic AMP-D-ependent transcription factor; and NFκB, nuclear
factor kappa B. Upward pointing arrow (↑) and downward pointing arrow (↓) represent an increase
and a decrease in gene/protein expression or numerical values, respectively.

The existence of cytochrome P450 2E1 (CYP2E1)-induced hepatotoxicity by cisplatin
and acetaminophen is well documented because both drugs undergo hepatic metabolism.
CYP2E1, a cytochrome 450 (CYP450) involved in drug-induced liver injury, is predom-
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inantly expressed in the liver [45,46]. Although NAC has been considered a standard
therapeutic agent for relieving acetaminophen poisoning, there still exist certain limitations
for its use due to the possibility of inducing hepatic steatosis and systemic inflamma-
tion [47]. Several studies have investigated the efficacy of Hyp in reducing hepatotoxicity
in mice and liver cells suffering from drug-induced liver injury [48–51].

These effects of Hyp were associated with the normalization of oxidative stress after
high-level administration of acetaminophen or cisplatin with an increase in nuclear Nrf2
levels in the liver [48–51]. Subsequently, Hyp administration enhanced the hepatic expres-
sion of the target genes of Nrf2, such as HO-1—glutamate–cystein ligase catalytic subunit
(GCLC)—and NAD(P)H quinone dehydrogenase 1 (NQO1) in LO2 liver cells and C57BL/6
mice in the presence of acetaminophen [49] (Figure 2). However, no study has reported
Hyp-induced hepatic steatosis or a systemic inflammatory response similar to that induced
by NAC. Hyp isolated from the leaves of Juglans sinensis exerted protective effects against
hepatotoxicity in HepG2 cells induced by amiodarone and nitrofurantoin; however, the
efficacy was not significant [52].

The hepatoprotective efficacy of Hyp has also been evaluated in experimental models
of various diseases, including heart failure, pneumonia, hepatitis B, hepatic ischemia, and
diabetes [53–60]. Hyp administration resulted in a significant reduction in serum AST and
ALT levels and ameliorated the severity of hepatocellular necrosis and vacuolation. In
particular, Hyp interfered with ischemia-induced oxidative stress by increasing hepatic
proteins HO-1 and NQO1, thus, eventually decreasing apoptotic cells in the liver of hepatic
ischemia-reperfusion injury Wistar rats [57].

A similar mechanism of Hyp, involved in reducing oxidative stress and inducing
anti-apoptosis, was investigated in another study showing hepatotoxicity due to hyper-
glycemia [53] (Figure 2). Hyp also decreased serum AST and ALT levels by reversing the
hepatic malondialdehyde (MDA) and superoxide dismutase (SOD) contents in ApoE−/−

mice fed high-fat diet and concanavalin A-induced Kunming mice [61,62]. These studies
suggest that Hyp treatment has considerable beneficial effects on hepatotoxicity induced
by toxic substances, drugs, and diseases (Table 1). Therefore, further studies are needed to
support the efficacy of Hyp and expand its clinical use as an effective hepatoprotectant for
the treatment of various liver diseases.

Table 1. Hepatoprotective activities of hyperoside (Hyp) in experimental models related to various
liver diseases.

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp/Artemisia
capillaris

CCl4-induced liver injury
in mice

50, 100, 200 mg/kg ↓serum AST, ALT
↓centrizonal necrosis
↓hepatic MDA
↑hepatic GSH

↑hepatic Nrf2 protein
↑hepatic HO-1 mRNA and protein

[34]

Hyp CCl4-induced male
Kunming mice

200, 400 mg/kg ↓serum AST, ALT
↓hepatocellular necrosis

↓hepatic MDA, SOD, GSH-Px
↑hepatic CAT
↑hepatic Nrf2

[35]

Hyp CCl4-induced male
Sprague-D-awley rats

60 mg/kg ↓serum AST, ALT
↓liver cell edema, nuclear

condensation, hepatocellular
vacuolization
↓hepatic MDA
↑hepatic SOD

↑hepatic p-AKT, p-GSK-3β
↑hepatic nuclear Nrf2
↑hepatic HO-1
↓hepatic p-Fyn
↓hepatic PHLPP2

[36]
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Table 1. Cont.

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp CCl4-induced male
BALB/c mice

50, 100 mg/kg ↓serum AST, ALT
↓hepatocellular vacuolization
↓hepatic MDA, SOD
↑hepatic GSH

[37]

Hyp CCl4-induced C57BL/6J
mice

200 mg/kg ↓serum AST, ALT
↓hepatocyte destruction

↓hepatic p-p38, p-Erk protein

[38]

Hyp CCl4-induced rats 30, 60 mg/kg ↓hepatic focal necrosis
↓hepatic MDA

↑hepatic SOD, GSH

[40]

Hyp/Zanthoxylum
schinifolium

CCl4-induced mice 10, 20 mg/kg ↓serum AST, ALT
↓hepatic TBARS

[41]

Hyp/Canarium album and
Euphorbia

nematocypha

CCl4-induced primary
cultured rat hepatocytes

1, 10 µM ↓MDA [42]

Hyp/Zanthoxylum
bungeanum leaves

High-carbohydrate/high-
fat diet and

alloxan-induced male
Kunming mice

200 mg/kg ↓hepatic AST, ALT
↑hepatic Na+/K+ ATPase
↓hepatic focal necrosis
↑hepatic SOD, GSH, CAT

↓hepatic MDA
↓hepatic ATF3
↓hepatic p-p65

↓hepatic p-p38, p-Erk1/2, p-JNK
↓hepatic Bax
↑hepatic Bcl-2

↓hepatic caspase 3,9
↓hepatic cytochrome c

[53]

Hyp ApoE−/− mice fed
high-fat diet

200 mg/kg ↓serum AST, ALT
↓hepatic MDA

↑hepatic SOD, GSH-Px

[61]

Hyp Kunming mice given 50%
alcohol

25, 50 mg/kg ↓serum AST, ALT
↓hepatocellular necrosis and edema

↓hepatic MDA
↑hepatic SOD, GSH

[39]

Hyp/Abelmoschus manihot Ducklings inoculated with
HBV-D-NA

0.1 g/kg/day ↓hepatocellular necrosis
↓hepatocellular vacuolation

[54]

Hyp Ducklings inoculated with
duck HBV DNA

60 mg/kg ↓hepatic ALT
↓hepatic cord derangement

[58]

Hyp Heart failure-induced liver
fibrosis in male Wistar rats

100, 200 mg/kg ↓serum AST, ALT
↓serum ALP

[55]

Hyp Heart failure-induced liver
fibrosis in male Wistar rats

100, 200 mg/kg ↓serum AST, ALT
↓hepatic MDA

↑hepatic SOD, GSH-Px

[59]

Hyp Diabetes-induced rats 10 mg/kg ↓serum AST, ALT [60]

Hyp Pneumonia-induced liver
injury in BALB/c mice

12.5, 50 mg/kg ↓serum AST, ALT [56]

Hyp Cisplatin-induced liver
injury in male ICR mice

50 mg/kg ↓serum AST, ALT, GGT
↓hepatocellular vacuolation

↓hepatic MDA
↑hepatic T-AOC, SOD, CAT, GSH,

GSH-Px, GST

[48]

Hyp H2O2-induced LO2 liver
cells

100 µM ↑cell survival rate,
↓LDH leakage
↑GSH

↑HO-1 mRNA and protein
↑nuclear Nrf-2 mRNA and protein

↑ARE, p-GSK-3β

[43]
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Table 1. Cont.

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp H2O2-induced LO2 liver
cells

100, 200 µM ↓MDA, ROS
↑HO-1
↑ARE

↑nuclear Nrf-2
↓nuclear Bach1
↑Crm1
↑Erk1/2

[37]

Hyp H2O2-induced HepG2
cells

1, 10 µM ↓ROS [44]

Hyp t-BHP-induced LO2 liver
cells

100 µM ↑HO-1
↑nuclear Nrf-2
↓p-Fyn
↑p- GSK-3β
↑p-Akt
↓PHLPP2

[36]

Hyp Concanavalin A-induced
Kunming mice

25, 50 mg/kg ↓serum AST, ALT
↓hepatocellular necrosis

↓hepatic MDA
↑hepatic SOD

[62]

Hyp/Apocynum venetum D-GalN/TNF-α-induced
primary cultured mouse

hepatocytes

20, 40, 80 µM ↑cell survival rate [63]

Hyp/Canarium album and
Euphorbia nematocypha

D-GalN-induced primary
cultured rat hepatocytes

3, 10, 30 µM ↓ALT [42]

Hyp Acetaminophen-induced
LO2 liver cells

10, 20 µM ↑cell survival rate
↓LDH
↓ALT

↑nuclear Nrf2
↑HO-1, GCLC, NQO1

[49]

Hyp Acetaminophen-induced
male

Kunming mice

100 mg/kg ↓serum AST, ALT
↓liver congestion, centrilobular

necrosis
↑hepatic UGTs
↑hepatic SULTs
↓hepatic CYP2E1

↑nuclear Nrf-2 mRNA and protein

[50]

Hyp Acetaminophen-induced
male C57BL/6 mice

25, 50, 100 mg/kg ↓serum AST, ALT, ALP
↓hepatic MDA

↑hepatic GSH, SOD, GST, GSH-Px
↑hepatic nuclear Nrf2

↑hepatic HO-1, GCLC, NQO1

[49]

Hyp Acetaminophen-induced
male C57BL/6 mice

60 mg/kg ↓serum AST, ALT
↓hepatocellular vacuolation,

lintrahepatic hemorrhage, lymphocyte
infiltration

↓hepatic ROS, MDA
↑hepatic GSH, GST, GSH-Px

↓hepatic CYP2E1 mRNA and protein

[51]
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Table 1. Cont.

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp Hepatic
ischemia-reperfusion

injury male Wistar rats

50 mg/kg ↓serum AST, ALT
↓Suzuki score
↓hepatic MDA

↑hepatic SOD, GSH-Px
↑hepatic HO-1, NQO1 protein
↓apoptotic cells in liver
↑hepatic Bcl-2 protein

↓hepatic Bax, caspase-3 protein

[57]

CCl4, carbon tetrachloride; AST, aspartate aminotransferase; ALT, alanine aminotransferase; MDA, malondi-
aldehyde; GSH, glutathione; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; SOD,
superoxide dismutase; GSH-Px, glutathione peroxidase; CAT, catalase; AKT, protein kinase B; GSK-3β, glycogen
synthase kinase-3β; PHLPP2, PH domain and leucine rich repeat protein phosphatase 2; Erk, extracellular signal-
regulated kinase; TBARS, thiobarbituric acid reactive substance; ATF3, cyclic AMP-D-ependent transcription
factor; JNK, c-Jun N-terminal kinase; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; ALP, alkaline
phosphatase; GGT, gamma glutamyl peptidase; LDH, lactate dehydrogenase; ARE, antioxidant response element;
Bach1, BTB domain and CNC homolog 1; Crm1, chromosome region maintenance 1; NQO1, NAD(P)H quinone
dehydrogenase 1; UGTs, UDP-glucuronosyltransferases; SULTs, sulfotransferases; and CYP, cytochrome P450. Up-
ward pointing arrow (↑) and downward pointing arrow (↓) represent an increase and a decrease in gene/protein
expression or numerical values, respectively.

4.2. Antiviral Effects

Over the past decades, viral infection has been regarded as a major risk factor for
chronic liver disease [64]. Although higher vaccination coverage and new antivirals have
helped decrease the prevalence of hepatitis B virus (HBV) and hepatitis C virus (HCV)
cases, viral hepatitis remains a crucial cause of chronic liver diseases [65]. Moreover, the
incapability of viral eradication, intolerance, and adverse effects of antiviral agents have
been described as limitations in the treatment of viral hepatitis.

Hyp exerts antiviral effects against both HBV and HCV (Table 2). In ducklings in-
oculated with duck HBV DNA, Hyp at doses of 25–300 mg/kg significantly suppressed
serum HBV DNA [54,66,67]. It is noteworthy that Hyp reduced intrahepatic covalently
closed circular DNA (cccDNA), serving as a stable template for HBV replication in infected
cells, and decreased the secretion of Th1 cytokines [68]. This involvement of Hyp in HBV
cccDNA inhibition and the immune response to viral infection may be promising for the
development of Hyp as an antiviral. In addition, the viral rebound of HBV in the presence
of Hyp in ducklings was lower than that of ducklings treated with lamivudine, a nucleoside
reverse transcriptase inhibitor against HBV [54,67].

Table 2. Antiviral activities of hyperoside (Hyp) in experimental models related to hepatitis B virus
(HBV) and hepatitis C virus (HCV) infection.

Hyperoside/Source Experimental Model Dose Results/Molecular
Mechanisms

References

Hyp/Abelmoschus manihot HepG2.2.15 cells 0.0125, 0.025, 0.05 g/L ↓HBsAg
↓HBeAg

[54]

Hyp/Abelmoschus manihot Ducklings inoculated with
duck HBV DNA

0.1 g/kg/day ↓serum HBV DNA [54]

Hyp Duck HBV infection
model and normal mouse

spleen lymphocyte

25, 50 mg/kg ↓serum HBV DNA
↓hepatic cccDNA

↓Th1 cytokine in normal mouse
spleen lymphocyte

[66]

Hyp Ducklings inoculated with
duck HBV DNA

300 mg/kg ↓serum HBV DNA
↓rebound of serum HBV DNA

compared with lamivudine

[67]

Hyp Huh-7 cells transfected
with NS3 gene of HCV

Not known ↓HCV NS3 protease by docking
the binding sites of NS3 protein

[69]

HBV, hepatitis B virus; HCV, hepatitis C virus; NS3, nonstructural protein. Upward pointing arrow (↑) and
downward pointing arrow (↓) represent an increase and a decrease in gene/protein expression or numerical
values, respectively.
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Furthermore, the antiviral effects of Hyp from Abelmoschus manihot against the se-
cretion of HBsAg and HBeAg were stronger than lamivudine-induced suppression in
HepG2.2.15 cells at the same dose of 0.05 g/kg [54]. Additionally, Hyp inhibited HCV
replication by prohibiting HCV NS3 protease via docking the binding sites of NS3 in Huh-7
cells transfected with the NS3 gene of HCV [69]. Thus, further studies are needed to
explore the mechanisms underlying the antiviral activities of Hyp to support its function in
ameliorating viral hepatitis.

4.3. Antisteatotic Effects

The liver is one of the major organs that regulate the fat metabolism [70]. Impairment of
hepatic lipid metabolism may induce abnormal lipid accumulation in liver tissue. Hepatic
steatosis is an adaptive condition that responds to lipid toxicity; however, various hepatic
disorders, including NAFLD, alcoholic liver disease and drug-induced liver injury, often
progress from hepatic steatosis [71,72]. In particular, as the prevalence of obesity is sharply
increasing, fat-rich diet-induced hepatic steatosis is emerging as a major liver disease [73].

Although previous studies on the antisteatotic effects of Hyp are scarce, this compound
has been reported to reduce hepatic fat accumulation in rodents fed a high-fat diet and
alcohol and in diabetes-induced rats [39,60,61,74–76]. The antisteatotic activity of Hyp in
high-fat diet-induced C57BL/6 mice and diabetes-induced rats occurred with liver weight
loss and reduced hepatic lipid contents, such as TG, TC, and NEFA [60,74].

Regarding the underlying mechanisms attributed to the antisteatotic effects of Hyp,
it exerted beneficial actions in (1) maintaining hepatic lipid and glucose homeostasis
by activating peroxisome proliferator-activated receptor gamma (PPARγ), which lowers
glucose levels and reverses lipotoxicity; (2) reducing oxidative stress; (3) synthesizing
bile acids from cholesterol by activating key catalytic enzymes CYP7A1 and CYP27A1;
(4) increasing the β-oxidation of free fatty acids by the activation of nuclear farnesoid X
receptor (FXR) and transcription factor liver X receptor (LXR)α implicated in lipid oxidation;
and (5) inhibiting de novo lipogenesis by modulating hepatic de novo lipogenesis markers
acetyl-CoA carboxylase (ACC) and sterol regulatory element binding proteins (SREBP)1,2
in vivo and in vitro [39,61,74–76] (Table 3).

Table 3. Antisteatotic activities of hyperoside (Hyp) in experimental models related to hepatic steatosis.

Hyperoside/Source Experimental Model Dose Results/Molecular
Mechanisms

References

Hyp High-fat diet-induced male C57BL/6 mice 50 mg/kg ↓liver weight
↓hepatic fat accumulation
↓hepatic TG, TC, NEFA

[74]

Hyp Diabetes-induced rats 10 mg/kg ↓liver weight
↓hepatic TG, TC

↓hepatic steatosis score

[60]

Hyp/Hypericum patulum Oleic acid-treated HepG2 cells 2.5, 5 µM ↓fat accumulation
↓TG contents
↓ROS
↑PPARγ

[75]

Hyp ApoE-/- mice fed high-fat diet 200 mg/kg ↓hepatic fat accumulation
↓hepatic MDA

↑hepatic SOD, GSH-Px

[61]

Hyp Wistar male rats fed high-fat diet 0.6, 1.5 mg/kg ↓hepatic fat accumulation
↑hepatic CYP7A1, CYP27A1
↑hepatic FXR, LXRα
↑hepatic ACC, pACC
↓hepatic SREBP1,2

[76]

Hyp Kunming mice given 50% alcohol 25, 50 mg/kg ↓ hepatic fat accumulation
↓hepatic MDA

↑hepatic SOD, GSH

[39]

TG, triglyceride; TC, total cholesterol; NEFA, non-esterified fatty acids; ROS, reactive oxygen species; PPARγ,
peroxisome proliferator- activated receptor gamma; CYP, cytochrome P450; FXR, farnesoid X receptor; LXR, liver X
receptor; ACC, acetyl-CoA carboxylase; and SREBP, Sterol regulatory element binding proteins. Upward pointing
arrow (↑) and downward pointing arrow (↓) represent an increase and a decrease in gene/protein expression or
numerical values, respectively.
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4.4. Anti-Inflammatory Effects

The liver has recently been regarded as an important immunologic and metabolic or-
gan [77]. Kupffer cells, innate lymphocytes, and many antigen-presenting cells are enriched
in the liver tissue, and their unique immune microenvironment is closely associated with
inflammatory reactions in the liver [78]. In particular, inflammatory processes are inevitably
involved in the development of various liver diseases, including viral infections, autoim-
mune hepatitis, alcoholic hepatitis, and nonalcoholic steatohepatitis (NASH) [78]. Thus,
therapeutic strategies that interfere with inflammatory markers, such as anti-tumor necrosis
factor (TNF)-α treatment (e.g., infliximab and etanercept) and interleukin-24 therapy, are
being investigated for the treatment of liver diseases [79,80].

The hepatic expression of several key inflammatory cytokines and chemokines, such as
TNF-α, interleukin (IL)-1β, IL-6, nitric oxide (NO), inducible nitric oxide synthase (iNOS),
cyclooxygenase (COX)2, C-C motif chemokine ligand (CCL)2, and CCL5, was downregu-
lated by the administration of Hyp during the inflammatory pathogenesis induced by CCl4
and a high-fat diet [34,38,53,60,76].

The neutralization of inflammatory markers by Hyp in hepatic tissue was accompanied
by marked improvement in histological findings from abnormal conditions, including hep-
atic inflammatory cell infiltration and Kupffer cell hyperplasia [34,38,53,76]. Hyp obtained
from Artemisia capillaris and Zanthoxylum bungeanum leaves displayed anti-inflammatory ef-
fects against CCl4 and high-carbohydrate/high-fat diet and alloxan-induced inflammation
via hepatic removal of oxidative stress, respectively [34,53].

Hyp also lowered hepatic inflammatory cell infiltrations through the amelioration of
hepatic oxidative stress induced by concanavalin A, high-fat diet, and alcohol [39,61,62].
In addition, the regulation of other MAPKs, NFκB, and apoptotic factors also suggests
that Hyp controls inflammation [38,53,60] (Table 4). In this respect, antioxidant, anti-
apoptosis, and the regulation of MAPKs and NFκB may be mechanisms that support Hyp
as a beneficial anti-inflammatory agent against hepatic inflammation.

Table 4. Anti-inflammatory activities of hyperoside (Hyp) in experimental models related to hepatic
inflammation.

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp/Artemisia
capillaris

CCl4-induced liver injury
in mice

50, 100, 200 mg/kg ↓Portal inflammation
↓Kupffer cell hyperplasia
↓hepatic iNOS, COX2 mRNA

and protein
↑hepatic HO-1 mRNA and protein

↑Nrf2 protein

[34]

Hyp CCl4-induced C57BL/6J
mice

200 mg/kg ↓hepatic TNF-α, IL-6 protein
↓hepatic inflammatory

cells infiltrations
↓hepatic p-p38, p-Erk protein

[38]

Hyp Concanavalin A-induced
Kunming mice

25, 50 mg/kg ↓hepatic inflammatory
cells infiltrations
↓hepatic MDA
↑hepatic SOD

[62]

Hyp/Zanthoxylum
bungeanum leaves

High-carbohydrate/high-
fat diet and

alloxan-induced male
Kunming mice

200 mg/kg ↓hepatic NO, iNOS
↓lymphocytic inflammation
↑hepatic SOD, GSH, CAT

↓hepatic MDA
↓hepatic p-p65

↓hepatic p-p38, p-Erk1/2, p-JNK
↑hepatic Bcl-2

↓hepatic Bax, caspase-3,9,
cytochrome c

[53]
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Table 4. Cont.

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp ApoE-/- mice fed high-fat
diet

200 mg/kg ↓hepatic inflammatory
cells infiltrations
↓hepatic MDA

↑hepatic SOD, GSH-Px

[61]

Hyp High-fat diet-induced
male C57BL/6 mice

50 mg/kg ↓hepatic F4/80 positive areas
↓hepatic TNF-α, IL-1β, IL-6, CCL2,

CCL5, iNOS mRNA

[74]

Hyp Diabetes-induced rats 10 mg/kg ↓hepatic TNF-α protein
↓hepatic NFκB protein

↓hepatic inflammation score

[60]

Hyp Kunming mice given 50%
alcohol

25, 50 mg/kg ↓hepatic inflammatory
cells infiltrations
↓hepatic MDA

↑hepatic SOD, GSH

[39]

CCl4, carbon tetrachloride; phosphatase 2; TNF-α, tumor necrosis factor-alpha; iNOS, inducible nitric oxide
synthase; COX2, cyclooxygenase2; HO-1, heme oxygenase-1; Nrf2, nuclear factor erythroid 2-related factor 2;
IL-6, interleukin-6; Erk, extracellular signal-regulated kinase; NO, nitric oxide; SOD, superoxide dismutase;
GSH, glutathione; CAT, catalase; MDA, malondialdehyde; JNK, c-Jun N-terminal kinase; Bcl-2, B-cell lymphoma;
Bax, Bcl-2-associated X protein; CCL, C-C motif chemokine ligand; and NFκB, nuclear factor kappa-light-chain-
enhancer of activated B cells. Upward pointing arrow (↑) and downward pointing arrow (↓) represent an increase
and a decrease in gene/protein expression or numerical values, respectively.

4.5. Antifibrotic Effects

Liver fibrosis is a vital process in wound healing that occurs during liver injury;
however, it is associated with the deformation of normal hepatocytes, collagen deposition,
and overaccumulation of the extracellular matrix (ECM) [81]. Fibrosis reaction and severity
largely influence the overall prognosis, exacerbation, and management of CLD because
liver stiffness is a significant condition that increases the risk of liver-related disorders and
all-cause deaths [82–84]. Hence, blocking fibrogenesis pathways may play a crucial role in
managing patients with CLD.

Hepatic stellate cell (HSC) activation is a common process in the pathogenesis of
liver fibrosis, which subsequently triggers the excessive deposition of ECM in liver tissue.
Regulation of HSC proliferation and activation is suggested to be a key therapeutic strategy
that prevents the progression of hepatic fibrosis in different liver disorders. Hyp inhibits
the proliferation of LX-2 human HSC line via apoptosis induction and intracellular ROS
reduction [85]. The inhibition of LX-2 cells by Hyp was found to induce significant down-
regulation of α-smooth muscle actin (α-SMA) and collagen I mRNA and protein expression,
which increased during HSC activation [85].

Similar results were observed in the presence of Hyp in transforming growth factor
(TGF)-β-induced LX-2 cells [55]. TGF-β signaling is often referred to as an important
pathway involved in different stages of liver disease progression, and high levels of TGF-β
may be a cause and consequence of liver damage [86]. With regard to TGF-β overactivation
in hepatic tissue induced by a high-fat diet and heart failure, Hyp significantly inhibited
hepatic TGF-β expression. The inactivation of TGF-β signaling by Hyp may contribute to
the prevention of liver cirrhosis and cancer initiation [86].

In addition to targeting TGF-β, Hyp improved histological findings exhibiting a
hepatic fibrotic area increased by different etiologies, such as CCl4, a high-fat diet, and
heart failure in mice and rats [35,55,76]. In particular, Hyp ameliorated CCl4-induced
liver fibrosis and heart failure-induced hepatic fibrosis, accompanied by hepatocellular
antioxidant defenses [35,59]. Since Hyp lowered the ROS levels in LX-2 cells, and various
antioxidants are currently used to treat liver fibrosis, the antifibrotic effects of Hyp via
targeting oxidative stress should be explored to counteract liver fibrosis (Table 5).
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Table 5. Antifibrotic activities of hyperoside (Hyp) in experimental models related to hepatic fibrosis.

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp LX-2 cells 2 mM/L ↓cell proliferation
↑cell apoptosis rate

↑proapoptotic genes (Bcl-Xs, DR4,
Fas, FasL)

↓antiapoptotic genes (A20, c-IAP1,
Bcl-XL, RIP1)

↓α-SMA, collagen I mRNA
and protein

↓intracellular ROS
↓TNF-α-induced NFκB p65 DNA

binding (by Hyp 1mM/L)

[85]

Hyp CCl4-induced male
Kunming mice

200, 400 mg/kg ↓serum MAO
↓hepatic MAO

↓fibrosis around central vein
↓hepatic MDA

↑hepatic SOD, GSH-Px, CAT
↑hepatic Nrf2

[35]

Hyp High-fat diet-induced
male C57BL/6 mice

50 mg/kg ↓hepatic fibrotic area
↓hepatic Col1A1, CTGF,

TGF-β mRNA

[74]

Hyp Heart failure-induced
liver fibrosis in male

Wistar rats

100, 200 mg/kg ↓hepatic hydroxyproline
↓hepatic fibrosis area

↓hepatic α-SMA, collagen I, CTGF
mRNA and protein

↓hepatic MMP2, MMP9 mRNA
and protein
↓hepatic TGFβ1,

p-Smad 2,3 protein

[55]

Hyp Heart failure-induced
liver fibrosis in male

Wistar rats

200 mg/kg ↓hepatic hydroxyproline
↓hepatic TGF-β1, CTGF, TIMP1,

MMP1, MMP2, collagen III mRNA
and protein
↓hepatic MDA

↑hepatic SOD, GSH-Px

[59]

Hyp TGF-β1-induced LX-2
cells

2 mM ↓α-SMA mRNA and protein
↓collagen I mRNA and protein

↓p-Smad 2,3 protein

[55]

Bcl-2, B-cell lymphoma; DR, death receptor; FasL, Fas ligand; c-IAP1, cellular inhibitor of apoptosis protein1;
RIP1, receptor interacting protein; α-SMA, α-smooth muscle actin; TNF-α, tumor necrosis factor-alpha; NFκB,
nuclear factor kappa-light-chain-enhancer of activated B cells; CCl4, carbon tetrachloride; MAO, monoamine
oxidase; MDA, malondialdehyde; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; CAT, catalase;
Col1A1, collagen type 1 alpha 1; CTGF, connective tissue growth factor; TGF-β, transforming growth factor-beta;
and MMP, matrix metalloproteinase. Upward pointing arrow (↑) and downward pointing arrow (↓) represent an
increase and a decrease in gene/protein expression or numerical values, respectively.

4.6. Anticancer Effects

Hepatocellular carcinoma (HCC) is a predominant tumor type that develops from
hepatocytes and is a major cause of cancer-related mortalities [87]. Due to late diagnosis,
frequent recurrence, and impaired liver function, HCC has a poor prognosis with high mor-
tality and a low therapeutic rate [88]. In particular, the HCC disease burden is considerable
in areas with a high prevalence of HBV and HCV infection because the majority of HCC
cases are attributed to chronic hepatitis B and C [89,90].

Moreover, the number of patients with NASH-related HCC is steadily increasing in
developed countries. However, the therapeutic efficacy of current chemotherapeutic agents
remains limited, and recurrence after HCC treatment often occurs. Hence, preemptive
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management and modification of HCC-predisposing factors to reduce HCC development
may serve as an effective option. Furthermore, complementary therapy to alleviate the
adverse effects of anticancer drugs and enhance their efficacy is needed.

First, Hyp significantly suppressed the survival rates of both HepG2 and insulin-
resistant HepG2 cells [75,91,92]. In particular, the cytotoxic effects of Hyp against HepG2
cells may involve cell cycle arrest at G0/G1 through the downregulation of cyclin-D-1 and
c-Myc expression, and apoptosis induction via the activation of p53/caspase pathway [91].
Moreover, Hyp attenuates the expression of bone morphogenetic protein (BMP)-7, p-protein
kinase B (AKT), and phosphoinositide 3-kinase (PI3K), which are involved in inducing
metastasis, along with the antiproliferation of HCC [91].

Second, Hyp may be a promising compound against HBV-related HCC. PLC-PRF-
5 cells, the Alexander hepatoma cell line, grow continuously and secrete HBV surface
antigens [93]. Hyp significantly inhibited HCC growth and increased the average survival
rates of BALB/c mice injected with PLC-PRF-5 cells [94]. More importantly, Hyp treatment
decreased tumor migration and invasion in PLC-PRF-5 high metastatic cells, and this
antimetastatic effect of Hyp was associated with the regulation of various factors involved
in the epithelial–mesenchymal transition (EMT) by increasing hepatic E-cadherin and
suppressing the expression of quaking, circRNAs, and hepatic vimentin [94]. Eventually,
Hyp downsized metastatic lung nodules in an HCC in vivo model [94]. Hence, Hyp may
affect metastatic properties, such as migration, the invasion of other organs, the promotion
of HCC EMT, and tumor growth (Table 6).

Table 6. Anticancer activities of hyperoside (Hyp) in experimental models related to hepatocellular
carcinoma (HCC).

Hyperoside/Source Experimental Model Dose Results/Molecular Mechanisms References

Hyp PLC-PRF-5 hepatoma
cells

20, 50 µM ↓cell migration
↓cell invasion
↓quaking
↓circRNAs

[94]

Hyp BALB/c mice injected
with PLC-PRF-5 cells

50, 100 mg/kg ↓tumor growth
↑survival times

↓metastatic lung nodules
↓hepatic quaking
↓hepatic vimentin
↑hepatic E-cadherin

[94]

Hyp Insulin-resistant
HepG2 cells

10 µM ↓cell survival rate [75]

Hyp HepG2 cells 10, 20, 40, 80 µM ↓cell survival rate
↓BMP-7 mRNA and protein
↓cyclin-D-1 and c-Myc
↑G0/G1 arrest
↓p-AKT, PI3K

[91]

Hyp HepG2 cells 20, 50 nmol/L ↓cell survival rate
↑nuclear shrinkage
↑cell apoptosis rate
↑p53 protein

↑hepatic caspase-3,9 protein

[92]

BMP-7, bone morphogenetic protein-7; AKT, protein kinase B; and PI3K, phosphoinositide 3-kinase. Upward
pointing arrow (↑) and downward pointing arrow (↓) represent an increase and a decrease in gene/protein
expression or numerical values, respectively.

5. Safety of Hyperoside

According to recent studies, a few studies have investigated the safety of Hyp [14,95].
In 40 healthy BALB/c mice, Hyp treatment (5,000 mg/kg, intragastrical route once) did
not result in mouse poisoning, death, acute toxicity, or genotoxicity [96]. In addition to the
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toxicity evaluation after administration of high-D-ose Hyp in mice, Wistar rats were orally
administered with Hyp (30, 175, and 1000 mg/kg) for 6 months to investigate the long-
term toxicity of Hyp [97]. No significant changes in rat behavior, food-intake, and weight
gain were observed in the presence of chronic treatment of Hyp by gavage. However,
renal interstitial inflammatory cell infiltration was observed in about 20% in 20 rats of the
high-D-ose (1000 mg/kg) group of Hyp.

At the end of the recovery period of 1 month, the renal pathological injuries were
gradually diminished. Although Hyp may induce renal toxicity, this can be reversible
after withdrawal of the compound. In addition, Hyp treatment (8, 65, and 500 mg/kg)
for 38 weeks induced no abnormal reactions in symptoms, blood tests, and histological
examination in Beagle dogs, and mild toxicity of the kidney and liver was negligible and
reversible [98]. Other teams found that Hyp can contribute to the alleviation of renal
cellular aging and injury in NRK-52E cells and rats exposed to D-galactose [99] as well as
the protection of HK-2 (human renal proximal tubule cells) from high-glucose-induced
apoptosis and inflammation [100].

Thus, it is still controversial whether Hyp induces renal and hepatic toxicity, and
further studies to decide the appropriate dosages and treatment periods applicable to
clinical use are needed, particularly for patients with renal or hepatic dysfunction. In
terms of the impact of Hyp on fetal mice, 30 and 175 mg/kg Hyp treatment showed no
significant changes in fetal appearance and growth; however, high-D-ose Hyp (1000 mg/kg)
administration during 6–15 days after gestation significantly retarded the growth of fetus
(weight and the lengths of embryo and tail) of pregnant Wistar rats [101].

On the other hand, a recent study reported that Hyp (40 mg/kg) increased the body
weight of fetuses and decreased pregnancy loss in a rat model with recurrent pregnancy
loss [102]. Eventually, a proper administration of Hyp based on a safe dosage setting may
ensure that pregnant women can safely receive treatment depending on their indications.
Consequently, although Hyp, a dietary flavonoid, showed strong antioxidant and hepato-
protective potency, further evaluation of the safety of Hyp needs to be performed due to
the lack of evidence in experimental models.

6. Discussion

This review summarizes the beneficial activities of Hyp associated with liver disease
and the underlying signaling mechanisms in vitro and in vivo reported in experimental
studies. As illustrated in Figure 3, Hyp has been reported to exert hepatoprotective, antivi-
ral, antisteatotic, anti-inflammatory, antifibrotic, and anticancer effects. Hyp displayed its
pharmacological effects by regulating multiple mechanisms, including: (1) the depletion of
hepatocellular oxidative state through the modulation of Nrf2 and ATF3; (2) the regulation
of several anti-apoptotic factors; (3) the activation of hepatic metabolism on cholestasis and
lipogenesis; (4) the suppression of HSC activation; and (5) the inhibition of EMT induction
and the induction of cell cycle arrest (Figure 3).

For most liver pathologies, ROS are involved in different reactions that generate
hepatic steatosis, inflammation, and fibrosis, and an impaired redox system in hepatic tissue
can cause direct/indirect hepatic injury. Thus, enhancement of the antioxidant defense
system by Hyp, consisting of reduced ROS generation and increased ROS elimination in
hepatic tissue, may be one of the major molecular mechanisms of Hyp. In particular, major
sources of oxidative stress involved in the therapeutic targets of Hyp are derived from
CYP2E1 and the downregulation of the expression of antioxidant genes and Nrf2-regulated
phase II enzymes occurring in liver disorders.
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Figure 3. Pharmacological effects and underlying mechanisms of hyperoside (Hyp) in different
pathological conditions related to various liver diseases; CCl4, carbon tetrachloride; H2O2, hydrogen
peroxide; t-BHP, tert-butyl hydroperoxide; D-GalN, D-galactosamine; CYP, cytochrome P450; AST,
aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma glutamyl peptidase; ALP,
alkaline phosphatase; TC, total cholesterol; TG, triglyceride; NEFA, nonesterified fatty acids; MAPK,
mitogen-activated protein kinase; NFκB, nuclear factor kappa-light-chain-enhancer of activated B
cells; NO, nitric oxide; iNOS, inducible nitric oxide synthase; HSC, hepatic stellate cell; and EMT,
epithelial–mesenchymal transition.

As depicted in Figure 4, changes in the redox and detoxifying potential of hepa-
tocytes induced by drugs, toxic substances, diseases, and a high-fat diet can result in
oxidative-stress-D-erived liver injury, as demonstrated by the decreased formation of hep-
atic antioxidant enzymes and high levels of ROS in the liver. This liver damage related to
oxidative stress is represented by liver pathologies, such as hepatocyte apoptosis, hepatic
steatosis, Kupffer cell activation, monocyte aggregation, HSC activation, and ECM depo-
sition. Thus, the imbalance between antioxidant and pro-oxidant conditions can induce
progressive liver diseases, including simple fatty liver, NASH, toxic hepatitis, viral hepatitis,
and liver cirrhosis.

Hyp has been demonstrated to exert marked scavenging activities against ROS attack
occurring in hepatocytes induced by a variety of liver diseases. Particularly, Hyp displayed
beneficial activity against CYP2E1-D-ependent oxidative stress and hepatotoxicity induced
by drugs, such as paracetamol and cisplatin, which activated the upregulation of Nrf2
and the induction of Nrf2-targeted genes for detoxification in hepatic cells. Additionally,
Hyp regulated the oxidative-stress-induced alterations of MAPK and NFκB as well as
Nrf2, which impact transcription factors, thereby, resulting in the production of detoxifying
enzymes and inflammatory cytokines.
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Figure 4. Schematic diagram of hyperoside (Hyp), which improves various liver diseases by reducing
oxidative stress; CYP, cytochrome P450; Nrf2, nuclear factor erythroid 2-related factor 2; MAPK,
mitogen-activated protein kinase; NFκB, nuclear factor kappa-light-chain-enhancer of activated B
cells; HO-1, heme oxygenase-1; GCLC, glutamate–cystein ligase catalytic subunit; NQO1, NAD(P)H
quinone dehydrogenase 1; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6; ATF3, cyclic
AMP-D-ependent transcription factor; HSC, hepatic stellate cell; and ECM, extracellular matrix.

Eventually, Hyp showed biological actions in experimental models against oxidative
stress that disrupt the physiological liver function or normal architectural structure of liver.
These antioxidant actions of Hyp may be closely associated with its chemical structure,
particularly depending on the main structure and position of the galactose sugar moiety
attached to this compound. For instance, Hyp has been reported to exhibit excellent
antioxidant potency in in vitro and in vivo studies, and its activity was influenced by the
presence of galactose at the position C3 and β-hydroxyl groups at C4 and C6 as well as the
antioxidant structure–activity relationship (SAR) [44,60].

In addition, the hydroxyl groups in positions 3’ and 4’ of ring B of Hyp were found to
possess high *OH-scavenging activity [103]. Hence, further investigations on SAR analysis
of Hyp need to be performed to elucidate the SAR relationship of beneficial actions of Hyp
against liver diseases.

In addition to the Hyp-induced alterations of oxidative stress against liver injury, it
has been reported that several mechanisms are involved in the pharmacological effects
of Hyp responsible for ameliorating viral infection, steatosis, and HCC. Hyp exerted
antiviral effects via the inhibition of the formation of hepatic cccDNA along with the
suppressed Th1 cytokine secretion in mouse spleen lymphocytes. In regard to hepatic
steatosis, Hyp attenuated the lipid accumulation in liver by preserving hepatic lipid and
bile acid homeostasis via the regulation of PPARγ, FXR, LXRα, ACC, SREBP, cholesterol
7α-hydroxylase (CYP7A1), and CYP27A1. It has also been demonstrated that the anticancer
properties of Hyp are attributed to cell cycle arrest and the PI3K/AKT signaling pathway.
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Since the early 1960s, Hyp has been reported to be isolated from over 30 herbal plants
via various extraction technologies; however, Hyp involved in the effects for the treatment
of liver diseases in the present study has been isolated from eight species of medicinal
plants: Hyp derived from Artemisia capillaris and Zanthoxylum bungeanum showed hepato-
protective and anti-inflammatory effects; Hyp obtained from Abelmoschus manihot exerted
hepatoprotective and antiviral effects; Hyp from Zanthoxylum schinifolium, Apocynum vene-
tum, Canarium album, and Cuphobia nematocypha showed hepatoprotective activities; and
Hyp from Hypericum patulum had antisteatotic effects.

Among them, further investigation is required to evaluate the role of Hyp as an active
constituents of Artemisia capillaris—a well-known herbal plant frequently used for treating
liver disease [104]. In addition, based on above medicinal plants containing Hyp, further
studies on efficient and economic extraction methods maximizing the purity and yield
are needed [14,95]. Hence, Hyp may be an active compound present in various herbal
plants that can be widely applied in clinical settings owing to its hepatoprotective, antiviral,
antisteatotic, anti-inflammatory, antifibrotic, and anticancer activities.

In addition, the antioxidant properties of Hyp can be extended to the suppression
of glycative stress, which can take place in various liver diseases [105]. Although Hyp
attenuated advanced glycation end-products (AGEs) in ECV304 bladder cancer cells and
suppressed apoptosis and necrosis in AGEs-induced podocytes, there still exists no study
describing the relationship of antiglycant effects of Hyp with liver disorders [106,107]. Thus,
relevant further studies need to be performed to strengthen and support pharmacological
effects of Hyp in liver disorders.

This review provides evidence for the use of Hyp in various liver diseases. Most
liver diseases, such as NAFLD, DILI, hepatitis, and liver cirrhosis, are closely associated
with oxidative-stress-induced injury, particularly in the early stages of hepatic disorders.
Hence, Hyp can improve liver function and reverse pathological changes, which are mainly
mediated by antioxidant signaling.

7. Conclusions

Hyp can serve as a potential therapeutic agent against various hepatic pathological
changes, including liver injury, steatosis, viral infection, inflammation, fibrosis, and cancer,
mainly by reducing oxidative stress, inhibiting apoptosis, and regulating the lipid and
cholesterol metabolism. In particular, the present review highlights the multipotent an-
tioxidant mechanism of Hyp, and these antioxidant properties can be useful in mitigating
hepatic disorders but not for cancer. Therefore, Hyp can be considered to be a beneficial
compound that exhibits a wide range of biological actions with minimal hepatotoxicity in
various liver diseases.
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