
ARTICLE

Evaluating a therapeutic window for precision
medicine by integrating genomic profiles and
p53 network dynamics
Minsoo Choi1,3, Sang-Min Park1,2,3 & Kwang-Hyun Cho 1✉

The response variation to anti-cancer drugs originates from complex intracellular network

dynamics of cancer. Such dynamic networks present challenges to determining optimal drug

targets and stratifying cancer patients for precision medicine, although several cancer gen-

ome studies provided insights into the molecular characteristics of cancer. Here, we intro-

duce a network dynamics-based approach based on attractor landscape analysis to evaluate

the therapeutic window of a drug from cancer signaling networks combined with genomic

profiles. This approach allows for effective screening of drug targets to explore potential

target combinations for enhancing the therapeutic window of drug responses. We also

effectively stratify patients into desired/undesired response groups using critical genomic

determinants, which are network-specific origins of variability to drug response, and their

dominance relationship. Our methods provide a viable and quantitative framework to connect

genotype information to the phenotypes of drug response with regard to network dynamics

determining the therapeutic window.
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Cancer is a multifactorial and highly heterogeneous disease
with diverse molecular and cellular properties across
tumors from different patients and within cancer cells

from the same patient1,2. This heterogeneity provides not only the
basis for personalized precision medicine but also represents a
major obstacle for its implementation. The development and
clinical application of biomarkers and matched targeted therapies
have advanced progress in precision medicine3. Advances in
molecular profiling and screening methodologies have led to the
development and approval of molecularly targeted therapies for
clinical use4,5. Despite positive responses in some patients, many
patients still fail to benefit from these targeted therapies. For
example, Herceptin is an approved ErbB-targeted drug. However,
only about half of the patients with ERBB2-amplified metastatic
breast cancer respond to Herceptin6. Unfortunately, this lack of
response is common for most current targeted therapies. There-
fore, improving precision medicine requires a better under-
standing of the underlying reasons for the variability in drug
responses.

The disappointing response rate of targeted therapies is partly
due to complex pathway behavior that undergo dynamic crosstalk
between in signaling networks, which can bypass the block
induced by drug. Such a bypass of the drug’s effects occurs
through the multiple feedback loops and alternative pathways
that can compensate for therapeutic impact7–9. In particular, the
hubs of signal transduction networks, such as the transcription
factor p53 and the kinases MAPK, and IKK, are critical mediators
that are important for cancer development and progression,
regulate numerous signaling pathways, and affect distinct
phenotypes10. Although several cancer genome studies provided
insights into genetic basis of cancer heterogeneity11–13, they did
not address the dynamic, network-specific origin of response
variation. Systems analysis of network dynamics using quantita-
tive mathematical modeling is an effective method to evaluate
drug perturbation, response variability, and the dynamic changes
of complex networks8,9,14–17. This approach facilitates compar-
isons of the impact of different therapeutic strategies. Previously,
we showed that functional states of cells and dynamics of bio-
molecular network within cells can be studied by attractor
landscape analysis to identify synergistic drug combinations18

and determine drug efficacy and synergism from analysis of the
dynamics of cancer cell line-specific networks19.

Identifying effective individual drugs and drug combinations
is only one part of the process for improving precision medicine.
Another important step is determining the optimal dose(s) of
the optimal drug(s)20. One benefit of precision medicine is more
cost-effective patient management by giving the appropriate
treatment at the optimal dose to each patient21. To accomplish
this goal, the balance between drug efficacy and safety must be
determined, yet this remains a challenging problem in drug
development. Knowledge of the therapeutic window, which is
the range of drug doses that treat disease effectively without
having toxic effects, is critical to achieving this balance22.
Despite the importance of the therapeutic window, many studies
evaluated the sensitivity of tumor cells to targeted drugs without
determining the effect of the drugs on normal cells, which is
essential for determining toxicity. This is true for both experi-
mental and mathematical analyses, including our previous
works, which predicted drug efficacy in tumor cells without
modeling the effect of the drugs on normal cells18,19. In addition,
many studies do not perform dose–response analysis, which is
also needed for determining potency and establishing the ther-
apeutic window.

In this study, we developed a computational framework in
which the probabilistic inhibition of a target is considered as an
effect of different doses of a drug. With this probabilistic model

that incorporates the response to levels of inhibition representing
different drug doses, we extended a Boolean simulation and
analysis framework18,19 to predict three clinically important
aspects of drug-mediated target inhibition in a cancer signaling
network: efficacy, potency, and toxicity. This approach takes a
step toward advancing precision medicine, because it builds on
previous drug efficacy studies by incorporating drug potency and
dose-related toxicity. We applied this method to the p53 reg-
ulatory network, using genomic profiles of cancer patients from
The Cancer Genome Atlas (TCGA) and cancer cell lines from
Cancer Cell Line Encyclopedia (CCLE)23,24 across tumor types.
Our extended model and analysis framework, which can evaluate
the therapeutic window of drugs on the basis of their effects on
the dynamic output of signaling networks, enabled an exploration
of potential drug combinations for enhancing the therapeutic
window and a new more informative stratification of cancer
genomic subtypes according to predicted drug responses. Thus,
our approach provides computational simulation results for
evaluating therapeutic window of a drug inhibiting the same
target across a variety of tumor types to advance progress in
precision cancer medicine.

Results
Network dynamics-based estimation of therapeutic window.
Individualization of dose is a critical for achieving precision
medicine and minimizing adverse responses. Generally, there is a
population dose that is selected to balance the benefits and risks
of adverse effects25. However, actual patient responses at this
population dose are variable. Some patients will not benefit from
the drug at this population dose or any dose. Some patients will
develop adverse effects at this dose but respond well to lower
doses, and others will have little or no response to the population
dose but benefit from higher doses. Therefore, an approach is
needed for exploring the diversity of drug responses and pre-
dicting the appropriate doses of drugs. In silico virtual experi-
ments that include systemic analysis of dose–response curves is
one approach to handling such complex questions. Such an
approach would enable rapid and effective examination of dif-
ferent concentrations of drugs and different combinations of
drugs at various doses before performing pre-clinical experiments
and clinical trials.

We developed such an approach that extends our network
dynamics-based framework18,19 by evaluating therapeutic win-
dows for individual drugs and drug combinations. Our approach
integrates cancer-specific genomic alterations and is independent
of tissue origin and cancer type; instead, cancer cell lines or
patients are specifically described by differentially wired networks
with distinct network topology that result from the genomic
alterations. Our systemic computational approach relies on six
steps (Fig. 1a): (Step 1) obtain functional genomic alterations
from a cancer genomics database such as CCLE and TCGA; (Step
2) construct cancer cell-specific network models by mapping the
functional genomic alterations on the interaction network for
each cell line or patient sample; (Step 3) simulate dose-dependent
perturbations for each network; (Step 4) score the responses
according to two values, one for efficacy (S1, S2, S3, or S4) and one
for potency and toxicity (O1, O2, or O3) and categorize the
responses according to their pairs (Sn,Om); (Step 5) evaluate the
therapeutic window for those dose-dependent perturbations
predicted from step 4 for each network; and (Step 6) screen
patients for optimal drug-target combinations according to their
personalized network responses and stratify patients on the basis
of dominant effects of genomic alterations on the outcome of
inhibition of specific targets (see Methods for a detail
description).
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Network dynamics-based analysis of p53 network for estima-
tion of therapeutic window. We sought to apply our approach for
analyzing the p53 network (Fig. 1b, left) that we used in our pre-
vious studies18,19. The p53 network model includes major
p53 signaling pathway components, multiple feedback loops and
crosstalk between them. In our extended analysis, we analyzed
network dynamics in response to dose-dependent perturbation by
changing the probability of target inhibition (“OFF” in the network
simulations), which is probabilistically implemented as “dose of
drug.” For each dose in the range of 0 to 1, we calculated the effect
as a ratio of network states that eventually converge to the cell death
phenotype (Supplementary Fig. 1 and see Methods). The ratio of 0
indicated that the dose did not converge on a cell death response in
any simulation and the ratio of 1 indicated that every simulation of
that dose produced a death response. Thus, the effects of target
inhibition are described by dose–response curves from which we
estimate efficacy (the maximal response) and potency (IC50, the

amount of target inhibition that produces a response halfway
between baseline and maximum). Based on the computational
simulation results, we generated dose–response curves from which
we estimated drug efficacy and potency of cancer networks (Fig. 1b,
right), and we evaluated the therapeutic window compared to
toxicity of control network.

Evaluating cell lines as tumor models by comparison of net-
work features. Next we performed a systematic comparison of
the networks in the tumors and cell lines to identify cancer cell
lines with the highest network similarity to those of cancer
patients (Fig. 1c). In our previous study19, we used genomic data
from the CCLE database for human cancer cell lines with wild-
type p53 and functional caspases. Then, we constructed cancer
cell-specific networks by mapping genomic information from
CCLE on the p53 network. In this study, we applied the same
approach to generate patient-specific p53 networks using

Fig. 1 Network dynamics-based estimation of therapeutic window and application to p53 network. a Overview of the 6 steps in application of network
dynamics-based estimation of therapeutic window for drug-target discovery and stratification of patients. b Dose–response curves (right) were obtained
from simulations of dose-dependent perturbations in the p53 regulatory network (left). Red and blue graphs denote dose–response curves of cancer and
control network, respectively. Efficacy and toxicity were calculated by maximum effects of dose–response curves in cancer and control network,
respectively. Potency was calculated by IC50 values of dose–response curves. Therapeutic window was calculated by comparing drug response curves
from cancer and control networks. c Evaluation cell lines as tumor models by comparison of network features according to genomic alterations from CCLE
(cell lines) and TCGA (patient samples). Functional genomic alterations were projected onto the nominal p53 network. Node status of the p53 network
was determined based on the genomic data, and assigned in a ternary fashion, such that node activity is either constantly activated (black), constantly
inactivated (white), or input-dependent (gray) (left). A systematic comparison of the networks in the tumors and cell lines is performed to identify cancer
cell lines with the highest network similarity to those of cancer patients by determining network similarity through correlation index with values from –1 to 1
(from red to blue, right). d Selection of cell lines and cancer networks that best match those of patient tumors (left) and genomic alteration profiles (right).
Cancer cell lines and patient tumors that have the same node activity profile were matched to an identical single network.
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genomic profiles of TCGA patients with breast, colon, or lung
cancer. Functional genomic alterations of cell lines and patient
tumors for lung, breast, and colon cancers were determined for 56
cell lines (CCLE) and 1,067 patient samples (TCGA) using the
method previously described19 (Supplementary Data 1). We
determined network similarity through correlation index with
values from −1 to 1. We found striking differences between
cancer cell-line models and most TCGA samples. Our analysis
showed that cell lines from the same type of cancer as those in the
patients were dissimilar. Furthermore, the differentially wired p53
networks demonstrated intra-cancer type heterogeneity and
cross-cancer type similarity. Thus, tissue of origin of the cancer or
cell line was not predictive of the properties of the p53 network.
We identified 17 distinct cancer-associated p53 networks (Fig. 1d
and Supplementary Data 1). For example, network 1 (NT_1)
represented three colon cancer cell lines RKO, SW48, and
SNU175, one lung cancer cell-line NCIH1341, and multiple
breast, colon, and lung cancers from patients. Therefore, we
represented the cells and tumors according to their differentially
wired p53 network rather than their type of cancer.

Validation of dose-dependent perturbation simulation. We
compared the sensitivities of the predicted perturbation responses
of the 17 cancer networks with the known drug response sensi-
tivities of the cell lines (Supplementary Data 2). The IC50 and
area under the curve (AUC) were obtained from Genomics of
Drug Sensitivity in Cancer (GDSC)26, and normalized growth
rate inhibition (GR) metrics27 were obtained from the GRbrowser
database28. These experimental values and the matched simulated
responses were classified as sensitive or resistant by specific
thresholds (see Methods). Comparing them, the cell line-specific
predicted sensitivities were in agreement with the drug sensitiv-
ities reported in both databases (Fig. 2a, b, upper). We demon-
strated that random predictions of simulated responses from
random networks, whose genomic alterations are randomly
generated, showed significantly weak correlations between the
experimentally observed and randomly predicted responses than
the cell line-specific predictions (p < 0.001, Wilcoxon rank sum
test, Fig. 2a, b, bottom).

We next validated simulated toxicity using the sensitivities of
the predicted perturbation responses of a control network
without any genomic alterations (Supplementary Data 2). We
assumed the network of MCF-10A cells, a nontumorigenic breast
epithelial cell line, as the control network. We used experimental
IC50 from the drug response study of MCF-10A29, and GR
metrics for MCF-10A from GRbrowser database28. In most cases,
our predictions of the control network were consistent with
experimental drug sensitivities (Fig. 2c).

To examine that our approach can be translated to real clinical
settings beyond a cellular level, we further validated the simulated
toxicity with clinical as well as pre-clinical studies (see Supple-
mentary Note). Considering the maximum tolerated dose (MTD),
which is the toxicity measurement for patients in clinical phase I30,
we calculated simulated MTD (sMTD) of the control network (see
Methods). We found that MTD of a BCL2 inhibitor is higher than
that of an AKT inhibitor, as sMTD of BCL2 perturbation is higher
than that of AKT perturbation in the control network. Toxicity
measured in animal studies can contribute to prediction for toxicity
in clinical study. The comparison with pre-clinical data using
mouse models showed positive correlations between the sMTD and
experimental dose for several drugs. Taken together, our simulation
approach can provide important information for estimating
toxicity in actual clinical tests.

To verify the combination effect of simulated perturbations, we
used experimental synergy scores from a DREAM challenge31,

values of which >0 were classified as synergistic combinations.
We obtained the synergy scores data for the inhibitors of AKT
and BCL2 in three cell lines that matched to our 17 distinct
cancer networks (Fig. 2d, upper left). To compare with combined
perturbation of AKT and BCL2 in the cancer networks, we
calculated the combination index (CI)32, values of which <1 are
synergistic combinations (Fig. 2d, lower left). The both resulting
CI and synergy scores showed synergism. In contrast, we
observed that CIs calculated from random networks were
enriched in no synergy (CI= 1) or antagonism (CI > 1)
(p < 0.001, Wilcoxon rank sum test, Fig. 2d, right).

Drug response categorization by selective control and optimal
control. To screening right drug targets for a cancer network, we
categorized the simulated perturbation responses on the basis of
efficacy, potency, and toxicity (see Methods). We classified the
efficacy of the responses into four selective control groups, S1–S4
(Fig. 3a, left). S1 represents a group with an effective response
produced by inhibition of the node and the link; S2 represents a
group with an effective response only produced by inhibition of
the node; S3 represents a group with an effective response only
produced by inhibition of the link; and S4 represents a group
without any effective response produced by inhibition of the node
or the link. Perturbations that produce responses in the S4 cate-
gory have no efficacy by inhibiting the node or its links. In the
case of combination drugs, we classified the drug responses by
examining whether above conditions were satisfied by at least one
drug of combination drugs. Next, we classified the toxicity and
potency of the responses into three optimal control groups,
O1–O3 (Fig. 3a, right). O1 represents a group with low toxicity at
all doses predicted from the control network compared to the
cancer network; this group has an optimal drug response with a
predicted wide therapeutic window. O2 represents a group with a
narrower therapeutic window than the O1 group due to toxicity
predicted with high drug doses in the control network but sen-
sitivity predicted with lose drug doses in the cancer network. O3 is
an undesirable response group with no therapeutic window; all
doses are predicted to produce a toxic effect from the control
network. From this pair of groups, a particular perturbation
response was categorized into one of 12 response categories based
on the selective control group and the optimal control from
(S1,O1) to (S4,O3).

We categorized all the simulated responses of inhibiting 6
nodes, 27 links from the nodes, and their combinations,
representing a total of 480 perturbations for each 17 distinct
cancer networks (see Methods; Supplementary Data 3). The
simulated potency, efficacy, and toxicity values were plotted in the
3-dimentional space (Supplementary Fig. 2). The results showed
that the responses to the various perturbations covered most of
the possible space (Fig. 3b). Most of simulated drugs lack a
therapeutic window while very few were predicted to have high
efficacy, high potency, and low toxicity. Among the 480
perturbations, 153 lacked efficacy (S4) in any cancer networks
(Fig. 3c). Of the 327 perturbations that had efficacy (S1–S3) in at
least one cancer network, only 70 perturbations also had low
toxicity (O1). Of the perturbations predicted to have toxicity, 44
perturbations were sufficiently potent to have a potentially safe
therapeutic window (O2). We defined (S1–S3,O1–O2) as desirable
(D) responses and the others as undesirable (U) responses.

By representing the (Sn,Om) values for the 480 perturbations for
a network on a triangle map, we can visualize and identify the
optimal drugs target or combination of targets (Fig. 3d, right). In
the triangle map, diagonal line represents the response categories of
single target, while the lower triangle area represents those of target
combinations: the upper left, lower right, and lower left regions
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representing node combinations, link combinations, and node-link
combinations, respectively. Combination results can be simply
analyzed in a dose–response curve (Fig. 3d, upper left) or analyzed
in a dose–response landscape, which represents responses of a
cancer network over those of the control network at each dose for
drugs (Fig. 3d, lower left and Supplementary Fig. 3).

To screening right patients for a drug, we defined the critical
determinants of a network to a drug as the minimum genomic
alterations that dominantly determined the drug response of the
network in terms of efficacy, potency, and toxicity (Fig. 3e, step 1),
while our previous study only evaluated the efficacy of drug
response19. For each cancer network, we generated the subnet-
works consisting of all possible combinations of the alterations in
each cancer network. After the simulations with a drug perturba-
tion, the dose–response curves from all the subnetworks, including
the control network, were analyzed in the efficacy–potency plot
(Fig. 3e, step 1, middle). We considered that some networks near
the original cancer network in the efficacy–potency plot have the
same drug response as the cancer network. The critical determinant
was identified as the minimum and common genomic alteration(s)

in these neighbor networks, which located within a certain distance
from the original cancer network (Fig. 3e, step 1, right and
Supplementary Fig. 4). After obtaining all the critical determinants
for cancer networks by repeating this procedure, dominance
relationship between critical determinants were tested by simulat-
ing the virtual network that includes both critical determinants
(Fig. 3e, step 2). Using the critical determinants and their
dominance relationship, we can predict the response of cancer
networks and stratify them (Fig. 3e, step 3).

Drug-target screening by networks for identifying the right
targets. We constructed triangle maps for the (Sn,Om) classifi-
cations of the perturbation responses for each cancer network
(Supplementary Data 4). From these maps, we could rapidly
eliminate the test space by identifying the responses predicted to
be clinically viable and also optimal drug-target combinations
with improved therapeutic windows. As an example, we highlight
responses in NT_8 and NT_9 (Fig. 4).

For perturbations of single nodes in NT_8, only AKT
perturbation showed a D response (O2) while all others lacked

Fig. 2 Comparison of perturbation simulation with database for drug response. a, b Comparison of predicted drug response with (a) IC50 and AUC from
GDSC data and b GR50, GRmax, and GR_AOC from GRbrowser data. Each value from database and simulation of corresponding cancer cell-specific
networks was categorized as sensitive or resistant according to a threshold. Prediction rates were calculated for selected drugs (upper panel). Correlation
coefficients were calculated between values from database and simulation of corresponding cancer cell-specific networks or 100 networks with random
alterations (bottom). c Comparison of predicted drug response between simulation results of the control network and experimental data of MCF10A cells.
Each sensitivity metric was normalized to its threshold for comparison. d Comparison of predicted synergistic effects with DREAM challenge data for
combination of AKT_1 and BCL2_2 compounds in HCC1187, MCF7, and MDA-MD-436 cell lines. (left). Synergy score over 0 is categorized as sensitive in
DREAM challenge data. Combination index was calculated from simulation of corresponding cell line-specific networks, and combination index under 1 is
categorized as sensitive. Combination index from simulation of 100 networks with random alterations was mostly 0, indicating no synergistic effect (right).
We used experimental values of the AKT inhibitor omipalisib or dactolisib, the BLC2 inhibitor navitoclax, the CYCE inhibitor RO-3306 or purvalanol A, the
MDM2 inhibitor CCT007093, the ATM inhibitor KU-55933 or TCS 2312, and the MDM3-p53 interaction inhibitor nutlin-3 depending on data availability.
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efficacy (S4) (Fig. 4a). Evaluation of the dose–response curve
revealed that AKT perturbation has a high potency and efficacy
but also exhibits toxicity in the control network (Fig. 4b). From
the triangle map, the combinations of AKT perturbation with
inhibitions of ATM, CYCE-RB link, and MDM2-E2F1 link were
identified as producing O1 response (Fig. 4b, A). The single
perturbations of these three targets showed no efficacy (Fig. 4b,
B–D). However, combination of one of them with AKT
perturbation reduced the toxicity, resulting in an enhanced
therapeutic window compared with single inhibition of AKT
(Fig. 4b, E–G). We also identified an effective combination
arising from a pair of ineffective single perturbations is
exemplified by node inhibition of WIP1 (Fig. 4b, I) and link
inhibition of MDM2-p53 (Fig. 4b, H), which individually showed
no efficacy (S4,O3). Their combination showed a D response
(O2), having high efficacy and potency with a therapeutic
window (Fig. 4b, J).

In contrast to the (S1,O2) classification of AKT perturbation in
NT_8, this perturbation was classified as (S1,O3) in NT_9 (Fig. 4c)
that shows high efficacy but no higher potency compared to the
control network and thus no therapeutic window (Fig. 4d, A).
However, several combinations with AKT perturbation showed D
responses compared to single perturbations (Fig. 4c). Combined
perturbations with inhibition of ATM (Fig. 4d, E) or MDM2-
E2F1 (Fig. 4d, G) resulted in an O1 response with low toxicity,
like as in NT_8. Combined perturbations with inhibition of WIP1
(Fig. 4d, C) resulted in an O2 response by higher potency than the
control network.

In NT_9, combined link inhibition of WIP1-ARF and AKT-
MDMX resulted in an optimal O1 response (Fig. 4d, J).
Individually, inhibition of these links was each in the undesirable
O3 category: Single WIP1-ARF perturbation was classified as
(S4,O3), because it lacked efficacy and toxicity, and single AKT-
MDMX perturbation was classified as (S1,O3), because it has high

Fig. 3 Target screening and patient stratification using drug response categorization. a Categorization of for according to “selective control” group as
S1–4 by efficacy using dose–response curves obtained from simulation of inhibition of a target node and its outgoing links (left). Categorization of responses
according to “optimal control” group as O1–3 by toxicity and potency by comparing to dose–response curves obtained from simulation of cancer and control
networks with inhibition of a target node or link (right). b All the drug responses from 17 cancer networks with 480 perturbations were plotted based on
efficacy, potency, and toxicity. Colors denote 12 drug response categories (Sn,Om). c Distribution of the 480 perturbations in cancer networks with regard
to the response categorization. d The example triangle map representing all the response categories of 480 drug perturbations to screen for optimal
targets for a single cancer-cell network. Each square on the triangle map represents the (Sn,Om) classification obtained from the dose-dependent
simulation for corresponding drug or drugs. The NA denotes the case of a link combination in which the two links were from the same node or the case of a
node-link mixed combination in which the link from a node were combined with that node. The graph shown in the upper left represents the dose–response
curve for corresponding drug or drugs. The graph in the lower left represents the dose–response landscape for corresponding drug combinations.
e Illustrative workflow to identify critical determinants and their dominance relationship for patient stratification. For each cancer network, we analyze
dose–response curves of all the subnetworks, including the control network, in the two-dimensional efficacy–potency plot (step 1). The critical determinant
is the common and minimum genomic alteration(s) among the networks exhibit the same drug response with the original cancer network. By determining
the effect of combinations of the genomic alterations to the drug response curve, we establish the dominance relationships among them (step 2). We can
predict the response of cancer networks and stratify them using critical determinants and their dominance relationship (step 3).
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efficacy and high toxicity (Fig. 4d, H and I). However, combined
perturbation of them showed high efficacy without toxicity
(S3,O1) (Fig. 4d, J).

The above selected examples demonstrated that our framework
can reveal various strategies for enhancing the therapeutic window
of a response by combining drugs. In addition, the dose–response
landscapes showed distinct dosing patterns; some are broad and
some are very narrow. A comparison of the dose–response
landscapes for ATM or MDM2-E2F1 combination with AKT in
NT_8 and NT_9 revealed how different cancer networks exhibit
different dose sensitivities even to treatments that are optimal for
both networks. The two combinations with AKT inhibition showed
broadly effective doses for each of the two targets in NT_8 (Fig. 4b,
E and G) in contrast to the therapeutic windows exhibited narrow
ranges of doses in NT_9 (Fig. 4d, E and G). In addition, the optimal
doses for combinations are also different: In NT_9, the combina-
tion of AKT-MDMX and WIP-ARF inhibition required a high
dose of AKT-MDMX inhibition but only a low dose of WIP-ARF
inhibition was needed (Fig. 4d, J).

Identification of critical determinant for defining the right
patient. We investigated whether critical determinants obtained
from the cell line-specific networks can stratify the patient-
specific networks by predicting D or U responses. We selected
AKT and WIP1 as single-node perturbations and p53-MDM2 as
single-link perturbation that showed D responses with ther-
apeutic windows in a subset of the cell line-specific networks
(Fig. 5a). Among the possible combinations of the above three
single perturbations, we selected AKT+WIP1, AKT+ATM,

and p53-MDM2+WIP1 perturbations that showed enhanced
therapeutic windows compared to each of these as single per-
turbations in a subset of the cell line-specific networks (Fig. 5a).

As illustrated in Fig. 3d, we obtained the critical determinants
of the cell line-specific networks for the selected three single and
three combination perturbations, and identified the dominance
relationship between them (Fig. 5b). For instance, in the case of
AKT perturbation, a network with activating alterations of BLC2
or MDMX always showed an U response, because these critical
determinants were the most dominant (denoted as Lv3). In the
absence of these alterations, a network with an inactivating
alteration of ATM or an activating alteration of MDM2 or CYCG
showed a D response (denoted as Lv2). A network without critical
determinants showed the same response as the control network,
which is an U response. Some critical determinants were
composed of a combination of genomic alterations such as
inactivating alterations of both ATM and ARF in the case of
WIP1 perturbation. These results suggested that drug responses
are not determined by a single genetic alteration but by multiple
genetic alterations and interactions between them.

We hypothesized that predicting drug responses based on the
dominance relationship of critical determinants is more accurate
than predicting responses based on a single biomarker. Conven-
tional methods of predicting drug responses used statistically
enriched genomic markers in a patient group with a similar
empirical response to the drug3. Using this approach, we
identified 5 conventional biomarkers for each perturbation by
selecting genomic alterations enriched in either groups of the 28
cell line-specific networks with D or U response (Supplementary

Fig. 4 Drug-target screening by cancer cell network responses to identify targets with therapeutic windows. Analysis of the 480 single and combination
perturbations in NT_8 (A, B) and NT_9 (C, D). a, c Triangle maps of the (Sn,Om) classification for NT_8 and NT_9. Capital letters in a and c correspond to
graphs in b, d, respectively. b, d Dose–response curves and dose–response landscapes for the selected single (A, B, C, D, H, I) and combination (E, F, G, J)
perturbations. Red and blue graphs denote dose–response curves of cancer and control network, respectively.
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Data 5). Next, we compared the performance of predicting
whether drug responses of the 137 patient-specific networks are
desirable (Supplementary Data 6). For all 6 perturbations, drug
response predictions by critical determinants and dominance
relationships were more accurate with higher sensitivity and
specificity than those predictions made by one of the conven-
tional genomic markers (Fig. 5c), indicating that our approach is
more appropriate to be translated clinically for patient stratifica-
tion according to network-specific origins of heterogenous drug
responses.

Accumulated clinical information on patients’ drug responses
and their genomic profiles can be used to contribute to the
identification of more comprehensive critical determinants and
dominance relationship. For instance, we re-identified the critical
determinants and their dominance relationships for AKT
perturbation in the 137 patient-specific networks, which were
expanded with additional determinants and dominance levels
compared to Fig. 5b (Supplementary Fig. 5). To demonstrate

patient stratification results obtained by our approach, we first
stratified the 137 patient-specific networks by hierarchical
clustering of their genomic information for comparison (Fig. 5d,
left). Although similarly clustered patients shared common
genomic alterations, their drug responses to AKT perturbation
were inconsistent. We next stratified these patient-specific
networks using the re-identified critical determinants and their
dominance relationships (Fig. 5d, right). The resulting clusters
were perfectly matched with the pattern of D and U responses,
indicating an ideal stratification. We found that a common
alteration in a large set of patients (e.g., activating alteration of
AKT) do not always dominantly determine a drug response.
Furthermore, patients with U responses may be resulted from
different critical determinants (e.g., activating alteration of E2F1
or MDMX), which can inform that different strategies are
required for each patient group to improve the drug responses.
These results indicated that patient stratification for drug
responses using critical determinants provides more detailed

Fig. 5 Prediction of drug response and stratification of patients based on critical determinants. a The selected 3 single and 3 combination perturbations
from the cell line-specific networks. b Critical determinants and their dominance relationship obtained from the cell line-specific networks. Upward pointing
triangle indicates an activating genetic alteration; downward pointing indicates inactivating genetic alteration. Red indicates D response; blue indicates U
response. Critical determinants at higher levels (Lv) are dominant over those at lower levels in determining the drug response. c Prediction of drug
responses in the patient-specific networks using statistically identified markers or the dominance relationship between critical determinants (CD).
d Stratification of patient-specific networks to the response of AKT inhibition based on unbiased genetic alterations (left) or on the dominance relationship
between critical determinants obtained from patient-specific networks (right). The first column shows D or U responses of patient-specific networks. The
second column shows group for each critical determinant. The remaining columns show genetic alterations in patient-specific networks (black: constantly
activated alteration, white: constantly inactivated alteration, gray: no alteration). Among the genomic alterations, critical determinants for each patient are
highlighted in colors (light blue: constantly inactivated alteration as an U response marker, dark blue: constantly activated alteration as U response marker,
red: constantly activated alteration as D response marker, pink: constantly inactivated alteration as D response marker). The cluster 1–15 are notated by the
critical determinants in Supplementary Fig. 5 while the cluster 16 has no critical determinant.
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and accurate information than that achieved with stratification by
common genomic alterations.

in silico basket trial based on the network dynamics for opti-
mal therapeutic strategies. To realize precision medicine, we
need to identify appropriate targets for intervention, identify
drugs with efficacy for those targets, optimize for safety and
toxicity, and determine which patients will benefit from the
therapy. Our framework identified three different strategies for
enhancing the therapeutic window by combination treatments:
improving efficacy in the cancer network, increasing potency in
the cancer network than the control network, or reducing toxicity
in the control network (Supplementary Fig. 6, Supplementary
Note, and Supplementary Data 7). Furthermore, we found that
selective inhibition of specific links between molecules in a net-
work may provide a path for further therapeutic improvement
(Supplementary Fig. 7 and Supplementary Note). Anti-cancer
drug of such selective link inhibition is still relatively uncommon,
although the p53-MDM2 inhibitor Nutlin-3 represents one
example33.

Compared to the current basket trial, our approach might be
applied to in silico basket trial (Fig. 6). The basket trials consider
cancer patients with identical genomic profile as one group for a
drug treatment regardless of their cancer types. These patient
groups are stratified by biomarkers that are statistically enriched
in common response groups (Fig. 6, left). For the first blue drug,
G2 and G3 exhibit U responses and alteration of C is common
between two groups. For the second yellow drug, G1 and G3
exhibit U responses and alteration of F is common between two
groups. For the third drug combination, G1 and G3 exhibit D
responses and alteration of F is common between two groups.
Using theses common biomarkers C and F, the patient groups
were classified.

On the other hand, our in silico basket trial considers not only
the genomic profile, but also the network dynamics of patients
through virtual experiments (Fig. 6, right): generating patient
group-specific networks by mapping of genomic profiles;
categorizing the simulated response of the networks for candidate
drugs; screening optimal drug target for each patient group;
screening optimal patient group for candidate drugs. For the first
drug, the alteration of A is a critical determinant for the D
response of NT_1. NT_2 also includes the alteration of A, but
NT_2 exhibits the U response due to the more dominant critical
determinant, which is the inactivated alteration of B, suggesting a
genetic origin of the drug resistance mechanism. Since NT_3
contains no critical determinant, the response of NT_3 is the
same as that of the control network. For the second drug, NT_1
and 3 exhibit the U response due to the alterations of D and E,
respectively, whereas NT_2 exhibits the D response due to the
alteration of B. In these cases, the alteration of B can be a critical
determinant for either U or D responses depending on the drug.
For the drug combination, NT_1 and 3 exhibit the D responses
for the combination drug due to the alterations of A and C,
respectively. Although NT_2 includes both alterations of A and
C, NT_2 exhibits the U response for the combination drug due to
the more dominant alteration of B. The patient groups were
classified using both the critical determinants and their
dominance relationships. We note that both first and combina-
tion drugs resulted in D responses, but the combination drug
treatment is more optimal for NT_1 considering its broader
therapeutic window than that of the first drug.

Although two approaches reached the same stratification
result, criteria to stratify were different: statistical biomarkers or
critical determinants for current or our approaches, respectively.
They resulted in different predictions for drug responses of new
patient group (Fig. 6, bottom). For this group with alterations of

Fig. 6 Overview of network dynamics-based evaluation of the therapeutic window and stratification of patients for advancing precision medicine. The
patients with different cancer types are clustered into groups, G1, 2, and 3, according to their genomic profiles. The current basket trial analyzes
relationships between the patient group’s genomic profile and given drug responses (left). On the other hand, our in silico basket trial analyzes the
dynamics of patient group-specific networks, NT_1, 2, and 3 representing G1, 2, and 3, respectively, through virtual experiments (right). The two
approaches lead to different drug response predictions for the new group, G4 (bottom).
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A, B, and F, the biomarkers identified by the current approach
predict D, U, and D responses against treatments of the first drug,
second drug, and combination of them, respectively; but their
response were U, D, and U, respectively, as predicted by the
critical determinants and their dominance relationship identified
by our approach. This comparison exemplifies that statistically
identified single genomic markers are insufficient to find origin of
variation in complex network for predicting drug responses. For
instance, the biomarker C and F identified by the current
approach actually does not affect network dynamics in response
to the drugs and their combinations. Taken together, our in silico
basket trials can identify optimal drug target with optimal dose
for each patient group and can stratify patients in detail according
to their network dynamics.

Discussion
Cancer precision medicine aims to provide the right dose of the
right drug for the right patient, based on the genetic profiles of
the cancer and the individual34. A key contribution of our study is
that we developed a framework to estimate therapeutic window
from the dynamic response of a signaling network. We applied
attractor landscape analysis to implement this framework. In our
approach, the therapeutic window is represented as the range of
amount for inhibiting the targeted node or link. We analyzed
drug response profiles and evaluated the therapeutic window of a
drug or two-drug combination based on the dynamics of the
patient-specific network generated with the patient’s genomic
profile. We then categorized the drug responses according drug
response curves, through which we identified drug efficacy,
potency, and toxicity. From the therapeutic window, we identified
which drug or combination of drugs, along with the optimal dose
or doses, is likely to be most effective for an individual patient.
We also determined network dynamics-based biomarkers, which
are genomic alterations that function as critical determinants of
the drug response and used the dominance between these
determinants to understand patient variability in drug response.
Based on these results, we proposed a method for patient strati-
fication to match the right drug to the appropriate patient group.

In silico modeling of drugs that target nodes can produce full
inhibition of the targeted node that blocks all the regulatory
functions (out-going links) of the target. However, full inhibition
of the target do not always lead to desirable results35. For
example, full inhibition of a node may have high efficacy and also
high toxicity. Many nodes in a network are connected to more
than one downstream target and selective inhibition of one of
these paths may have a better therapeutic profile. From a network
perspective, this selective inhibition may be possible through link
inhibition rather than node inhibition. Through the incorpora-
tion of selective control analysis, our framework enabled the
analysis of the effect of inhibition of nodes or links from the
nodes. We showed that our framework enabled the identification
of selective link inhibition rather than node inhibition to achieve
an enhanced therapeutic window. Another application of our
framework is the identification of drug combinations with
enhanced therapeutic windows compared to the windows of
either drug individually36. Combination treatments are particu-
larly attractive, because they tend to be effective at lower doses,
which can reduce toxicity and overcome resistance to high-dose
single-drug treatment. The purpose of the combination can be
broadly divided into two. Here again, our approach revealed that
many synergistic combinations involved link inhibition. Thus,
selective control analysis can predict synergistic treatment
strategies.

An important issue in cancer precision medicine is stratifica-
tion of patients by grouping tumors into clinically and

biologically meaningful subtypes according to the similarities
among their genomic or molecular profiles. Different approaches
based on various data sources have been proposed. Often, these
approaches result in a single statistically significant biomarker for
stratification of patients3. However, due to the intra- and inter-
heterogeneities of tumors, it is challenging to define an entire
tumor subtype on a single molecular event. Thus, efforts now
search for combinations of genomic driver events or network
modules to stratify patients. In this study, we used patient-specific
network analysis to define critical determinants of drug response
and the hierarchical relationship among them. With these
dominance-related critical determinants, we analyzed and
explained the diversity of drug responses. Indeed, patients with
the same predicted drug response did not correlated with patient
groups defined by conventional biomarkers, but these patients
correlated with grouped defined by critical determinants.

Although our framework represents a substantial advance in
performing in silico clinical trials, our research has several lim-
itations for implementation. First, we determined toxicity by
testing a single normal cell line without matching the normal cell
to the cell type of the tumor or of other normal types of cells. In
fact, toxicity can affect normal cells in the tissues with the tumors
or other organs, such as heart, liver and kidney. Our study does
not incorporate organ-specific toxicity. Second, we assumed that
the genetic network of the normal cell is stable, lacking genetic
variation. However, even normal cells have genetic variation37. A
future improvement would be to use individual variants from
each patient’s normal samples to construct distinct normal net-
works as controls for each person. Third, we evaluated only one
cancer-relevant network, the p53 network, and thus may miss
genetic variations that influence drug response. Future studies can
either analyze different cancer-relevant networks or expand the
p53 network to include other relevant networks.

Nevertheless, we expect that our approach will make an
important contribution to advancing precision medicine. Our
approach reflects the characteristics of cancer cells from the
viewpoint of network dynamics and predicts a therapeutic win-
dow, which brings the process a step closer to the implementation
of precision medicine than the existing methods3. As more
quantitative genomic data become available for diseases and
disease-associated cellular processes, our approach can be adap-
ted for different disease-relevant networks to investigate effects of
genomic alterations on response to disease treatment and identify
appropriate, patient-specific drug treatment. In addition, given
that cancers with common genetic and/or transcriptome profiles
exhibited similar drug responses23,38, our approach may guide
drug repurposing in cancers mapped to the same network based
on existing drug information for cancers mapped together or
simulated perturbation results in that network.

Methods
Boolean network modeling of the p53 network. The downregulation of the TP53
gene encoding p53 or mutations that impair p53 function are among the most-
common and best-characterized genomic alterations associated with cancer39. This
protein is a tumor suppressor that is a critical hub in cellular processes, such as
regulation of the cell cycle, the response to DNA damage, and induction of
apoptosis40. To investigate the dynamic process of drug responses with respect to
the p53 network including multiple feedbacks, we used a p53 network model taken
from an updated version of that in our previous studies18,19. It is a simplified
Boolean network model consisting of 16 nodes with multiple feedback loops
through p53 for analyzing the p53 network dynamics (Supplementary Data 8). In
our previous studies, we modeled the network dynamics using a deterministic
Boolean network with a set of logic equations defined on the basis of biological
evidence. In our p53 network model, each node is associated with a logic table that
determines the output node for a given input. The basal levels of the nodes and the
interaction weights between nodes were determined as the minimal integer values
that can represent the logical regulatory relationships in accord with previous
experimental observations. Network dynamics were modeled by updating the
Boolean functions, triggering system transits from the initial state to the final state,
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in which a network state is a collective binary representation of all variables. The
state of each node can be either ON (1) or OFF (0) at each time step. To compute
the network dynamics, we constructed a weighted sum logic with a weight for each
link and the basal level of each node. More details on the state transition logic,
together with the interaction weights and basal levels, are provided in Supple-
mentary Data 9. In this study, we extended the p53 network perturbation analysis
for investigating network dynamics in response to dose-dependent perturbation by
changing the effect of target inhibition, which is probabilistically implemented as a
dose–response curve.

Selection of the functional genomic data and mapping to p53 network. DNA
copy number, somatic mutation, and mRNA expression data were analyzed for all
the patients from TCGA and cell lines from CCLE within 3 distinct tissue origins
(breast, colorectal, and lung). The datasets were obtained using cBioPortal (https://
www.cbioportal.org/) and the listings are “Colorectal Adenocarcinoma (TCGA,
PanCancer Atlas)”, “Lung Adenocarcinoma (TCGA, PanCancer Atlas)”, “Breast
Invasive Carcinoma (TCGA, PanCancer Atlas)”, and “Cancer Cell Line Encyclo-
pedia (Novartis/Broad, Nature 2012)”. We selected 1,068 patients from TCGA and
56 cell lines from CCLE that have wild-type p53 and caspases. We consider all
available genomic data types in our analysis, including genome-wide DNA copy
number information and mutation data for genes associated with the p53 pathway.
To focus on mutations most likely to be functional, mutations in introns,
untranslated regions, flanking, and intergenic regions, as well as silent and RNA
mutations, were excluded. The CCLE database provides the number of reads per
base in the sequenced regions, so the number of bases covered was given by the
number of positions with one or more reads. To filter out events that were likely
non-functional, only genes with copy number alteration (CNA) that have con-
cordant changes in mRNA expression, when compared to wild-type cases, were
selected. In total, we curated 191 candidate functional alterations. These alterations
were considered in a binary fashion, such that an alteration either occurred or did
not occur in a given cancer cell line. The resulting set of functional genomic
alterations thus provides a concise genomic description of the cancer cell lines.

Functional genomic alterations were projected onto the p53 network. Node
status of the p53 network was determined based on the genomic data, and assigned
in a ternary fashion, such that node activity is either constantly activated (A),
constantly inactivated (I), or input-dependent (N). Differentially wired p53
networks were constructed by applying this mapping. For patients or cell lines have
the same alteration profiles, they are mapped to an identical single network.
Through this mapping process, 222 patient networks and 33 cell line networks were
uniquely constructed. Attractor landscape analysis for each network was performed
to calculate the basin of apoptosis states in which caspase is ON. Networks with the
basin of apoptosis larger than half were excluded, resulting in 137 patient networks
and 28 cell-line networks for following analysis. Among them, 17 common
networks were extracted. They include cancer cell line or patient-specific genomic
alterations and are independent of tissue origin and cancer type; instead, cancer cell
lines or patients are specifically described by differentially wired networks with
distinct network topology that result from the genomic alterations. The different
cancer cell lines or patients are subsequently clustered on the basis of their network
dynamics in response to the same pharmacological perturbations.

Targets for drug simulation in p53 network. For the drug simulation of single
node, we used 6 nodes (AKT, BCL2, CYCE, MDM2, WIP1, and ATM) that tar-
geted drugs were developing or being tested. For the drug simulation of node
combination, we used 15 combinations of these 6 nodes as drug targets. For the
drug simulation of single links, we used 27 outgoing links of the above 6 nodes as
drug targets. For the drug simulation of link combination, we used 297 combi-
nations of above 27 links as drug targets except for cases in which the two links
were from the same node. For the drug simulation of node-link mixed combina-
tion, we used 135 combinations as drug targets except for the cases in which the
link from a node were combined with that node.

Simulation of drug effect with different dose. The effect of drug was imple-
mented probabilistically at a dose from 0 to 18. If a dose of a drug is 1, then drug-
target node or link is fully inhibited by fixing the state of the node or weight of the
link as 0, respectively. If a dose of a drug is 0, then drug-target node or link
functions with the original network dynamics. If a dose of a drug is x between 0
and 1, then drug-target node or link is partially inhibited during the simulation
steps at the probability of x without a bias of patterning.

Drug response simulation. From an initial state, the logic for every node was
updated in 100 simulation steps to calculate the steady dynamics of the network
after previous 100 simulation steps of transient dynamics. We determined that
100 steps were enough to capture transient dynamics, because all trajectories of
initial states in the attractor landscape of the networks converge on their attractors
within 100 simulation steps. We defined the activity of a node as the average state
value in the steady dynamics. The phenotype of each initial state was categorized by
a set of activities. We defined phenotype as “cell death” if the activity of CASP3 was
higher than a threshold of 0.9, because a constantly increased level of caspase
indicates apoptosis41. Among all the possible initial states of a network, we

obtained the ratio of initial states that converged to the cell death phenotype. We
illustrated this procedure in Supplementary Fig. 1.

We obtained the dose–response curve of a network representing the ratio of
states producing the cell death phenotype by simulating a drug with a dose from 0
to 1 with an interval of 0.1. We normalized this curve by adjusting the value at dose
0 to 0. The resulting dose–response curve of a network for a drug is denoted as
f (x), where x is a dose of the drug in the range of 0 to 1. The corresponding
dose–response curve of the control network is denoted as g (x).

With a stochastic perturbation, the state of network transition between the
attractor without the perturbation and the other attractor with the perturbation,
represented as “ergodic set”23. Analysis of the ergodic sets constructed by the
simulations of different networks may help to account for differences in potency of
the different dose–response curves (Supplementary Fig. 8)

Measures for evaluating the dose–response curve. Efficacy is the maximal effect
of a drug and was calculated from a dose–response curve by maxðf xð ÞÞ. To evaluate
potency, we defined the IC50 of a drug response curve using linear approximation
as follows:

0:5� f ðx1Þ
f ðx2Þ � f ðx1Þ

þ x1; ð1Þ

where x1 or x2 is the largest or smallest dose before or after a drug response curve
crossing 0.5, respectively. If efficacy of a drug response curve is less than 0.5, we
noted that IC50 of the case as 1. Toxicity in normal cells was calculated as the
efficacy of a dose–response curve in the control network.

Validation of simulation. We obtained experimental IC50 and AUC values from
GDSC26, and compared to simulated IC50 and AUC, respectively. We obtained
GR50, Grmax, and GR area over the curve (AOC) values from Grbrowser28, and
compared to simulated IC50, efficacy, and 1-AUC, respectively. For comparison,
we categorized these values to sensitive or resistant by defining thresholds. The
experimental IC50 values were categorized by the threshold of 0.5 after normal-
izing the value of IC50 to the range of 0 to 1 using the information about the
minimum and maximum concentrations of the tested drug. The experimental
AUC values were categorized by the average value. The GR50 values were cate-
gorized by the threshold of 0.5. The drugs with infinite GR50 were excluded for
comparison. The Grmax values were categorized by the threshold of 0.5. The
GR_AOC values were categorized by the threshold of 0.5. The simulated IC50 and
AUC values were categorized by the threshold of 0.5 and the simulated efficacy
value was categorized by the threshold of 0.8 under the condition that the DNA
damage in the cell line-specific networks was OFF (0). The predictive rate for each
drug was calculated by comparing whether the simulated and experimental values
were sensitive or resistant in corresponding cell lines.

We further compared our cell line-specific predictions with random predictions
acquired from networks with randomized genomic alterations. We obtained
dose–response curves by simulating the effects of the inhibiting the targets on 100
networks with random alterations.

To validate drug combination effects, we obtained synergy scores of drug
combinations from DREAM challenge31. For the comparison, a combination index
was calculated from the IC50 values from simulating A, B as follows:

CI ¼ IC50A; B
IC50A

þ IC50A; B
IC50B

ð2Þ

A CI value of less than 1 indicates a synergistic effect, 1 indicates an additive
effect, and a value greater than 1 indicates an antagonistic effect.

Drug response categorization. For drug response categorization, we defined an
efficacy test as max f xð Þ� �

> 0.8, a toxicity test as max f xð Þ� ��maxðg xð ÞÞ > 0.5, and
and a potency test as existence of x that satisfies f xð Þ � g xð Þ> 0:5. We clustered the
simulated drug responses into selective control categories based on the efficacy test
indicating the level of response by perturbing specific nodes or links in the network,
and optimal control categories based on potency and toxicity tests indicating dif-
ferences in responses between cancer and normal networks. The drug responses of
cancer-specific networks were simulated under the condition that the DNA damage
in the cell line-specific networks was ON (1). With 4 possible selective control
categories and 3 possible optimal control categories, we can classify the responses
to inhibition of specific targets into 12 groups (S1,O1)–(S4,O3). If a drug targeting a
node satisfies the efficacy test, the category for selective control is S1 or S2,
depending on if a drug targeting a link of the node satisfies the efficacy test or not.
If a drug targeting a node do not satisfy the efficacy test, the category for selective
control is S3 or S4, depending on if a drug targeting a link of the node satisfies the
efficacy test or not. If a drug satisfies the toxicity test, the category for optimal
control is O1. Otherwise, category for optimal control is O2 or O3, depending on if
the drug satisfies the potency test or not. In total, we classified the drug response
into 12 categories. We marked the 6 categories with S1/S2/S3 and O1/O2 as D
responses, and the rest, any with S4 or O3 as U responses. The therapeutic window
could be estimated as difference between simulated minimum effective dose
(sMED) and simulated maximum tolerate dose (sMTD), which were calculated by
doses reaching a threshold 0.25 from cancer and control networks, respectively.
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Therapeutic window for combination drugs. To identify therapeutic windows,
we simulated drugs in a combination set with different doses and dose–response
landscape can be obtained as f(x,y), where x and y are doses for two drugs. We
visualized the therapeutic window by calculating f ðx; yÞ � g x; y

� �
as optimality.

Identification of critical determinant and dominance relationship. We defined
the critical determinant of the response of a cancer network to a drug as the
minimum genomic alterations that dominantly determined the response. The
critical determinants were obtained as follows: (1) generate subnetworks with all
possible combinations of genomic alterations in the original cancer network;
(2) obtain dose–response curves through drug simulations from all the subnet-
works and the control network; (3) plot a two-dimensional efficacy–potency map
representing all the dose–response curves; (4) obtain a set of networks near the
original cancer network in the efficacy–potency plot, for which the distance to the
original network is less than 0.1, that exhibited the same drug response curve;
(5) obtain the common and minimum genomic alteration(s) in this set of networks.
These minimum genomic alterations are the critical determinants. We exemplified
all the possible cases of identifying the critical determinants for a network with two
genomic alterations in Supplementary Fig. 4.

After obtaining all the critical determinants for cancer networks by repeating
this procedure, we obtained a multi-level dominance relationship between the
critical determinants as follows: (1) generate each test network for every
combination containing one desirable and one undesirable critical determinants;
(2) obtain dose–response curves through drug response simulations of all the test
networks; (3) examine which of the two critical determinants is more dominant by
determining whether the response of a test network is desirable or undesirable; (4)
sort all the critical determinants so that the more dominant critical determinant is
in a higher position; (5) classify the critical determinants in the lowest position as
level 1 and the critical determinants in the higher position as the higher level.

Statistics and reproducibility. A Wilcoxon rank sum test was performed to
calculate the statistical significance of the difference in correlation coefficients
between random predictions and cell line-specific predictions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its supplementary files).

Code availability
The simulation codes written in Matlab and Boolean network datasets are provided in
the Zenodo repository https://doi.org/10.5281/zenodo.697923742.
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