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Abstract: Recently, we proposed a Spectral Domain Sparse Representation (SDSR) approach for
the direction-of-arrival estimation of signals incident to an antenna array. In the approach, sparse
representation is applied to the conventional Bartlett spectra obtained from snapshots of the signals
received by the antenna array to increase the direction-of-arrival (DOA) estimation resolution and
accuracy. The conventional Bartlett spectra has limited dynamic range, meaning that one may not
be able to identify the presence of weak signals in the presence of strong signals. This is because,
in the conventional Bartlett spectra, uniform weighting (window) is applied to signals received by
various antenna elements. Apodization can be used in the generation of Bartlett spectra to increase
the dynamic range of the spectra. In Apodization, more than one window function is used to
generate different portions of the spectra. In this paper, we extend the SDSR approach to include
Bartlett spectra obtained with Apodization and to evaluate the performance of the extended SDSR
approach. We compare its performance with a two-step SDSR approach and with an approach where
Bartlett spectra is obtained using a low sidelobe window function. We show that an Apodization
Bartlett-based SDSR approach leads to better performance with just single-step processing.

Keywords: direction-of-arrival (DOA) estimation; sparse representation; beamforming; apodization;
window function

1. Introduction

The origins of direction-of-arrival (DOA) estimation research can be traced back to
World War II. Bartlett’s method [1] is one of the earliest DOA estimation techniques that
is still in use today. Bartlett’s method is successful in estimating DOA in single-emitter
scenarios. In multiple-emitter scenarios, Bartlett’s method becomes biased as the angular
spacing between emitters becomes small. In small angular separation scenarios, a high-
resolution DOA estimation technique is desired for unbiased estimates.

The multiple signal classification (MUSIC) [2] algorithm is a widely used high-
resolution DOA estimation algorithm. The MUSIC algorithm provides a method to estimate
the DOAs of multiple emitters in a single scene at a high resolution and with a large success
rate. The MUSIC algorithm has many advantages compared to classic DOA estimation
techniques such as Bartlett’s method, though it has some drawbacks of its own. In scenar-
ios with a low number of snapshots being utilized as well as in cases with low angular
separation between emitters, MUSIC’s performance begins to suffer and the algorithm fails
to resolve signals [3].

Sparse representation and its minimization capabilities have also made it a popular
tool for DOA estimation. Many examples of sparse-representation applications for DOA
estimation can be found in the literature. Oftentimes, sparse representation is applied in
the data domain to the covariance matrix [4–15]. Other recent popular uses of sparse repre-
sentation for improved DOA estimation include the use of Bayesian Learning [16–22] or
co-prime and nested arrays [23–30]. Recent work focusing on the application of interpola-
tion to decrease the off-grid effects of sparse representation has also been presented [31–33].
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While these referenced papers present differing methods for applying sparse representa-
tion, they all show the clear advantage that the use of sparse representation provides for
DOA estimation performance.

In [34], we presented a sparse-representation approach for DOA estimation that
utilizes Bartlett’s method as a forward model and starting point. We call this approach the
Spectral Domain Sparse Representation (SDSR) method. The SDSR method is based on the
assumption that the Bartlett spectra computed using the received signals is a superposition
of the Bartlett spectra of individual RF emitters. The superposition assumption allows us
to create a dictionary matrix of Bartlett spectra. We can then compare a Bartlett spectra of
interest with this dictionary matrix using sparse representation to achieve DOA estimation
performances with increased resolution and accuracy. While there are other approaches
that combine beamforming and sparse representation such as [35], the SDSR method differs
from others as we focus solely on the major lobes of the Bartlett spectra and use those as a
starting point for sparse representation. This helps us to mitigate off-grid errors.

In [34], we focused solely on scenarios where all signals had equal strength. We
showed that the SDSR method outperforms the MUSIC algorithm when angular separation
between signals is small, SNR is low, and a small number of snapshots are used for DOA
estimation. When there is a large dynamic range amongst signals in a given environment,
the performances of many DOA algorithms suffer. Often, the weaker signals are buried in
noise and cannot be accurately estimated. This issue is apparent with Bartlett’s method,
where the major lobe of the strong signal oftentimes encompasses that of the weaker signal.
As many real-world scenarios involve signals of differing strengths, DOA algorithms robust
to signals with a large dynamic range are of interest.

Instances of DOA algorithms robust to signals with a large dynamic range can be
found throughout the literature [36–38]. In [36], the extended noise subspace of the MUSIC
algorithm is utilized to estimate the DOA of weak signals in the presence of strong inter-
ferers. Reference [37] focused on signals with large power differences that are also closely
spaced. The eigen spatial spectrum was utilized in this proposed approach. In [38], an
iterative approach that uses digital beamforming was proposed to first estimate the DOA
of the strongest signal and then the weaker signals follow after.

In our previous work, we used the conventional Bartlett’s method, where equal
weighting is applied to the signal received at each antenna element. Therefore, it can
be said that we applied a uniform window function. This uniform window function is
insufficient at estimating signals with a large dynamic range as the weaker signal is often
buried in the sidelobes of the stronger signal. While there are other window functions that
could be applied to the Bartlett spectra (Chebyshev, Hamming, Kaiser, etc.), these window
functions effectively reduce the aperture size and can lead to decreased performance when
compared with the uniform window function. In this work, we propose the use of a
mixed window approach that should maintain the performance of the uniform window
approach while also possessing the capability to resolve signals with a large dynamic
range. This mixed window approach is also commonly referred to as Apodization [39].
In this work, we present a method for extending the SDSR method for scenarios with
signals with large dynamic ranges by applying Apodization to Bartlett’s method. While
multiple window functions can be used in Apodization, we use just two window functions
in this work: the uniform window and Chebyshev window. We show that utilizing
Apodization with the SDSR method is straightforward and provides promising results.
Using Monte Carlo simulations, we demonstrate that the extended SDSR method that
utilizes Apodization is both efficient and accurate at estimating DOA for signals with
large dynamic range. We compare the performance of the Apodization extended SDSR
method with the single-windowed SDSR approach, where a low-sidelobe Chebyshev
window is applied to Bartlett’s method. We also compare the Apodization approach
with a two-step SDSR modification that requires running the SDSR method twice and
subtracting strong signal information to obtain information about weak signals. We show
that the Apodization SDSR modification has a better performance than the windowed
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SDSR modification. Additionally, the Apodization SDSR modification has less failed trials
than the two-step SDSR method when compared using Monte Carlo simulations. We show
that, in two-, three-, and four-signal scenarios with large dynamic ranges, the Apodization
SDSR modification provides the best overall performance of the three modifications in
terms of having a small number of failures and maintaining a low Root Mean Square Error
(RMSE).

The remainder of this paper is organized in the following way. Section 2 discusses the
basic signal model setup for DOA estimation. Section 3 is a review of the SDSR method.
Section 4 presents the three proposed modifications to the SDSR method that make it robust
to signals with large dynamic ranges. Section 5 shows the Monte Carlo simulation results
from comparing the three proposed modifications and the Cramer–Rao bound for two-,
three-, and four-signal scenarios. Lastly, in Section 6, we discuss our results and provide
a conclusion.

2. Signal Model

Let K overlapping narrowband signals be received by an N element antenna array.
For this work, overlapping means that the signals are received at the same frequency and
time. The received signal at the ith element can be represented as [40]

yi(t) =

(
K

∑
k=1

di(φk)sk(t)

)
+ νi(t) (1)

where sk(t) is the kth signal received by an isotropic antenna located at the coordinate
origin (the phase reference point of the antenna array), di(φk) is the gain and phase shift
of the ith element of the antenna in the emitter direction φk, and νi(t) is the thermal noise.
Note that di(φk) includes the phase shift due to the element being not at the coordinate
origin. We assume that the noise is uncorrelated with the incident signals and between the
various antenna elements. Further noise is assumed to be complex circular Gaussian with
unity variance. For all N elements, (1) can be written in vector form as

y(t) =

(
K

∑
k=1

d(φk)sk(t)

)
+ ν(t) (2)

where y(t) is the received signal vector of length N, d(φk) is referred to as the antenna
array manifold vector of length N, and ν(t) is the noise vector of length N. The equation
can be represented in matrix form to remove the summation as

y(t) = Ds(t) + ν(t) (3)

where
D = [d(φ1), . . . , d(φK)]

s(t) = [s1(t), . . . , sK(t)]T

where D is a matrix of size N by K and s(t) is a vector of length K. The received signals
are downconverted and digitized using analog-to-digital converters (ADC). Let the signal
be digitized with a sampling period of T seconds. The lth sample after digitization can be
represented as

y[l] = Ds[l] + ν[l] (4)

where (lT) is written concisely as [l]. y[l] is referred to as the snapshot vector. Let P
snapshots be used to estimate the DOA. The snapshot vectors can be represented in matrix
form as

Y = [y[1], . . . , y[P]] (5)

where Y is now referred to as the snapshot matrix.
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The popular DOA estimation technique, Bartlett’s method, uses the antenna array
manifold and snapshot matrix to estimate the signal direction. The conventional Bartlett
spectrum can be computed as

b(φ) =
d(φ)H R̂d(φ)
d(φ)Hd(φ)

(6)

where d(φ) is the antenna array manifold in the direction φ and R̂ is the sample covariance
matrix. The sample covariance matrix is represented as

R̂ =
1
P

YY H (7)

where H is the Hermitian transpose. In practical situations such as scenarios with a low
number of snapshots available, robust estimators can be used in place of the sample
covariance matrix to improve performance [41–44]. The peaks in the Bartlett spectrum
correspond to the direction of the incident signals.

3. Review of SDSR Method

In [34], we presented a high-resolution sparse representation-based DOA estimation
method, the SDSR method, that uses the conventional Bartlett spectra as a forward model
and starting point. Initially, the observed Bartlett spectra, b, is generated. After identifying
the major lobes of b, the angular regions within the major lobes are populated with
many closely spaced emitters with signal strength unity. An individual Bartlett spectra is
calculated for each of these emitters. For a unit power emitter located along direction φm,
the Bartlett spectra in direction φ is given by

am(φ) =
|dH(φ)d(φm)|2
(dH(φ)d(φ))

(8)

m = 1, 2, . . . , M

where M is the total number of emitters distributed in the angular regions of interest.
These M Bartlett spectra form the dictionary of interest. In the SDSR method, one selects
a few elements of this dictionary to represent the observed Bartlett spectra, b. One can
then find the unknown signal strengths by solving the following well-known optimization
problem [45]

min‖x(β)‖1 (9)

such that
‖Ax(β)− b‖2

2 < β‖b‖2
2 (10)

where ‖.‖1 is the L1-norm and ‖.‖2
2 is the square of the Euclidean norm, also referred to

as the L2-norm. A is a matrix of M columns, with each column representing the Bartlett
spectra of an individual emitter of signal strength unity, as computed in (8). x(β) of length
M represents the signal strength of the individual emitters that leads to the desired match
between the observed spectra and combined spectra of the individual emitters and β is
the sparse representation regularization parameter. Our method for selecting β is reported
in [34]. The additional constraint that all entries of vector x(β) must be positive was
also included. The MATLAB optimization package SeDuMi [46] was used to solve the
constraint minimization problem.

In [34], we showed that the SDSR is an unbiased and efficient estimator for same-
strength signals in a plethora of scenarios. As mentioned, the proposed SDSR method
utilizes the conventional Bartlett spectra as a forward model and starting point. When
signals of greatly differing strengths are introduced in the same scene, the conventional
Bartlett’s method often fails to detect the weaker signal. The weaker signal becomes buried
in the sidelobes of the stronger signal. Figure 1 shows the Bartlett spectra for a linear
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uniform antenna array of fifteen isotropic elements spaced half a wavelength apart in the
presence of two signals incident on the antenna array. One hundred snapshots are used to
obtain the Bartlett spectra. The first signal is incident at 60◦ and has a signal-to-noise ratio
(SNR) of 25 dB. The second signal is incident at 85◦ and has an SNR of 0 dB. The red lines in
the figure correspond to the true directions of the signals. Note that, despite there being two
signals with large angular separation incident on the antenna array, only one major lobe is
apparent in the figure. The weaker signal that is incident at 85◦ is buried in the sidelobes of
the stronger signal and is not noticeable. The conventional Bartlett’s method fails to resolve
the two signals here and is no longer feasible to be used as a starting point for our method
in its current form. In the following section, we present three potential modifications to the
SDSR algorithm to estimate the DOA of signals with large dynamic range.

Figure 1. Bartlett spectra for a uniform linear array of 15 elements in the presence of two signals
incident at 60◦ (25 dB SNR) and 85◦ (0 dB SNR).

4. Modifications to SDSR Method
4.1. Two-Step Method

As we previously stated, our method works under the assumption that the observed
Bartlett spectra is a superposition of the spectra of individual emitters. We can use this
assumption once again to modify the SDSR method for emitter scenarios that involve
signals with large dynamic ranges. Using the Bartlett spectra shown in Figure 1 as a
starting point for our algorithm, we focus in around the major lobe regions and obtain
DOA estimates as well as the strength of the strong signals that are contained in the
major lobes. In general, there may be multiple strong signals present in a scene and each
corresponding major lobe would be of interest for our algorithm. For this example, our
algorithm estimates a 25 dB signal incident at 60◦. Using the superposition assumption,
we can subtract the individual Bartlett spectra associated with strong signals from the
observed Bartlett spectra b (shown in Figure 1 for this example) to check for weak signals
buried in the sidelobes of the strong signals. Mathematically, this can be expressed as

b̃ = b−
K

∑
k=1

a(φk)x(φk) (11)

where b is the observed Bartlett spectra, K is the number of strong signals present in the
scene, and b̃ is the residual Bartlett spectra. a(φk)x(φk) represents the individual response
for the kth strong signal incident in direction φk (obtained using the SDSR method). Note
that (11) differs from the popular Matching pursuit algorithm [47] because we are not
limited to subtracting just a single strong signal to obtain the residual and can feasibly
subtract multiple strong signals at once if necessary, unlike the Matching pursuit algorithm.
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Figure 2 shows the residual Bartlett spectra b̃ after the Bartlett spectra of the 25 dB SNR
signal incident at 60◦ has been subtracted. From Figure 2, it is now clear that there is a
second and much weaker signal present in the scene. We now can use this residual spectra
as the starting point for the SDSR algorithm and can obtain a DOA estimate as well as
the strength of the weaker signals. This is a two-step approach that requires running our
algorithm twice. For this example, the Bartlett spectra shown in Figure 1 first operates as
the b in (10) for step one, and then, the residual spectra b̃ shown in Figure 2 is utilized in
place of b in (10) for step two. As the first step has already been expressed mathematically
in Section 3, let the use of our algorithm in step two be expressed as

min‖x̃(β)‖1 (12)

such that
‖Ãx̃(β)− b̃‖2

2 < β‖b̃‖2
2 (13)

where Ã is a dictionary matrix focused on the major lobes of b̃ and where x̃(β) contains the
DOAs and signal strengths of the weaker signals. With the proposed two-step modification,
our algorithm should be able to accurately estimate DOA despite the large dynamic range
between signals.

Figure 2. Residual Bartlett spectra for a uniform linear array of 15 elements in the presence of two
signals incident at 60◦ (25 dB SNR) and 85◦ (0 dB SNR): the estimated signal incident at 60◦ with an
SNR of 25 dB has been subtracted.

4.2. Windowed Bartlett Spectra

Rather than perform two steps for our algorithm, one can use a low sidelobe window
function to generate the Bartlett spectra. For conventional Bartlett’s method, we apply
equal weighting to the signal received at each antenna element. Therefore, it can be said that
we apply a uniform window function. As is widely known, uniform windows provide the
best angular resolution of window functions, though at the cost of having large sidelobes
compared with other window functions. A window function that greatly reduces sidelobes
is more ideal for signals with a large dynamic range. Let us again work with the Bartlett
spectra from Figure 1. Instead of uniform weighting, we apply a Chebyshev window with
35 dB sidelobe suppression to the received data. The new windowed Bartlett spectra is
expressed as

bw(φ) =
(Wd(φ))H R̂(Wd(φ))

(Wd(φ))H(Wd(φ))
(14)

where W is a matrix of size N × N with window function values along the diagonal. As
stated, the Chebyshev window was chosen for this work. Figure 3 shows the resultant
Bartlett spectra after the Chebyshev window has been applied. Note that two major lobes
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are now clearly present, albeit one is much weaker than the other. For our algorithm, we
apply the same Chebyshev window to each column of dictionary matrix A such as

aw
m(φ) =

|(Wd(φ))H(Wd(φm))|2
((Wd(φ))H(Wd(φ)))

(15)

m = 1, 2, . . . , M

and let the new windowed dictionary matrix be referred to as Aw. The windowed sparse
representation optimization problem can now be expressed as

min‖xw(β)‖1 (16)

such that
‖Awxw(β)− bw‖2

2 < β‖bw‖2
2 (17)

where xw(β) contains the DOAs and signal strengths of the signals. With the Chebyshev
window applied, it is now possible to complete our algorithm in one step. Additionally, we
should be able to obtain an accurate DOA estimate for signals with a large dynamic range.

Figure 3. Bartlett spectra for a uniform linear array of 15 elements in the presence of two signals
incident at 60◦ (25 dB SNR) and 85◦ (0 dB SNR), Chebyshev window applied.

4.3. Mixed Windowed Bartlett Spectra

Applying a nonuniform window function to the Bartlett spectra may improve the
DOA estimation capabilities for signals with large dynamic ranges, though the modification
has its own drawbacks. Nonuniform window functions are able to reduce sidelobe levels,
albeit at the cost of potentially worse performance compared with uniform windows. For
example, the Chebyshev window (as well as all other windows) has worse angular resolu-
tion when compared with the uniform window. Additionally, using a Chebyshev window
effectively decreases aperture size, which can lead to worse performance. Therefore, the
performance of our algorithm when using the Chebyshev window is expected to degrade
in comparison with the performance achieved with the uniform window. Apodization,
also known as the use of multiple window functions, presents a potential solution for main-
taining angular resolution while also decreasing sidelobe levels [39]. Dual-apodization is
utilized in this work, and the two selected window functions are the uniform and Cheby-
shev windows. Two Bartlett spectra are generated: one with uniform weights and one
with Chebyshev weights. The two spectra are compared on a point-by-point basis at each
angle φ, and the minimum value at each angle is stored. The concept related to this mixed
windowing or apodization is that selecting the minimum value at each angle produces a
new Bartlett spectra with a narrow major lobe similar to the conventional Bartlett spectra,
while maintaining low sidelobe levels similar to the Chebyshev Bartlett spectra. Figure 4
shows the dual-apodized spectra for the scenario first shown in Figure 1. Two major
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lobes can be identified in the spectra, and it can also be noted that the major lobe is more
narrow compared to Figure 3. Let the dual-apodized Bartlett spectra bD at angle φ be
mathematically represented as

bD(φ) = min{b(φ), bw(φ)} (18)

As with the previous modifications for our algorithm, we need to generate a new
dictionary matrix that is applicable for the modification. Let us refer to the apodized
dictionary matrix as AD. From (18), we know which window function is applied at each
angle φ to generate bD(φ). Using this information, we generate AD with the appropriate
window function applied to each column. This means that each direction φ in bD and
AD should utilize the same window matrix W . The dual apodized sparse representation
optimization problem can now be expressed as

min‖xD(β)‖1 (19)

such that
‖ADxD(β)− bD‖2

2 < β‖bD‖2
2 (20)

where xD(β) contains the DOAs and signal strengths of the signals. The mixed windowed
SDSR modification is summarized in Algorithm 1. It is expected that the dual apodization
spectra provides superior angular resolution and overall performance compared with the
Chebyshev spectra.

Figure 4. Bartlett spectra versus DOA for a uniform linear array of 15 elements in the presence of two
signals incident at 60◦ (25 dB SNR) and 85◦ (0 dB SNR), dual apodization (Chebyshev and uniform
windows applied).

Algorithm 1 Mixed Windowed Bartlett Spectra SDSR

for i = 1 to length(φ) do
bD(φ) = min{b(φ), bw(φ)}

Store which window function is the minimum at each angle φ. Let this window
function be wD(φ).

end for

Generate AD using the window function wD(φ) for each assumed emitter location.

min‖xD(β)‖1

such that

‖ADxD(β)− bD‖2
2 < β‖bD‖2

2
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5. Results

We performed Monte Carlo simulations to evaluate the performance of the three
modifications to the SDSR method for DOA estimation for signals with large dynamic
ranges. For each signal scenario, 500 independent trials were carried out. The results
of these trials were used to calculate the bias and RMSE in the estimated DOA. Bias is
defined as

Bias(φk) = φ̄k − φk (21)

where φk is the true angle of signal k and where φ̄k is the mean estimate given by

φ̄k =
1
J

J

∑
j=1

φ̃k,j (22)

with φ̃k,j being the angle estimate of the maximum for signal k and trial j and with J being
the total number of trials (500 for this paper). RMSE is defined as

RMSE(φk) =

√√√√1
J

J

∑
j=1

(φ̃k,j − φk)2 (23)

The DOA estimation performance for weaker signals in the scene is of interest in this
work, and therefore, only bias and RMSE in the estimated DOA of the weaker signals
are shown. The RMSE in the estimated DOA of the weaker signal is compared with the
Cramer–Rao Bound (CRB) [48]. We used a uniform linear array of fifteen isotropic antenna
elements in the simulations. The antenna elements were placed along the x-axis and had
an interelement spacing of half a wavelength. All of the signals were incident in the plane
of the paper. Along 60◦, the null-to-null beamwidth of the antenna array is approximately
18 degrees. Thus, conventional methods are not able to resolve signals that have angular
separations of less than 9 to 10 degrees. An angular separation less than this refers to the
high-resolution region. The angle of arrival was measured with respect to the x-axis (see
Figure 5). Therefore, 90◦ represents the broadside to the antenna array.

Figure 5. Uniform linear array of antenna elements placed along x-axis.

5.1. Two-Signal Scenario

Initially, two signals are incident to the antenna array, with fixed SNRs of 25 dB and
0 dB. Signal #1 is much stronger than signal #2; therefore, we can say that the dynamic
range is large. Signal #1 is incident to the antenna array at 60◦, and the direction of signal
#2 varied from 65◦ to 85◦, with a step size of 5◦. One hundred snapshots are used in DOA
estimation. The dual-apodization modification (uniform+Cheby), two-step modification
(uniform), and the single window (Cheby) modification are compared. It is expected
that, when angular separation is large, all three proposed modifications will have similar
performance.

In some Monte Carlo trials, the weaker signal was not detected. We refer to these
instances as failed trials. After removing these failed trials, the bias and RMSE calculations
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were made based on the remaining number of successful trials. Table 1 shows the number
of failures versus angular separation for the two-signal scenario. From this table, we can see
that all three methods have some failures when the angular separation between emitters is
5 degrees. The Apodization and Chebyshev modifications have 7 failures out of 500 trials
at a 5 degree angular separation between emitters and no failures as angular separation
between emitters is increased. The two-step method has 15 failures in 500 trials at a 5
degree angular separation between emitters and has 8 failures in 500 trials at a 10 degree
angular separation. Based solely on the number of failures, we can say that the Apodization
and Chebyshev window modifications have an initial advantage when compared with
the two-step modification. When bias and RMSE are computed, these failed trials are
first removed.

Figures 6 and 7 show the bias and RMSE of the three modified methods, and the
CRB for the weaker signal after failures have been removed. As expected, the strong
signal has an RMSE that approaches the CRB for each method and is therefore not shown
here. From the figures, we can see that the Apodization and two-step modifications have
similar performances in terms of bias and RMSE and that the Chebyshev windowed
modification has a larger bias and RMSE than the other two modifications. Based on the
number of failed trials, we saw an advantage when using the Apodization and Chebyshev
modifications rather than using the two-step modification. Based on bias and RMSE, we
saw an advantage when using the Apodization and two-step modifications rather than
the Chebyshev modification. Based on the number of failures, bias, and RMSE, one can
note that the Apodization modification proved to be the most advantageous of all three
modifications. The Apodization modification has the best overall performance of the three
modifications, with small bias, RMSE, and number of failures.

Table 1. Number of failures in 500 trials with respect to angular separation for a two-signal scenario.
The SNR of signal #1 = 25 dB, the SNR of signal #2 = 0 dB, 100 snapshots, and 500 trials.

Angular Sep. [Deg] Two-Step Approach Uniform+Cheby Cheby

5 15 7 7
10 8 0 0
15 0 0 0
20 0 0 0
25 0 0 0

Angular Separation [deg]

B
ia

s
 E

m
it

te
r 

2
 [

d
e
g

]

Uniform+Cheby

Two-Step

Cheby

Figure 6. Bias in the estimated direction of the second, weaker emitter versus angular separation
between the two emitters: the three proposed methods are used for estimation, SNR of emitter #1 =
25 dB and emitter #2 = 0 dB, respectively; 100 snapshots, and 500 trials.
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Angular Separation [deg]

R
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]

Uniform+Cheby

Two-Step

Cheby

CRB

Figure 7. RMSE in the estimated direction of the second, weaker emitter versus angular separation
between the two emitters: the three proposed methods are used for estimation, SNR of emitter #1 =
25 dB and emitter #2 = 0 dB, respectively; 100 snapshots, and 500 trials.

5.2. Three-Signal Scenario

Next, we evaluated the performance of all three modifications with a more complex
three-signal scenario. Signal #1 is incident to the antenna array at 25◦ and has an SNR of
18 dB. Signal #2 is incident to the antenna array at 60◦ and has an SNR of 25 dB. Signal
#3 varied from 65◦ to 85◦, with a step size of 5◦, and has an SNR of 0 dB. One hundred
snapshots were used in the DOA estimation. The three modified approaches are once again
compared with each other and the CRB, with the weaker signal being the focus.

Table 2 shows the number of failures versus angular separation for the three-signal
scenario. From the table, we can see that the Apodization and Chebyshev modifications
both have 9 failures in 500 trials at a 5 degree angular separation between emitters and then
no failures as angular separation is increased. The two-step modification has 22 failures
in 500 trials at a 5 degree angular separation, 9 failures in 500 trials at a 10 degree angular
separation, and no failures as angular separation is increased further. Based on this failure
table, we can say that using the Apodization and Chebyshev modifications has a clear
advantage in terms of number of failures over the two-step method. Bias and RMSE of all
three modified methods and the CRB for the weaker signal after the failures have been
removed are shown in Figures 8 and 9, respectively. From these plots, one can note that
the Apodization and two-step modifications have very similar bias and RMSE, with the
Apodization modification having a slight advantage over the two-step modification. The
Bias and RMSE of the Chebyshev windowed modification is significantly larger than that
of the other two modifications. Again, one can look at the failure table and at the bias and
RMSE plots and note that the Apodization modification has the best overall performance
in terms of small number of failures, bias, and RMSE.

Table 2. Number of failures in 500 trials with respect to angular separation for the three-signal
scenario. The SNR of signal #1 = 18 dB, the SNR of signal #2 = 25 dB, the SNR of signal #3 = 0 dB, 100
snapshots, and 500 trials.

Angular Sep. [deg] Two-Step Approach Uniform+Cheby Cheby

5 22 9 9
10 9 0 0
15 0 0 0
20 0 0 0
25 0 0 0
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Figure 8. Bias in the estimated direction of the third, weakest emitter versus angular separation
between emitters #2 and #3: the three proposed methods are used for estimation; SNR of emitter
#1 = 18 dB, emitter #2 = 25 dB, and emitter #3 = 0 dB, respectively; 100 snapshots; and 500 trials.
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Figure 9. RMSE in the estimated direction of the third, weakest emitter versus angular separation
between emitters #2 and #3: the three proposed methods are used for estimation; SNR of emitter
#1 = 18 dB, emitter #2 = 25 dB, and emitter #3 = 0 dB, respectively; 100 snapshots; and 500 trials.

5.3. Four-Signal Scenario

Next, a fourth signal was added to the previous scene. Signal #1 is incident to the
antenna array at 25◦ and has an SNR of 18 dB. Signal #2 is incident to the antenna array at
40◦ and has an SNR of 5 dB. Signal #3 is incident to the antenna array at 60◦ and has an
SNR of 25 dB. Signal #4 varied from 65◦ to 85◦, with a step size of 5◦, and has an SNR of
0 dB. One hundred snapshots were used in the DOA estimation. This scenario now has
two strong signals and two weaker signals. As there are two weaker signals, the bias and
RMSE of both of those signals are shown.

Table 3 shows the number of failures versus angular separation for the four-signal
scenario. As there are now two weaker signals, failure to detect either of these weaker
signals resulted in a failed trial. From the table, we can see that at a 5 degree angular
separation between emitters, the Apodization and Chebyshev modifications have 9 failures
in 500 trials and no additional failures as angular separation is increased. The two-step
modification has 24 failures in 500 trials at a 5 degree angular separation, and the number
of failures decreases until there are no failures after a 15 degree angular separation. One
can note that this is the first time the two-step modification has had failures after a 10
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degree angular separation. Based solely on the number of failures, we can say that the
Apodization and Chebyshev modifications have an advantage when compared with the
two-step modification. As there are now two weak signals, Figures 10 and 11 show the
bias and RMSE of all three modified methods and the CRB for signal #2 and signal #4 after
the failures have been removed. From the plots, one can note that the Apodization and
two-step modifications have similar bias and RMSE performances, with the Apodization
modification having a slight advantage. Additionally, the plots show that the Chebyshev
modification has significantly larger bias and RMSE when compared with the other two
modifications. When considering bias, RMSE, and number of failures, we can say the
Apodization modification again has the best overall performance of the three methods
with small number of failures, bias, and RMSE.

Table 3. Number of failures in 500 trials with respect to angular separation for the four-signal scenario.
The SNR of signal 1 = 18 dB, the SNR of signal 2 = 5 dB, the SNR of signal 3 = 25 dB, the SNR of
Signal 4 = 0 dB, 100 snapshots, and 500 trials.

Angular Sep. [deg] Two-Step Approach Uniform+Cheby Cheby

5 24 9 9
10 13 0 0
15 8 0 0
20 0 0 0
25 0 0 0
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Figure 10. Bias in the estimated direction versus angular separation between emitters #3 and #4:
emitter #2 (left) and emitter #4 (right); the three proposed methods are used for estimation; SNR
of emitter #1 = 18 dB, emitter #2 = 5 dB, emitter #3 = 25 dB, and emitter #4 = 0 dB, respectively;
100 snapshots; and 500 trials.
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Figure 11. RMSE in the estimated direction versus angular separation between emitters #3 and #4:
emitter #2 (left) and emitter #4 (right); the three proposed methods are used for estimation; SNR
of emitter #1 = 18 dB, emitter #2 = 5 dB, emitter #3 = 25 dB, and emitter #4 = 0 dB, respectively;
100 snapshots; and 500 trials.
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6. Conclusions

In this paper, we presented a modification of the SDSR method that utilizes Apodiza-
tion to successfully estimate DOA in the presence of signals with large dynamic ranges.
The SDSR method was initially presented in an earlier paper [34]. We compared the perfor-
mance of the Apodization modification with two other potential modifications to the SDSR
method as well as with the CRB. One of those two additional modifications is the two-step
SDSR method, where strong signals are identified and removed in the first step and weak
signals are identified in the second step. The other SDSR modification is based on obtaining
the Bartlett spectra using a low sidelobe window function. We showed that, in terms of
number of failures, bias, and RMSE, the Apodization modification provided the best overall
performance of the three modifications in the two-, three-, and four-signal scenarios.
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