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3-D phononic crystals with ultra-
wide band gaps
Yan Lu1, Yang Yang2, James K. Guest2 & Ankit Srivastava1

In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures 
that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task 
of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed 
variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The 
TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The 
design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method 
and is implemented through highly efficient vectorization techniques. We present optimized results 
for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal 
structures and show that in each of these cases different initial designs converge to single inclusion 
network topologies within their corresponding primitive cells. The optimized results show that large 
phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical 
configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all 
mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical 
inclusions.

There has been a recent surge of research effort towards achieving exotic dynamic behavior through novel micro-
structural design of periodic composites. Within mechanics and elastodynamics these responses can be catego-
rized in two broad areas: phononics and metamaterials1. Phononics is the study of stress wave propagation in 
periodic elastic composites. The phononic band-structure2 results from the periodic modulation of stress waves, 
and as such has deep similarities with areas like electronic band theory3 and photonics4. These periodic modu-
lations provide for very rich wave-physics and for the potential novel applications such as wave guiding5, ultra-
sound tunneling6, acoustic rectification7, sound focusing8, thermal property tuning9, and novel wave refraction 
applications10–12 (See ref. 13 for a comprehensive review). The definitive characteristic of a phononic crystal which 
distinguishes it from a homogeneous or randomly heterogeneous media is the existence of a frequency region 
where wave propagation is prohibited. This region, called the phononic band gap, directly or indirectly affects 
most of the proposed applications of phononic crystals. Therefore, it is of significant interest and impact to find 
out those phononic topologies for which the phononic band gap is very large. This is a tough computational 
problem, especially in 3-D, which requires the use of fast phononic solvers coupled with sophisticated topology 
optimization routines.

Topology optimization has evolved rapidly in recent years as a form-finding methodology for structural and 
materials design14–17. It seeks to optimize the distribution of material resources across a design domain such 
that a defined objective function is minimized (or maximized) and constraints satisfied. Typically, finite element 
methods are used to discretize the design domain and a material relative density ρe ranging continuously from 0 
to 1, is assigned to each element, with ρe =  0 and ρe =  1 indicating the presence of only material 1 or material 2 in 
the element, respectively. Intermediate values represent mixtures of the two material phases and are prevented by 
penalizing their existence, such as through the Solid Isotropic Penalization Method18,19.

Among the growing range of applications of topology optimization20,21, there have been some recent appli-
cations of topology optimization on band gap structures. For photonic crystals Cox and Dobson22,23 applied 
topology optimization to maximize band gaps in two-dimensional photonic crystals for E and H polarization. 
Jensen and Sigmund24 presented results for optimized 2-D photonic waveguide design. Rupp et al.25 presented 
optimization of 3-D surface wave guide. Robust topology optimization considering manufacturing variations in 
2D photonic crystals were proposed by Wang et al.26 and Elesin et al.27, and later in 3D by Men et al.28. In the area 
of phononics, Sigmund and Jensen29 first used a gradient based topology optimization method to systematically 
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design both phononic band-gap materials and structures. Gazonas et al.30 and Bilal and Hussein31 implemented 
a genetic algorithm based topology optimization method for the design of phononic band gap structures. 
Alternate structure types and materials exhibiting band-gap phenomenon have also been investigated. For exam-
ple, Jensen32 considered mass-spring structures, Diaz et al.33 designed band-gap grid structures, Halkjær et al.34 
maximized band gaps in plated structures, Olhoff et al.35 and Halkjær and Sigmund36 optimized band-gap beam 
structures. Additionally, Vatanabe et al.37 maximized phononic band gaps in piezocomposite materials, Liu et al.38  
explored the solid-solid phononic crystals for multiple separate band gaps with different polarizations, and 
Hedayatrasa et al.39 optimized tunable phononic band gap plates under equibiaxial stretch.

Despite the considerable attention that topology optimization for 2-D phononic crystals has received, no work 
has been done on the topology optimization of 3-D phononic crystals. This is despite the potentially more useful 
nature of 3-D designs. Optimizing 2-D phononic crystals results in plate type designs which can have impacts on 
applications where wave propagation is constrained in 2-dimensions. However, wave propagation is inherently 
a 3-D phenomenon and optimization in 3-D can result in bulk materials which control wave propagation in all 
directions. This task is complicated by the challenging fact that phononic band structure evaluations are com-
putationally expensive and that the computational complexity increases when band structure calculations are 
conducted repeatedly during the iterative process of optimization. The solution thus requires, first and foremost, 
an efficient phononic solver.

At this point there exist several numerical techniques for the evaluation of the phononic band structure. A 
good reference that discusses some of the most prominent techniques was published by Hussein40 where the 
authors also presented a method of accelerating the existing algorithms through a secondary expansion. The 
Plane Wave Expansion41 method (PWE) and the Finite Element method42,43 are two of the most commonly used 
solvers owing to the ease of their implementation and their versatility. In this paper we have used a mixed var-
iational method44,45 to calculate phononic band structures. The mixed variational method is derived from the 
Hu-Washizu46,47 variational theorem and it admits variations on both the stress and displacement fields. The 
mixed method has been known to converge faster than Rayleigh quotient which forms the basis of the traditional 
displacement based Finite Element method48. In a recently published comprehensive study we have shown that 
the mixed method also displays faster convergence than the PWE method45. In addition to using the mixed 
variational method as our solver we have achieved further computational accelerations by implementing it over 
distributed Graphical Processing Units49.

In this paper we have considered three main varieties of the cubic phononic crystal lattice (FCC, BCC, and 
SC). Our aim is to find 3-D topologies in a 2-material phononic crystal system that produce large all-angle, 
all-mode, normalized band gaps for each of the three symmetries considered. We evaluate the phononic band 
structures along the Irreducible Brillouin Zones (IBZ)50,51 of the respective unit cells. The calculations are distrib-
uted over four compute nodes of a CPU-GPU hybrid cluster. We use a SIMP based topology optimization routine 
which is coupled with Heaviside projection for control over minimum feature sizes52. The sensitivity analyses for 
the eigenvalue problem required for TO are also calculated in parallel and through a vectorization process.

Results
Phononic band structure calculation. In the following calculations, the elastodynamic eigenvalue prob-
lem is formulated using the mixed variation method (Refer to Lu45 for details). The propagation of waves in a 
three dimensional elastic medium is governed by

σ λρ= − u , (1)mn n m,

σ=u D , (2)j k jkmn mn( , )

where λ =  ω2, σ and u are the space and time dependent stress tensor and displacement vector respectively, ρ is 
the mass density and D is the compliance tensor. The Latin indices vary from 1 to 3 and subject to the summa-
tion conventions unless otherwise indicated. By varying independently on the stress and displacement field and 
enforcing Bloch periodic boundary conditions, (1) and (2) renders to the following functional stationary:
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and the minimum of the above quotient is the solutions to the phononic eigenvalue problem. This minimization 
problem can be solved by expanding the displacement and stress fields to satisfy the Bloch periodic boundary 
conditions. In this study, the trigonometric terms are used as test functions, π=αβγ αβγf K xx( ) exp[i2 ]k k , where 

α β γ= + + + + +αβγK T Q T Q T Q( ) ( ) ( )k k k k1 1 2 2 3 3  and Qi are coordinates of the wave-vectors expressed in 
reciprocal lattice and T transforms the orthogonal coordinate system to the primary lattice of the unit cell. By 
substituting test functions into the mixed variation formulation (3) and setting the derivative of λuσ with respect 
to the unknown displacement and stress coefficients equal to zero and then eliminating the stress coefficients 
through matrix manipulation, we obtain the following general matrix form of the eigenvalue problem

λΦ = Ωσ
− ⁎H H U U, (4)u
1

where elements of U are the field expansion coefficients and (⁎) indicates the complex conjugate operation of the 
matrix, and the expressions for the matrices are
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∫π π= −θηξ αβγ θηξK K K x dVH i2 exp[i2 ( ) ] , (5)k V l l l

∫ ρ πΩ = −αβγ θηξx x x K K x dV( , , )exp[i2 ( ) ] , (6)V l l l1 2 3

∫ πΦ = − .αβγ θηξD x x x K K x dV( , , )exp[i2 ( ) ] (7)V
jkmn l l l1 2 3

If M trigonometric expansion terms are used, i.e. α, β, γ vary from − M to M, then the size of the eigenvalue 
problem (4) will be 3(2M +  1)3 ×  3(2M +  1)3 after considering the tensorial symmetries involved. Generally the 
mixed variation result will be neither upper nor lower bound of the eigenvalue solution53. The above method has 
been proven to converge faster to the real solution, in terms of the matrix size and corresponding relative error, 
than typical band structure algorithms such as the FE method, the Rayleigh quotient, and the PWE method45,48. 
Detailed convergence studies were presented by Lu and Srivastava45. Comparison was made in terms of the num-
ber of basis terms (trigonometric or real) needed in the approximate expansion. In summary, it was found that the 
mixed-variational method results in a higher accuracy for a given size of the eigenvalue problem.

Computation complexity and efficiency. Phononic band structure computation accuracy directly influ-
ences the objective function evaluation and its efficiency determines the tractability of topology optimization 
implementation. When the number of trigonometric terms, M, increases in the mixed variational formulation, 
the band structure shows decreasing relative error45. Therefore, we prefer to use a large M while keeping the matrix 
sizes manageable. In this study, 1029 trigonometric terms (M =  3) are used to compute the band structure. The 
related matrices Ω, Φ and H are of size 1029 ×  1029, 2058 ×  2058 and 1029 ×  2058 respectively. Band structure 
evaluation has to be executed for 80 wave-vectors during each optimization iteration. The largest design domain 
in this study is a 483 mesh, which gives rise to 110,592 elements. Gradient-based optimization requires sensitiv-
ity analysis, or specifically the derivatives of Ω and Φ with respect to the elemental design variables indicating 
material concentration. This leads to 4.26 TB float type data which must be manipulated during each iteration.  
The computational cluster used for this work consists of 4 compute nodes, each of which has 4 NVIDIA GTX-780 
graphic cards and 2 Intel(R) Xeon(R) E5–2630 v2 CPUs installed to form the mixed CPU-GPU architecture. Each 
GPU has 2304 CUDA cores and each CPU has 6 cores. In order to determine the parallel computation efficiency, 
we define an efficiency factor49 which measures the performance improvement through the parallel computations 
over serial computations in terms of the time it takes to do the same problem through the two methods:

=e t
t (8)

serial

parallel

Figure 1(a) shows the time taken for solving eigenfrequencies of a 2-D problem at one wave-vector and the 
efficiency factors are plotted in Fig. 1(b). As the number of trigonometric terms increases, the computation is 
1000 times faster than the straightforward loop implementation. For a 2-D case, when M =  3, the matrix size 
is 98 ×  98 and the parallel computation time is about 0.05 s when using 1000 elements. When using M =  3 in a 
3-D case, the computation will be 263 times more complex, due to the complexity of eigenvalue problem being 
O(N2.37), where N is the size of the matrix. Therefore, each eigenvalue problem takes about 13.2 s to be solved and 
it takes about 65 s to compute 80 eigenvalue problems in parallel on the 16GPUs to evaluate the necessary band 
structure.

A note on normalized band gaps. Band structure is a plot of the phononic eigenfrequencies for 
wave-vectors which span the boundaries of IBZ. On this plot the normalized band gap is calculated by taking 

Figure 1. (a) GPU accelerated computation time for eigenfrequencies solved at one wave-vector point.  
(b) Efficiency factor comparing the parallel formulation with the serial formulation.
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the ratio between the band gap width and the mid gap frequency. This metric is independent of unit cell scaling 
and is indicative of the tendency of a phononic crystal to stop all waves in all directions (for 3-D). The simplest 
way to control normalized band gap sizes is to change the volume fractions of the material phases. Consider, 
for instance, simple phononic crystals made of tungsten carbide inclusions (ρ =  13800 kg/m3, E =  387.5559 GPa, 
ν =  0.3459) in epoxy matrix (ρ =  1180 kg/m3, E =  4.3438 GPa, ν =  0.3679). 1-D phononic crystals are layered com-
posites (Fig. 2a). By changing the thickness of the material phases the maximal normalized band gap is seen to 
appear at a tungsten carbide volume fraction of 0.737, at which point the normalized band gap size is 155.5%. 
Since thickness is the only design variable in this 1-D case this maximal gap size is also the global optimum for 
the material choices. Some optimization work has been reported for obtaining specific phononic bandstructure 
of interest, such as design of phononic filter54 and solving for transient wave propagation problem55. Circular 
inclusions inside a 1 ×  1 square unit cell are considered for a 2-D phononic crystal in Fig. 2b. We observe that the 
maximum normalized band gap for this simple geometry has a value of 113.6% and it occurs at a volume fraction 
of 0.624. Several studies have been conducted on exploring 2-D phononic topologies for larger bandgaps. For 
example, Bilal and Hussein31 and Liu et al.38 have both achieved larger than 120% normalized band gaps in 2-D. 
Figure 2(c–e) show analogous 3-D phononic cystals with 1 ×  1 ×  1 cubic unit cells. The spherical inclusions lead 
to maximum normalized band gap values of 67.5%, 94.2% and 93.3% at volume fraction 0.412, 0.545 and 0.588 
for SC, BCC and FCC lattices respectively. We further note here that it becomes progressively more difficult to 
obtain large band gaps as we consider crystals of higher space dimensions.

The 1-D phononic crystal case is simple enough to admit theoretical arguments on largest possible bandgap 
values56 and the 2-D case received research interest in terms of topology optimization studies. However, the 3-D 
phononic crystal band gap optimization has not yet been reported in literature. It is clear that formal topology 
optimization should be able to reveal crystals with larger stop bands than those produced by the simple inclusions 
in Fig. (2).

Topology optimized structures. For our study, topology optimization is performed over a 1 cm3 cubic 
unit cell consisting of tungsten carbide and epoxy phases, allowing us to compare our results with previously 
published results57 of ultra-large band gap phononic crystals. The topological variable ρe indicates the relative 
volume fraction of epoxy in each element, with ρe =  0 indicating the element contains only tungsten carbide 
and ρe =  1 indicating only epoxy. During each iteration the stress and displacement fields are expanded using 
1029 trigonometric terms (M =  3). After the optimized solution is obtained a larger number of expansion terms 
(M =  4) is used to calculate the final band structure at a higher accuracy. The objective function in this study is 
the normalized band gap between the 6th and 7th band, where a complete band gap opens naturally for a simple 
inclusion within a primitive cell. The longest single optimization iteration for the largest design domain, which 
consists of 483 elements without imposing symmetry, takes only 6.5 min with 22.5% of the time spent on band 
structure calculation and 45.5% on sensitivity analysis. Design step direction calculation and data storage takes 
32% of the time in this case, however, if a smaller design domain is used, then this proportion will be smaller.

It should be noted that the considered topology optimization problem is nonconvex and thus the local mini-
mum identified by the gradient-based optimizer is dependent on the topology used as the starting point for the 
optimization. Therefore, different material distributions are used as initial designs to help avoid getting trapped 
in low performance local minimum. Specifically, we have tested using spherical inclusions of various volume 

Figure 2. The relation between the normalized band gap and volume fraction of the stiff material phase.  
(a) 1-D 2-phase layered composite; (b) 2-D 2-phase composite with circular inclusion; (c–e) 3-D 2-phase 
composite with spherical inclusions.
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fractions and various homogeneous mixtures of tungsten carbide and epoxy as initial guesses. Of course, as in 
most topology optimization problems, there is no guarantee that we have been able to identify a global optimum.

Simple cubic lattice. As a first example, we consider the SC case defined on a relatively coarse mesh of 243 ele-
ments with basic symmetries employed. This means the optimization is performed over 1/8 of the total number 
of elements with reflection symmetries assumed to generate the rest of the SC primitive cell. These initial results 
are presented in Fig. 3 for different homogeneous initial distributions of material. When we take into account the 
periodicity of the unit cell, Fig. 3(a–c) show that for different homogeneous initial mixtures of tungsten carbide 
and epoxy, the optimization process converges to approximately the same topology after about 500 iterations. 
These solutions have similar normalized band gaps, which are 71.58%, 78.47% and 70.47% corresponding to 
tungsten carbide volume fractions 0.4374, 0.5015 and 0.4237, respectively.

The SC problem using symmetry and a uniform initial distribution of ρe =  0.5 was re-solved on a finer mesh of 
483 elements. The optimization is performed over only 1/8 of the total number of elements due to imposed sym-
metries. The size of the data which is needed to be manipulated at each iteration is 545 GB. The design evolution 
for this finer mesh case is shown in Fig. 4 and it is seen the algorithm evolves towards a single inclusion structure 
as in the previous coarse mesh cases. The optimization converges after about 1000 iterations and the optimized 
inclusion structure is a cross between a sphere and a cube with some variation on the surface (Fig. 5a). The struc-
ture has a normalized band gap ratio of 67.7% and tungsten carbide volume fraction 0.3907.

Since it is seen in both the coarse and fine mesh cases that the optimization process tends to evolve the topol-
ogy into a structure that is equivalent to a single inclusion within a unit cell, we also used two variations of a cen-
trally positioned stiff spherical inclusion as initial conditions for the optimization. The first case corresponds to a 
spherical inclusion with the largest volume fraction possible and the second corresponds to the one with largest 
normalized band gap (Fig. 2c). The latter case resulted in a final structure with larger normalized band gap after 
convergence (about 1450 iterations). Figure 5 show the results for the optimized SC design. The geometry of the 
inclusion, which has volume fraction 0.4771, resembles a cube with rounded corners. The corresponding stop 
band extends from 63.18 kHz to 143.17 kHz which is equivalent to a normalized band gap ratio of 80.1%. This is 
18.67% larger than the maximum possible SC band gap with a fully dense spherical inclusion.

Finally, we note that we also attempted to relax the imposed symmetries and solve the SC case using an initial 
homogeneous distribution of ρe =  0.5 in mesh of 483 elements. This requires manipulation of 4.26 TB float type 
data during each iteration and was thus significantly more computationally intensive than the previous case. 
The optimization tended towards highly asymmetric structures with non-existent or very small stop bands after 
several design iterations. This is likely due to the optimization process getting stuck in local minimas. The SC 
optimization problem without any additional symmetries is a very large computational problem with > 100,000 
variables. To adequately explore it we require faster computational algorithms and we expect that relaxing the 
symmetries will indeed result in larger bandgaps. However, current computational resources do not permit us to 
study this problem adequately.

Body-centered cubic lattice. The BCC primitive cell is discretized into a 363 mesh giving rise to a total of 46,656 
elements. Optimization is performed without any additional symmetry constraints. Figure 6 shows the design 
evolution, starting from a homogeneous initial design of ρe =  0.5, progressing to a skewed cross-like structure, 
before converging after 186 iterations to a centrally-located large inclusion with smaller inclusions located near 
the unit cell corners as shown in Fig. 6(f). However, given the periodicity of the unit cell, the topology still corre-
sponds to a single inclusion with the smaller inclusions joining with the large inclusion at appropriate locations 
in periodically repeated unit cells. The optimized structure features staggered inclusions which have the general 
appearance of a sphere but with some variations on the surface. The structure has normalized band gap ratio of 
93.11% with a tungsten carbide volume fraction 0.4417.

We also considered two cases whose initial designs are spherical inclusions. As in the SC case, the first case 
corresponds to a spherical inclusion with the largest volume fraction possible and the second corresponds to 
the one with largest normalized band gap (Fig. 2d). The former case resulted in a larger normalized band gap, 
converging after 287 iterations. Figure 7 shows the optimized BCC design. The optimized BCC primitive cell 
contains the complete geometric information of the single inclusion. This topology is then assembled to result 
in its corresponding unit cell by repeating the primitive cells based on the built-in translation symmetry of the 

Figure 3. Optimization results on 243 mesh. Each case corresponds to different homogeneous initial designs 
having tungsten carbide percentages of (a) 35%, (b) 50%, (c) 65%.
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BCC lattice (Fig. 7(b)) Much like the solution reported in Fig. 6(f), the resulting topology resembles a staggered 
pattern of tungsten carbide inclusions which have the general appearance of spheres. However, large portions 
of the surfaces that face the body diagonals in these inclusions are flattened, as shown in Fig. 7(c). Although no 
internal symmetry constraint has been applied during the optimization process, the optimized inclusion struc-
ture has a centro-symmetric element arrangement. The optimized BCC structure has a band gap from 76.8 kHz 
to 230.49 kHz, which leads to a normalized band gap value of 100.03%. The corresponding volume fraction of 
tungsten carbide in the optimized structure is 0.5475. This is in contrast with spherical inclusion results where the 
maximum possible normalized band gap is 94.2% at a volume fraction of 0.5450.

Face-centered cubic lattice. The FCC primitive cell is discretized into a 363 mesh and optimization is performed 
without additional imposed symmetry constraints. The FCC case is solved using the same initial guesses as the 
BCC case: a homogeneous distribution with ρe =  0.5 as well as a two spherical inclusion designs. As in the BCC 
case, the topology optimized FCC solution found using a uniform initial distribution of material converges to 
a solution featuring a single inclusion shown in Fig. 8(a), with the general shape being close to a sphere. It has a 
normalized band gap of 95.24% at a volume fraction 0.4861. The solution found using an initial spherical distri-
bution corresponding to the largest band gap in Fig. 2(e) gave the best result, converging after 235 iterations to 
the optimized primitive and corresponding topologies shown in Fig. 8(b,c), respectively. Examining Fig. 8(c), it is 
clear that the shape of the tungsten carbide inclusion has the general appearance of a sphere with some variation 
on the surface. Although no internal symmetry constraint has been applied during the optimization process, it 

Figure 4. Evolution of SC structure from homogeneous initial design on 483 mesh. 

Figure 5. (a) Optimized SC unit cell when using a single spherical inclusion as the initial design on 1/8 of the 
483 mesh due to imposed symmetries. (b) Corresponding band structure calculated using M =  4. The geometry 
and material distribution can be found as Supplementary Data SC primitive cell online. Refer to Supplementary 
Information for data reading and visualizing instructions.
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Figure 6. Evolution of BCC structure from homogeneous initial design on 363 mesh, where an equal 
fraction of tungsten carbide and epoxy is applied. 

Figure 7. (a) Optimized BCC primitive cell on 363 mesh with portions of an inclusion located at the primitive 
cell corners. (b) Corresponding BCC unit cell extracted from the assembly of repeated BCC primitive cells.  
(c) Optimized tungsten carbide inclusion. (d) Corresponding band structure calculated using M =  4. The 
geometry and material distribution can be found as Supplementary Data BCC primitive cell online.

Figure 8. (a) Optimized FCC primitive cell topology when using a homogeneous initial design on a 363 mesh. 
(b) Optimized FCC primitive cell topology when using a single spherical inclusion as the initial guess. (c) FCC 
unit cell assembled from the optimized FCC primitive cell in (b). (d) Corresponding band structure calculated 
using M =  4. The geometry and material distribution can be found as Supplementary Data FCC primitive cell 
online.
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is seen that the optimized inclusion structure has a centro-symmetric element arrangement. The optimized FCC 
structure has a stop band from 98.03 kHz to 292.55 kHz, which leads to a 99.61% normalized band gap. The cor-
responding volume fraction of tungsten carbide in the optimized structure is 0.5502.

According to Economou and Sigalas58 the “cermet” topology, where inclusions consist of low-velocity mate-
rials surrounded by high-velocity matrix materials, is more favorable for the appearance of large elastic gaps. 
However, we could not find support for this in our studies. We found that beginning with cermet initial designs 
(Fig. 9a), where an epoxy sphere is embedded in tungsten carbide matrix, the optimization process invariably 
steered towards network topologies in search of large band gaps. By step 6, the optimization progression has 
already converted the cermet initial design into a network design where a tungsten carbide inclusion is sur-
rounded by epoxy matrix (Fig. 9a). The optimization process converges after 134 iterations. The optimized struc-
ture has volume fraction 0.4752 and the stop band extends from 94.84 kHz to 265.48 kHz, which leads to 94.71% 
normalized band gap. Furthermore, in all our other optimization studies which involved beginning with a homo-
geneous initial design, the optimization process could have steered towards a cermet topology. However, it always 
resulted in network topologies.

Discussion
In this paper we have presented the first ever topology optimization results for 3-D phononic crystals. Specifically 
our objective was to reveal 3-D phononic unit cells comprised of two material phases which display large all 
angle, all mode phononic band gaps. Specifically, optimized results for simple cubic, body centered cubic, and 
face centered cubic crystal structures made up of tungsten carbide and epoxy phases are presented. We have 
shown that for all these cases large phononic stop bands for bulk wave propagation can be achieved at lower than 
close packed configurations for spherical inclusions. A summary of the band gap results can be found in Table 1, 
where we have compared our results with what is achievable through simple spherical inclusions. Specifically, 
it is possible to achieve normalized band gap of 67.5%, 94.2% and 93.3% using tungsten carbide spheres in SC, 
BCC and FCC configurations respectively. Topology optimization shows that the SC result can be significantly 
improved to 80.1% by modifying the shape of the inclusion, forming a cross between a sphere and a cube. The 
BCC and FCC optimization results also improve over their spherical inclusion counterparts. Specifically, the 
BCC optimized structure shows a normalized bang gap greater than 100%. Furthermore, it is interesting that 
the optimized structures shown in Figs 7(a) and 8(b) achieve large complete band gaps at relatively small volume 
fractions of the stiff and heavy inclusion. For instance the BCC optimized structure achieves a large normalized 
band gap at a tungsten-carbide volume fraction of 0.5475. This is in comparison with a volume fraction of 0.74 
which corresponds to the case where spheres are tightly packed in a FCC configuration. This results in a unit cell 
which is 23.1% lighter than the close packed structure and still outperforms it in terms of its band gap size57. In 

Figure 9. (a) Evolution of the FCC lattice case with cermet topology as the initial design and “network” 
topology as the converged result. (b) Band structure of the optimized network topology.

Spherical Inclusions Optimized Inclusions

Normalized 
bang gap

Volume 
fraction

Normalized 
bang gap

Volume 
fraction

SC 67.5% 0.412 80.1% 0.4764

BCC 94.2% 0.545 100.0% 0.5475

FCC 93.3% 0.588 99.6% 0.5502

Table 1.  Summary of results.
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general, it is notable that largest normalized band gaps occur at less than close packed configuration both for 
spherical inclusions and optimized results.

3-D phononic band structure optimization is a highly computationally intensive task, enabled here through a 
GPU accelerated mixed variation method and mixed variation formulation based sensitivity analysis. For exam-
ple, the 3-D SC lattice using a 483 mesh translates into an optimization problem with over 100,000 variables. 
Furthermore, with no assumed symmetry, the optimization process tends to get stuck in numerous local minima 
which correspond to highly asymmetric structures with small band gaps. For the SC case, therefore, we assume 
reflection symmetries over 1/8 of a unit cell. We studied various initial conditions with coarse (243) and fine (483) 
meshes. It was notable that almost all homogeneous initial conditions result in single contiguous inclusion topol-
ogies which are very similar to each other. All optimization runs which begin with spherical inclusions as their 
initial conditions also ended in simple contiguous inclusion topologies. This result was also noted for FCC and 
BCC runs. For both of these cases we used a 363 mesh configured along the appropriate unit vectors. No further 
symmetries were assumed. In general, it was noted that homogeneous initial condition resulted in inclusions 
with more pronounced asymmetrical features. On the other hand, the cases with spherical inclusions as initial 
conditions resulted in more symmetrical inclusions with higher normalized band gap values. In our studies we 
could not find cases which support that cermet topology is more favorable in generating elastic band gaps. In fact, 
beginning with cermet initial designs, the optimization process invariably steered towards network topologies in 
search of large band gaps.

In summary, we have presented topology optimization results which reveal the largest as yet reported all angle 
all mode normalized bandgaps in 3-D phononic crystals. These results pertain to the two material combination 
of tungsten-carbide and epoxy. Other material combinations and/or optimizing band gaps between other bands 
(other than the 6th and 7th) will likely result in different optimized topologies and different normalized bandgaps.

Methods
Topology optimization formulation. In topology optimization of periodic composite materials, the goal 
is to optimize the distribution of two (or more) base material phases across the unit cell, which for finite ele-
ment-based approaches, reduces to determining whether each element is to contain base material 1 or material 2 
(see e.g. refs 14–17). This fundamentally is a binary (or integer) programming problem of extremely high dimen-
sion, motivating relaxation of the binary condition and representation of each element’s material properties as a 
continuous combination of the two base materials. In order to obtain a binary design, penalization methods such 
as the Solid Isotropic Material with Penalization (SIMP) method are used to make mixtures of the two materials 
at a location inefficient. Interestingly, Sigmund and Jensen29 found that the use of penalization is not required in 
the design of band-gap structures as sharp contrasts in stiffness (Young’s modulus) are desirable to produce large 
band-gaps. This allows use of a simple linear interpolation model for Young’s modulus, given as

ρ ρ ρ= + −E E E( ) (1 ) , (9)
e

e e e
( ) 1 2

where E1 and E2 denote the Young’s modulus corresponding to the two base materials. We note this is equivalent 
to the SIMP interpolation for composites59 with exponent penalty term set to one.

The goal of the optimization is to maximize the gap between the t-th mode and (t +  1)th mode, and thus we 
use the objective function given as

ρ
λ ρ λ ρ

λ ρ λ ρ
=

−

+
+

+
f

k k
k k

( ) 2
min ( , ) max ( , )
min ( , ) max ( , ) (10)e

k t e k t e

k t e k t e

1

1

and the resulting topology optimization formulation can be written as

ρ

λ
ρ

. . Φ − Ω =
≤ ≤ =

−



⁎

f

e N
H H U

max ( )

s t ( ) 0
0 1, 1, , (11)

e

e

1

Note that we do not impose a volume constraint and allow the algorithm to freely distribute the two base 
materials, although it would straightforward to restrict the design problem in that manner.

We want to emphasize that Eq. (11) generally indicates an asymmetric eigenvalue problem. As a result the 
eigenvalues and corresponding eigenvectors are complex. Sensitivity calculations of complex eigenvalues require 
the use of normalized left and right eigenvectors, ψ and θ, in the sense that for each eigenvalue the corresponding 
pair of left and right eigenvectors should satisfy ψ*θ =  1, such that

λ ψ θ= Ω Φ .− −⁎ ⁎H H[ ( )] (12)1 1

Although the closed form expressions for Ω−1 and Φ−1 are implicit, based on the invertibility their derivatives 
with respect to design variable ρe can be written as,

ρ ρ
∂Ω
∂

= − Ω
∂Ω
∂
Ω

−
− −

(13)e e

1
1 1
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The sensitivity of the natural frequencies29 can be calculated by differentiating (12) with respect to the design 
variables ρe, as follows
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The sensitivity of the objective function can now be calculated by differentiating (10).
Finally we note that the Heaviside Projection Method (HPM)52 is used within these formulations to control 

the minimum length scale of designed features. In particular, a reduced design variable field60 is adopted with 
design variables spaced at two times the finite element size. In HPM, the continuum design ρe variables are 
expressed as a closed-form function of an independent design variable field without any other changes to the 
above equations. For brevity, the details are omitted here; however, the reader is referred to Guest61,62 for full algo-
rithmic details. Here, a continuation strategy is used on the Heaviside parameter, beginning at βHPM =  1. The pro-
jection radius is 1.4% of the unit cell length. It should be noted that HPM is capable of controlling the minimum 
length scale of stiff and/or compliant designed features and thus preventing solution mesh dependency, although 
such dependencies have not been observed for phononic band-gap materials29.

Vectorization and parallel computations. In order to calculate the entire band structure of a unit cell 
the matrices have to be assembled and the eigenvalues have to be calculated at multiple wave-vector points along 
the edge of the IBZ. This results in considerable computational complexity. However, since the assembly and 
eigenvalue solving processes are independent of each other they can be executed in parallel if the formulation is 
properly recast. The most basic computational unit in the formulation is the following integral in (5):

∫ ∫ ∑π α β γ θ η ξ= = − =αβγθηξ
αβγ θηξ

=
I fdV K K x dV f vexp[i2 ( ) ] ( , , , , , ) ,

(16)V V l l l
e

N
e e

1

( ) ( )

where f (e) is the evaluation of the integrand at the centroid of the e-th element, v(e) is the element volume and N is 
t h e  n u m b e r  o f  e l e m e n t s  w h i c h  d i s c r e t i z e s  t h e  p r i m i t i v e  c e l l .  R e c a l l  t h a t 

α β γ= + + + + +αβγK T Q T Q T Q( ) ( ) ( )l l l l1 1 2 2 3 3 . The integrand can be expanded as

α β γ θ η ξ π α θ β η γ ξ= − + − + − .f T T T x( , , , , , ) exp{i2 [ ( ) ( ) ( )] } (17)e
l l l l

( )
1 2 3

It is a constant matrix independent from the wave-vector coordinates Qi. The above equation can be viewed as 
the outer product of f and its own complex conjugate, where

π α β γ= + +T T T xf exp[i2 ( ) ], (18)l l l l1 2 3

is a vector of size (2 M +  1)3. Now the integral (16) can be rewritten as

∑=
=

I f v ,
(19)pq

e

N

pq
e e

1

( ) ( )

where p, q =  1, 2, … , (2 M +  1)3. It is a constant global matrix which only needs to be calculated once. To com-
pute these matrices using Graphical Processing Units we need to pass the vectors, volumes and centroids from 
the CPU to the GPU. On the GPU, the computation kernels are executed by a grid of thread blocks, where each 
thread has a unique id which corresponds to a set of indices e, p, q. Since the actual computation on each thread is 
relatively simple and many threads are operating in parallel, the method shows significantly reduced computation 
times compared to serial computations over a CPU. Furthermore, the band structure computations for different 
wave-vectors along the IBZ can be distributed over multiple GPUs in a distributed GPU cluster. In this case each 
compute node will solve only a part of the band structure thus decreasing the computation time further.

Sensitivity is calculated element-wise and therefore, parallel computation can significantly accelerate the pro-
cess. Substituting (19) into (6) and (7), the derivative of Ω and Φ with respect to the design variable of the e-th 
element, ρe, can be calculated by

ρ
ρ ρ

∂Ω
∂
= − f v( ) ,

(20)e
pq
e e1 2 ( ) ( )

ρ
∂Φ
∂
= −D D f v( ) ,

(21)e
jkmn jkmn pq

e e1 2 ( ) ( )

where no summation is implied. We note that the sensitivity matrices of Ω and Φ  of an element at location xl
e( ) has 

the following transpose relation to the elements at the opposite location −xl
e( )
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This is very helpful in reducing the computational complexity if the center of the design domain is positioned 
at the origin.

Study of cubic unit cells. Cubic Bravais lattices are studied in this paper. The three varieties of cubic lattices 
considered here are the simple cubic (SC), the body-centered cubic (BCC), and the face-centered cubic (FCC)  
lattices63. The three lattices have their own variations based on different space groups. For example, Maldovan et al.  
studied the photonic band gaps of 11 FCC structures64. The discretization of the design domain should allow the 
formation of all possible variations during the optimization process, however, it is not very economic to use the 
entire cube as the design domain. In order to maintain the basic crystal structure during the optimization pro-
cess, the geometry information has to be exactly the same on each lattice point. This can be realized by enforcing 
translation symmetries along their symmetry axes. As shown in Fig. 10(a–c), SC lattice’s translation symmetry 
is along the lattice edges, whereas BCC and FCC lattice symmetry axes are along the body and face diagonals 
respectively. These translation symmetry axes are the vectors of the primitive cells which contains the geometry 
information of exactly one lattice point. Band structure calculations and sensitivity analyses are implemented on 
primitive cells. As demonstrated by Dong et al.65,66, reduction of symmetry is favorable in generating ultra-wide 

Figure 10. (a–c) are the schematics of the SC, BCC, FCC lattices and the corresponding primitive cells.  
(d–f) Show the design domains that are actually used in the sensitivity analyses. (g–i) are the first Brillouin 
zones of the three cubic lattices. The red regions inside the Brillouin zones are the IBZs.
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bandgaps, therefore, BCC and FCC primitive cells are discretized into 363 elements and no further symmetries 
are assumed for them (Fig. 10e,f). The primitive cell of SC lattice is the cubic unit cell itself and it is discretized 
into 483 elements. We had difficulty converging to a meaningful solution without imposing symmetry in the SC 
case where homogeneous material distribution is used as the initial design. Following Bilal and Hussein31, who 
implemented C4v rotational symmetry to their 2-D square lattice optimization, we reduced the SC design domain 
to 1/8 of the primitive cell as shown in Fig. 10(d) and reconstruct the lattice by taking reflection symmetries, in 
which the reflecting mirrors are the orthogonal planes. Figure 10(g–i) show the IBZ boundaries of SC, BCC, and 
FCC lattices respectively in the reciprocal space. During topology optimization the band structure is calculated 
for wave-vectors spanning these boundaries and then band gap location and size are extracted.
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