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ABSTRACT 
Objectives: To develop and compare prediction models for 30-day and 1-year mortality 

in Heart failure with preserved ejection fraction (HFpEF) using EHR data, utilizing both 

traditional and machine learning (ML) techniques. 

Background: HFpEF represents 1 in 2 heart failure patients. Predictive models in 

HFpEF, specifically those derived from electronic health record (EHR) data, are less 

established. 

Methods: Using MIMIC-IV EHR data from 2008-2019, patients aged ≥ 18 years 

admitted with a primary diagnosis of HFpEF were identified using ICD-9 and 10 codes. 

Demographics, vital signs, prior diagnoses, and lab data were extracted. Data was 

partitioned into 80% training, 20% test sets. Prediction models from seven model 

classes (Support Vector Classifier (SVC), Logistic Regression, Lasso Regression, 

Elastic Net, Random Forest, Histogram-based Gradient Boosting Classifier (HGBC), 

and XGBoost) were developed using various imputation and oversampling techniques 

with 5-fold cross-validation. Model performance was compared using several metrics, 

and individual feature importance assessed using SHapley Additive exPlanations 

(SHAP) analysis. 

Results: Among 3910 hospitalizations for HFpEF, 30-day mortality was 6.3%, and 1-

year mortality was 29.2%. Logistic regression performed well for 30-day mortality (Area 

Under the Receiver operating characteristic curve (AUC) 0.83), whereas Random 

Forest (AUC 0.79) and HGBC (AUC 0.78) for 1-year mortality. Age and NT-proBNP 

were the strongest predictors in SHAP analyses for both outcomes. 

Conclusion: Models derived from EHR data can predict mortality after HFpEF 

hospitalization with comparable performance to models derived from registry or trial 

data, highlighting the potential for clinical implementation. 
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INTRODUCTION 
Heart failure with preserved ejection fraction (HFpEF) is a distinct subtype of heart 

failure (HF), and accounts for the majority of HF hospitalizations.1 Despite this burden of 

hospitalizations, and the associated considerable morbidity and mortality, prognostic 

models specifically for patients hospitalized with HFpEF are less established. Accurate 

prediction models are essential to physicians to help identify and manage high risk 

patients, to health systems for allocating resources, and to policy makers for risk 

adjustment to measure performance.  

 

With the wide availability of electronic health records (EHR), there is a need for 

predictive models to be based on real-world EHR data which is critical for implementation 

at the bedside. The few predictive models that have been developed for HFpEF2 have 

been derived from registry3 or trial data4-7 and are for ambulatory populations. In addition, 

these models often contain variables such as New York Heart Association (NYHA) 

Class3,5,6 or complex health status assessments4, which are not readily available in the 

EHR.5 Additionally, it is important for models to be developed in a data-driven approach 

incorporating complex interactions, which can be accomplished with machine learning 

techniques.  

 

Accordingly, we leveraged data from the Medical Information Mart for Intensive 

Care (MIMIC)-IV database and tested a variety of modeling techniques including machine 

learning to develop prediction models for 30-day and 1-year mortality with an index 

hospitalization for HFpEF. We compared model performance using an array of 

performance metrics.  

 

METHODS 
This study adheres to the guidelines set by the Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 

statement. Compliance with the TRIPOD checklist8 for the thorough and transparent 

reporting of our predictive model development and validation processes are detailed in 

Supplementary Table 1. 
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We employed seven predictive models: Logistic Regression9, Lasso Regression10, 

Elastic Net11, SVC with a radial basis function (RBF) kernel11,12, Random Forest (RF)13, 

Histogram-based Gradient Boosting Classifier (HGBC)14, and XGBoost15. Each model 

class has its unique advantages in handling different aspects of the data. 

 

The models were evaluated using the following metrics: Accuracy, Sensitivity, 

Specificity, Area Under the ROC curve (AUC), Precision-Recall Area Under the Curve 

(PR-AUC), Calibration curves, MCC score (Matthews Correlation Coefficient), AIC 

(Akaike Information Criterion), and BIC (Bayesian Information Criterion)16-19.  

 

Accuracy, Sensitivity, Specificity, AUC and PR-AUC are commonly encountered 

metrics used to evaluate models in medical literature. In addition, MCC is a balanced 

measure of model performance, particularly in the context of imbalanced classes, as it 

considers true and false positives and negatives, offering more information than accuracy 

alone. AIC and BIC both assess model fit and complexity. AIC estimates the relative 

quality of models for a given dataset by considering the trade-off between goodness-of-

fit and the number of parameters, penalizing models with excessive complexity. BIC 

incorporates a penalty term for the number of parameters but with a stronger penalty for 

model complexity, providing a stricter criterion that favors more parsimonious models. We 

informed overall model selection with the metrics that would be more important from a 

clinical standpoint for this particular prediction problem. 

 

Data sources 
We used the MIMIC-IV dataset20,21 version 2.2 - a publicly shared database of de-

identified electronic health record data, including hospital and intensive care unit 

admissions from the Beth Israel Deaconess Medical Center in Boston, MA from 2008 to 

2019. The data were accessed via PhysioNet after completing the necessary 

requirements. Patients and/or the public were not involved in the design, or conduct, or 

reporting, or dissemination plans of this research. Given that the MIMIC IV data is de-
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identified and publicly accessible, the study was not subject to Yale Institutional Review 

Board review.  
 

Study population 

We identified hospitalizations of patients aged ≥ 18 years with HFpEF as a primary 

diagnosis using appropriate ICD-9 and ICD-10 codes (Supplementary Table 2)22.  

 

As our diagnosis was based on ICD codes, to test the validity of this label we 

queried clinical notes using regular expressions to extract mentions of the left ventricular 

ejection fraction value or a qualitative report of the left ventricular function using 

appropriate phrases. However, as this LVEF data was extracted from clinical notes and 

not readily available in a structured field in MIMIC-IV data, we intentionally did not include 

this in predictive modeling.  

 

The study sample consisted of 3,235 individual hospitalization encounters with a 

discharge diagnosis of HFpEF. Among these hospitalization encounters, we had access 

to clinical notes for 3,146 (97.3%) encounters of which 1,836 (58.4%) had an LVEF 

measurement value reported. Of these, 1,726 (94.0%) had an LVEF value ≥ 50%, and 

46 (2.5%) had an LVEF between 45-50%. An additional 586 (18.6%) encounters had a 

qualitative mention of LVEF, of which 551 (94.0%) indicated the LVEF was 

normal/preserved. Thus, this ICD code-based diagnosis label was considered valid for 

identifying encounters with HFpEF within MIMIC-IV data. 

 

Outcomes 
 Outcomes for predictive models included 30-day and 1-year mortality. Date of 

death in MIMIC data is derived from hospital records and state records. The maximum 

time of follow up for each patient in MIMIC data is exactly one year after their last hospital 

discharge. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.24315524doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.15.24315524
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
5 

Data extraction 

Data containing patient demographics, vital signs, diagnoses using ICD codes, 

admission information, laboratory tests, and date of death were extracted from 

appropriate relational tables using two identification columns: 'subject_id' and 'hadm_id'. 

The 'subject_id' represents a single patient's admission to the hospital, while the 

'hadm_id' pertains to a specific hospital admission event. For data tables not readily 

alignable through these IDs, we employed alternative matching strategies, such as 

correlating timestamps within one day. 

 

ICD diagnosis codes were mapped to comorbidity categories in the Charlson 

Comorbidity Index (CCI) - a common method for mapping and summarizing patients' 

comorbidities. However, as the weighting of comorbidities in CCI is not particular to 

HFpEF, and our goal is to identify and use predictive variables, we did not use the 

comorbidity score as a predictive variable and instead used the individual mapped 

comorbidities as separate variables. In addition, we included a select few other 

comorbidities such as hypertension, atrial fibrillation, pulmonary hypertension etc. which 

are noted to be predictors in prior HFpEF prediction models but are not a part of the CCI 

comorbidities. For vital signs and specific lab values we used the first entry on the day of 

admission using appropriate time stamps.  

 

We assessed sample size adequacy to support model development to predict 

mortality in HFpEF patients by using the criteria suggested by Riley et al.23 Using the I-

PRESERVE4 1-year all-cause mortality model’s AUC of 0.74 as a benchmark, we 

calculated the minimum sample size required for 1-year mortality with a prevalence of 

29.2% to be 2037. For 30-day mortality there are no contemporary prediction models for 

HFpEF specific to this time frame. However, using an in-hospital mortality model by Wang 

et al.24 with an AUC of 0.83 as a reference, and an observed 30-day mortality rate of 6.3% 

in our cohort, a similarly performing model would need a sample size of 3186. This 

suggested our sample size should be adequate for both outcomes.  

 

Preprocessing 
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As a part of data preprocessing, we one-hot encoded gender, and binarized 

comorbidity variables. Four extreme outliers were identified and subsequently treated as 

missing data. Based on visual inspection of variable distributions, logarithmic 

transformations were used for certain variables with wide ranges, PowerTransformer and 

QuantileTransformer were applied for Elastic Net, Lasso, Logistic Regression, and 

Support Vector Classifier (SVC), while random forest and XGBoost required no additional 

scaling. 

 

To identify the most effective preprocessing strategy for handling missing data, we 

explored several imputation techniques, including mean and median imputation, along 

with Multiple Imputation by Chained Equations (MICE). As a validation, we compared the 

statistical analyses results from the imputed data with those obtained after dropping 

missing data and assessed the consistency of results and distribution changes to best 

maintain data integrity and statistical power, while avoiding the substantial data loss 

associated with dropping missing data. The statistical tests included the Shapiro-Wilk test 

for normality, t-tests, and Mann-Whitney U tests for continuous variables, Chi-Squared 

and Fisher's Exact tests for categorical variables, and Variance Inflation Factor (VIF) 

analysis for multicollinearity. 

 

To address class imbalance, we employed random oversampling, undersampling, 

Synthetic Minority Over-sampling Technique (SMOTE), and balanced sampling methods. 

Each method was evaluated based on final performance metrics to determine its 

effectiveness in creating a balanced class distribution and improving the performance and 

generalizability of our predictive models, with model performance also assessed using a 

baseline of no imputation and no resampling for comparison. 

 

Imputation was done first, followed by transformations, resampling, and then 

scaling (for applicable models).  
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Feature Analysis 

Our study included a set of 36 features selected based on data availability and 

clinical relevance - 17 categorical and 19 continuous features (Supplementary Table 3). 

Categorical features included patient demographics, and comorbidities such as diabetes, 

renal disease, and cancer. Continuous features included vital signs such as heart rate, 

systolic blood pressure, and oxygen saturation, laboratory values like hemoglobin, 

creatinine, sodium troponin and NT-proBNP levels.  

 

To understand the relationship between individual features and their predictive 

power, mutual information plots for 30-day and 1-year mortality were constructed. 

Additionally, Pearson correlation heatmaps were generated to visualize the linear 

relationships between continuous features.  

 

Model Fitting and Evaluation 
An 80-20 data split was applied to separate the data into training and testing sets. 

We used 5-fold cross-validation for the pipelines utilizing resampling methods, and for the 

pipeline without resampling methods, we utilized a repeated stratified K-Fold cross-

validation, considering its strength towards the imbalance classification task. We used a 

randomized hyperparameter search to fine-tune each model. Model evaluation was 

performed using the metrics outlined above.  

 

Model Interpretability and Explainability 

To enhance the transparency and interpretability of our predictive models, we used 

SHAP (SHapley Additive exPlanations) values which provide a unified measure of feature 

importance, quantifying the contribution of each feature to the model's predictions. We 

used SHAP summary plots and bar plots to visualize the global importance of features. 

For logistic regression models, we calculated odds ratios to quantify the impact of each 

feature on the target variable.  
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Analyses were conducted using Python 3.10.12, R, and Stata Statistical Software: 

Release 18 (College Station, TX).  
 

RESULTS 
 

The study sample consisted of 3,235 individual hospitalization encounters with a 

discharge diagnosis or HFpEF. Demographics and clinical characteristics for the study 

sample are shown in Table 1.  The mean age of the study population was 76.4±13.3; 

62.0% were female, and 20.5% self-identified as Black. Missing values proportions by 

variable are shown in Supplementary Table 4. BMI, temperature, and oxygen saturation 

had higher proportions of missing values, while laboratory parameters like Creatinine, 

Bicarbonate, and Hemoglobin had fewer missing values, except for troponin which had a 

high proportion of missing.  

 

The observed 30-day mortality was 6.3% (N=245) and 1-year mortality was 29.2% 

(N = 1145). Women had similar mortality to men (28.5% vs 27.5%, p=0.52).  The in-

hospital mortality rate for Black patients was lower at 20.7% vs 31.6% for white, while that 

for patients ≥65 years was higher at 31.6% vs 13.9% for those <65 years (both p<0.001).  

Patients who died during their hospital stay had higher proportions of comorbidities such 

as chronic kidney disease, chronic obstructive pulmonary disease (COPD), cancer, atrial 

fibrillation, compared with patients who survived hospitalization (Table 1).  

 

Correlation heat maps for continuous variables are shown in Supplementary Fig 1 

and Mutual information plots are shown in Supplementary Fig 2. Mutual information plots 

showed NT-proBNP and age to be key predictors for both outcomes, while heart rate, 

White race, and potassium levels were significant markers for 30-day mortality, while 

systolic blood pressure, Black race, and oxygen saturation were significant predictors for 

one-year mortality. Black race has been previously shown to be associated with lower 

mortality in HFpEF.25 However, as race is a social and not a biological construct, we did 

not include any race variables in predictive modeling. Multiple imputation and balanced 
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resampling methods were noted to be the most effective strategies for managing missing 

and class imbalance respectively. 

 

Model performance metrics are shown in Table 2 and AUC curves for all models 

are shown in Fig 1. PR-AUC and calibration curves are shown in Supplementary Fig. 3 

and 4 respectively. 

 

Model performance 
For 30-day mortality, the regression-based models overall appeared to perform 

better than tree-based models. The Logistic Regression model using median imputation 

and random under-sampling demonstrated an overall good performance with an accuracy 

of 0.67, AUC of 0.83, sensitivity of 0.82, and specificity of 0.66.  

 

For 1-year mortality, tree-based models overall appear to perform better. The 

HGBC model using multiple imputation and random oversampling had an accuracy of 

0.77, AUC of 0.78, sensitivity of 0.49, and specificity of 0.87. On the other hand, 

regression models such as Elastic Net model showed higher specificity but lower 

sensitivity (accuracy of 0.79, AUC of 0.75, sensitivity of 0.35, and specificity of 0.94). 

 

Variable importance 
 The odds ratios (OR) for the logistic regression models for 1-year and 30-day 

mortality are shown in Table 3. For 30-day mortality, the most significant predictors were 

elevated WBC count and NT-proBNP levels (OR: 2.85 and 2.44 respectively). Other 

important predictors included age, troponin and bicarbonate levels. For 1-year mortality, 

age and elevated NT-proBNP levels (Odds Ratio: 1.78 and 1.66 respectively) were 

significant predictors, though with lower odds ratios compared to 30-day mortality. Atrial 

fibrillation, metastatic cancer, and elevated bicarbonate level were other important 

predictors. 
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Interpretability and Explainability     
SHAP summary plots for 30-day and 1-year mortality are shown in Fig 2 and SHAP 

bar plots in Supplementary Figure 5. SHAP interpretations were performed for the Logistic 

regression model for 30-day mortality outcome and HGBC for 1-year mortality. For 30-

day mortality, NT-proBNP was the most important feature, followed by age and coronary 

artery disease. For 1-year mortality, age at admission, NT-proBNP levels and systolic 

blood pressure levels were the most significant factors. 

 

 

DISCUSSION 
In our study, models derived from EHR data to predict 30-day and 1-year mortality 

with a Heart Failure with Preserved Ejection Fraction (HFpEF) hospitalization showed 

good performance and potential for clinical use. Regression models performed well for 

the 30-day outcome with the overall best performing Logistic regression model with an 

AUC of 0.83. Tree-based models overall appear to perform better for the 1-year outcomes 

with the best performing HGBC model with an AUC of 0.78. 

 

Prior studies developing prediction models in HFpEF have focused on the 

ambulatory population.4,6,7,26 Although there may be shared risk markers these 

ambulatory models are not optimal to be used in the hospitalized setting, where markers 

of acuity such as vital signs etc. need to be additionally incorporated and can help define 

risk. Further, most prior HFpEF models have been derived from trial data which have 

standardized data collection, and often contain variables which are not readily available 

in the EHR, such as complex health status assessment, NYHA Class, or genetic data. 

Additionally, traditional models often focus on being parsimonious27, which is extremely 

pertinent for low resource settings, but in clinical environments delivering care using 

contemporary EHR systems, computation is not a limitation, and thus leveraging all 

available variables and modeling the complexity of variable relationships can help 

improve risk prediction.  
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 It is critical for models to be developed using EHR data for two reasons. First, 

patient populations sourced from the EHR may be more reflective of the real-world than 

trial data which can be affected by selection bias. Second, EHR-based prediction models 

are easier to implement in patient facing environments, given that the constituent risk 

variables are already sourced from EHR and are obtained in routine clinical care.  

 

In our study, for predicting 30-day mortality, regression-based models (Logistic 

regression and Elastic Net) performed better than tree-based models. The logistic 

regression model had the best metrics overall including an AUC of 0.83. It could be that 

short-term outcomes are driven by more immediate and linear relationships with acute 

clinical indicators which are modeled well by regression methods. Additionally, it may be 

that regression-based methods are able to handle the highly imbalanced nature of the 

30-day outcome more effectively. Techniques like Elastic Net provide regularization, 

preventing overfitting by penalizing complex models, which may be crucial for the shorter 

prediction window. In addition, as short-term mortality risk is often incorporated into triage 

decisions, the higher sensitivity of the regression-based models is also favorable.   

 

Tree-based models, on the other hand, performed better for the 1-year outcome 

with the overall best performing HGBC model with an AUC of 0.78. Tree-based models 

are non-linear, which enables them to capture complex interactions between variables 

which are present in long-term prediction tasks. They are also more effective at handling 

different types of data and missing values, ensuring robust prediction in the face of 

incomplete data. Their ensemble-based structure aggregating predictions from multiple 

trees, makes them versatile and helps reduce variance. They also improve predictive 

accuracy by leveraging the strengths of multiple models to explore deeper relationships 

within the data, capturing long-term trends and patterns more effectively than linear 

models.  

 

Age was an important predictor of both 30-day and 1-year mortality. Sex was not 

a predictor unlike noted in some other prior models.26 Among comorbidities, we noted 

COPD, atrial fibrillation, malignancy and liver disease to be important predictors.  Among 
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laboratory parameters NT-pro-BNP was the most important predictor, as has been noted 

in most prior models in HFpEF, and affected both outcomes significantly.4,24,26,27 Troponin 

on the other hand was an important predictor more for 30-day mortality than for 1 year. A 

higher bicarbonate level and wbc count (similar to a prior study4) were also noted to be 

an important variable for both outcomes. Unlike in HFrEF28, the effect of elevated 

bicarbonate levels on mortality in HFpEF have not been specifically reported before.   

 

Our study developed a clinical risk prediction model for HFpEF prognostication 

using EHR derived data with good performance, which can be implemented in clinical 

care. To further enhance the predictive accuracy of such EHR-based models, future 

investigations could use data combined from multiple health systems, which will allow 

larger numbers of patients, to fully leverage the capabilities of machine learning 

methodologies. In addition, exploring ensemble methods by combining model classes 

can further enhance prediction by strategically amalgamating the strengths of individual 

algorithms. Further, including additional data categories such as prescription fill data and 

imaging parameters can help enhance prediction. These data streams are currently not 

universally accessible in EHRs, however, with advancements in interoperability there is a 

potential in the near future for incorporating such data and more into clinical models for 

use at the bedside.  

 

Limitations 
One limitation of our study is the lack of external validation using an independent 

cohort, and despite the use of techniques like stratified cross-validation and bootstrapping 

concerns remain of the model's generalizability. Further validation across diverse 

populations is necessary. Additionally, the completeness of the data presented 

challenges, particularly with features that exhibited high levels of imbalance and 

missingness. This is however, a common issue encountered with EHR data. Although 

imputation and resampling methods were carefully applied to address these issues to 

maintain the original dataset's distribution, these processes can introduce bias and leave 

the potential for misclassification, which may impact the model's performance. Despite 
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implementing regularization techniques to reduce the risk of overfitting, there remains a 

concern that the model may still be overly tailored to the training data.  

 

Conclusion 
 Models derived from EHR data have good performance in predicting 30-day and 

1-year mortality with a HFpEF hospitalization, with performance metrics similar to other 

contemporary models derived from trial datasets. Models derived from EHR have an 

immediate potential to be implemented at the bedside.  

 
Data and Code Availability 
The data that support the findings of this study are openly available in Physionet.29 

Code used to analyze data and build the models is publicly accessible will be made 

publicly available via GitHub. 
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Table 1: Baseline Characteristics of Patients by Survival Status (N=3,235) 
 30-Day 1-Year 
 Survived (n = 3,051) Death (n=184) Survived (n=2,325) Death (n=910) 

Demographics     
    Age, years (mean ± std) 76.03 ± 13.34 83.35 ± 9.6 74.49 ± 13.46 81.45 ± 11.3 
    Race, n (%)     

White 2040 (66.86) 159 (86.41) 1505 (64.73) 694 (76.26) 
Hispanic 130 (4.26) 3 (1.63) 111 (4.77) 22 (2.42) 

Black 648 (21.24) 15 (8.15) 526 (22.62) 137 (15.05) 
Asian 102 (3.34) 2 (1.09) 74 (3.18) 30 (3.30) 

Others 131 (4.29) 5 (2.72) 109 (4.69) 27 (2.97) 
    Gender, n (%)     

Female 1893 (62.05) 112 (60.87) 1433 (61.63) 572 (62.86) 
Vital signs (mean ± std)     

Temperature, °F 98.08 ± 0.87 97.85 ± 0.91 98.11 ± 0.86 97.94 ± 0.92 
Heart rate, bpm 79.94 ± 17.47 82.65 ± 17.56 79.69 ± 17.61 81.33 ± 16.94 

Oxygen saturation, % 96.69 ± 3.75 96.19 ± 5.23 96.65 ± 3.84 96.73 ± 3.79 
Systolic BP, mmHg 138.4 ± 25.30 127.52 ± 23.12 139.5 ± 25.85 132.64 ± 22.57 

BMI, kg/m² 33.52 ± 11.01 28.56 ± 6.38 34.43 ± 11.16 29.81 ± 9.17 
Lab values (mean ± std)     

Bicarbonate, mmol/L 28.07 ± 4.69 27.77 ± 5.45 28.01 ± 4.55 28.17 ± 5.17 
Creatinine, mg/dL 1.76 ± 1.49 1.72 ± 0.96 1.71 ± 1.51 1.88 ± 1.34 
Hemoglobin, g/dL 10.50 ± 1.90 10.47 ± 1.75 10.61 ± 1.92 10.21 ± 1.79 

INR 1.83 ± 0.92 2.05 ± 1.13 1.83 ± 0.92 1.89 ± 0.97 
Platelet count, 10³/µL 232.03 ± 93.64 233.34 ± 110.33 233.76 ± 91.33 227.90 ± 102.53 

Potassium, mmol/L 4.09 ± 0.55 4.20 ± 0.66 4.08 ± 0.55 4.13 ± 0.58 
WBC count, 10³/µL 7.91 ± 4.87 10.53 ± 12.54 7.85 ± 4.57 8.61 ± 7.66 

Sodium, mmol/L 139.12 ± 4.20 137.89 ± 5.10 139.16 ± 4.11 138.79 ± 4.63 
NT-proBNP, pg/mL 6178.22 ± 8837.22 11794.53 ± 11729.97 5269.31 ± 7951.15 9719.04 ± 11003.36 

Troponin, ng/mL 0.11 ± 0.45 0.18 ± 0.39 0.11 ± 0.53 0.12 ± 0.24 
Comorbidities, n (%)     

Peripheral vascular disease 318 (10.42) 30 (16.30) 234 (10.06) 114 (12.53) 
Cerebrovascular disease 178 (5.83) 14 (7.61) 122 (5.25) 70 (7.69) 

Chronic obstructive pulmonary disease 1445 (47.36) 93 (50.54) 1057 (45.46) 481 (52.86) 
Rheumatoid disease 154 (5.05) 7 (3.80) 114 (4.90) 47 (5.16) 
Peptic ulcer disease 37 (1.21) 0 (0.00) 31 (1.33) 6 (0.66) 

Mild liver disease 152 (4.98) 10 (5.43) 107 (4.60) 55 (6.04) 
Renal disease 1516 (49.69) 99 (53.80) 1095 (47.10) 520 (57.14) 

Moderate severe liver disease 33 (1.08) 4 (2.17) 18 (0.77) 19 (2.09) 
Acute myocardial infarction 403 (13.21) 29 (15.76) 295 (12.69) 137 (15.05) 

Dementia 104 (3.41) 10 (5.43) 69 (2.97) 45 (4.95) 
Diabetes 1019 (33.40) 49 (26.63) 793 (34.11) 275 (30.22) 

Diabetes complications 499 (16.36) 21 (11.41) 404 (17.38) 116 (12.75) 
Hemiplegia paraplegia 7 (0.23) 1 (0.54) 5 (0.22) 3 (0.33) 

Cancer 201 (6.59) 24 (13.04) 125 (5.38) 100 (10.99) 
Metastatic cancer 51 (1.67) 13 (7.07) 22 (0.95) 42 (4.62) 

Hypertension 1374 (45.03) 64 (34.78) 1108 (47.66) 330 (36.26) 
Coronary artery disease 1197 (39.23) 75 (40.76) 894 (38.45) 378 (41.54) 
Pulmonary hypertension 858 (28.12) 55 (29.89) 625 (26.88) 288 (31.65) 

Atrial fibrillation 1526 (50.02) 126 (68.48) 1074 (46.19) 578 (63.52) 

* Shows the statistical significance at the α = 0.05 level. 
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Table 2: Performance Metrics of Predictive Models for 30-Day and 1-Year Mortality 
 

 
 
Table 3: Feature Odds Ratios for 30-Day and 1-Year Mortality as per Logistic Regression 
 
 
 

30-Day Mortality 1-Year Mortality 

Feature Odds Ratio Feature Odds Ratio 

WBC count 2.846 Age 1.780 

NT-proBNP 2.444 NT-proBNP 1.658 

Age 2.305 Atrial fibrillation 1.324 

Troponin 2.000 Metastatic cancer 1.273 

Bicarbonate 1.492 Bicarbonate 1.250 

Peripheral vascular disease 1.401 Chronic obstructive pulmonary disease 1.234 

Potassium 1.400 Moderate severe liver disease 1.203 

Metastatic cancer 1.300 WBC count 1.190 

Atrial fibrillation 1.293 Heart rate 1.123 

Moderate severe liver disease 1.275 Cancer 1.108 

 
 

 
 
 
 

Outcome Model Imputation Resampling Accuracy MCC Sensitivity Specificity AIC BIC PR-AUC AUC 

30-day 

LR Median Undersampling 0.67 0.23 0.82 0.66 859.09 1024.57 0.33 0.83 

Lasso Mean Undersampling 0.71 0.19 0.74 0.65 921.16 1086.64 0.31 0.82 

Elastic Net Median Undersampling 0.66 0.19 0.74 0.66 923.78 1089.26 0.30 0.82 

SVC Mean Undersampling 0.61 0.17 0.76 0.60 891.24 1056.72 0.18 0.75 

RF Median Undersampling 0.69 0.20 0.71 0.68 814.10 979.58 0.18 0.78 

HGBC Multiple Undersampling 0.68 0.22 0.76 0.68 2447.41 2612.88 0.23 0.75 

XGBoost Mean Undersampling 0.70 0.20 0.71 0.70 1009.57 1175.04 0.19 0.75 

1-year 

LR Median None 0.78 0.36 0.36 0.93 722.82 888.30 0.57 0.75 

Lasso Median None 0.79 0.39 0.34 0.95 725.29 890.76 0.57 0.74 

Elastic Net Median None 0.79 0.38 0.35 0.94 723.80 889.28 0.57 0.75 

SVC Median Undersampling 0.67 0.34 0.72 0.66 836.28 1001.76 0.53 0.75 

RF Multiple None 0.77 0.32 0.26 0.96 698.25 863.73 0.59 0.79 

HGBC Multiple Oversampling 0.77 0.38 0.49 0.87 1082.89 1248.36 0.61 0.78 

XGBoost Multiple Oversampling 0.78 0.39 0.47 0.89 948.69 1114.17 0.60 0.77 

LR indicates Logistic Regression; RF, Random Forest. 
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Figure 1: ROC Curves for Predictive Models of (A) 30-Day Mortality and (B) 1-Year Mortality 
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Figure 2: SHAP Summary Plots for Predictive Models of (A) 30-Day Mortality and (B) 1-Year 
Mortality 
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