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OBJECTIVE—Protein kinase C (PKC)-�, an upstream regulator
of the Akt survival pathway, contributes to cellular dysfunction
in the pathogenesis of diabetes. Herein, we examined the role of
PKC-� in neuronal apoptosis through Akt in the retinas of
diabetic rats.

RESEARCH DESIGN AND METHODS—We used retinas from
24- and 35-week-old male Otsuka Long-Evans Tokushima fatty
(OLETF) diabetic and Long-Evans Tokushima Otsuka (LETO)
nondiabetic rats. To assess whether PKC-� affects Akt signaling
and cell death in OLETF rat retinas, we examined 1) PKC-�
activity and apoptosis; 2) protein levels of phosphatidylinositol
3-kinase (PI 3-kinase) p85, heat shock protein 90 (HSP90), and
protein phosphatase 2A (PP2A); 3) Akt phosphorylation; and 4)
Akt binding to HSP90 or PP2A in LETO and OLETF retinas in the
presence or absence of rottlerin, a highly specific PKC-� inhibi-
tor, or small interfering RNAs (siRNAs) for PKC-� and HSP90.

RESULTS—In OLETF retinas from 35-week-old rats, ganglion
cell death, PKC-� and PP2A activity, and Akt-PP2A binding were
significantly increased and Akt phosphorylation and Akt-HSP90
binding were decreased compared with retinas from 24-week-old
OLETF and LETO rats. Rottlerin and PKC-� siRNA abrogated
these effects in OLETF retinas from 35-week-old rats. HSP90
siRNA significantly increased ganglion cell death and Akt-PP2A
complexes and markedly decreased HSP90-Akt binding and Akt
phosphorylation in LETO retinas from 35-week-old rats com-
pared with those from nontreated LETO rats.

CONCLUSIONS—PKC-� activation contributes to neuro-retinal
apoptosis in diabetic rats by inhibiting Akt-mediated signaling
pathways. Diabetes 57:2181–2190, 2008

P
rotein kinase C (PKC)-�, a ubiquitously ex-
pressed isoform of the novel PKC subfamily,
mediates an anti-apoptotic signaling cascade
through the phosphatidylinositol 3-kinase (PI

3-kinase)–mediated survival pathway (1,2) and also pro-
motes apoptosis by interfering with Akt signaling (3–5).

Akt is a downstream target of PI 3-kinase that plays an
integral role in cell survival. Dysregulation of Akt is

frequently observed in diseases such as cancers and
diabetes (6–8). PI 3-kinase activates Akt through the
phosphorylation of two key regulatory residues, Thr308
and Ser473, on Akt. Phosphorylation of both residues is
necessary for full activation of Akt and subsequent regu-
lation of many PI 3-kinase–mediated biological responses
(9,10).

Protein phosphatase 2A (PP2A), a major cellular serine/
threonine phosphatase, regulates the phosphorylation
state of cellular proteins in various pathological conditions
(11–13). Recently, it has been reported that PP2A is
involved in the regulation of cell proliferation and survival
through its ability to dephosphorylate Akt (11–15). Fur-
thermore, heat shock protein 90 (HSP90) counteracts the
effect of PP2A in cells through direct binding to Akt,
protecting Akt from PP2A-mediated dephosphorylation
and thus functioning as a positive regulator of Akt signal-
ing (13,15,16). Of note, numerous reports have suggested
that Akt- or HSP-mediated cytoprotection is regulated by
PKC (1,5,13,17,18).

Otsuka Long-Evans Tokushima fatty (OLETF) rats are a
genetic animal model of late onset of hyperglycemia.
Animals spontaneously develop type 2 diabetes and ex-
hibit hyperglycemia and insulin resistance at 20–40 weeks
of age (19–21). Recently, we reported that PKC-� activa-
tion is involved in neuronal apoptosis in 35-week OLETF
rat retinas (22); however, a direct association between
PKC-� and Akt was not defined.

Therefore, we examined effects of PKC-� on Akt-medi-
ated survival pathways and neuronal apoptosis in the
retinas of diabetic OLETF rats.

RESEARCH DESIGN AND METHODS

Six-week-old male OLETF and Long-Evans Tokushima Otsuka (LETO) rats
were obtained from the Otsuka Pharmaceutical Tokushima Research Institute
(Tokushima, Japan). We used 8 LETO and 8 OLETF rats at 24 weeks of age
and 28 LETO and 28 OLETF rats at 35 weeks of age. Rats were housed in
groups of three animals and supplied with water and food ad libitum under
ambient temperature conditions (22 � 2°C) and a 12-h light/dark cycle, in
accordance with the protocol of the institutional review board. We randomly
selected five LETO and five OLETF rats at 24 and 35 weeks of age and
measured their body weights and blood glucose levels. Blood samples were
obtained by tail snipping after a 2-h fasting period. Blood glucose levels were
measured using the SureStep (LifeScan, Milpitas, CA).
Intravitreal injection. Rats were anesthetized with an intraperitoneal
injection of 50 mg/kg sodium pentobarbital followed by topical application of
0.5% proparacaine to the eye. For intravitreal injection, a 30-gauge needle was
inserted into the vitreous 2 mm posterior to the limbus through the pars plana
using a microscope, without damaging the lens and the retina. Injections were
covered by the institutional animal care and use committee of Gyeongsang
National University.

Rottlerin (Sigma, St Louis, MO), a highly specific PKC-� inhibitor, was
dissolved in 0.5% dimethyl sulfoxide (DMSO), and 3 �l rottlerin (5 �mol/l) was
used for intravitreal injection into the right eye of 35-week-old LETO and
OLETF rats. DMSO (3 �l) was injected into the left vitreous as a control. All
rats were killed 1 day after the injection.

From the 1Department of Anatomy and Neurobiology, School of Medicine,
Institute of Health Science, Gyeongsang National University, Jinju, Gyeong-
nam, South Korea; the 2Department of Ophthalmology, School of Medicine,
Institute of Health Science, Gyeongsang National University, Jinju, Gyeong-
nam, South Korea; and the 3Department of Biological Sciences, College of
Natural Sciences, University of Ulsan, Ulsan, South Korea.

Corresponding author: Wan Sung Choi, choiws@gnu.ac.kr.
Received 6 October 2007 and accepted 24 April 2008.
Published ahead of print at http://diabetes.diabetesjournals.org on 28 April

2008. DOI: 10.2337/db07-1431.
© 2008 by the American Diabetes Association. Readers may use this article as

long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked “advertisement” in accordance

with 18 U.S.C. Section 1734 solely to indicate this fact.

ORIGINAL ARTICLE

DIABETES, VOL. 57, AUGUST 2008 2181



For PKC-� and HSP90 gene silencing, we used commercially available small
interfering RNAs (siRNAs) from Dharmacon (ON-TARGET plus Duplex J-080142-
05-0050 for Rat PRKCD and J-102259-01-0020 for Rat Hspcb; Dharmacon, Chi-
cago). The sense and antisense strands of the PKC-� and HSP90 siRNAs were as
follows: PKC-�, 5�-GCAACGCUGCCAUCCAUAAUU-3� (sense) and 5�-PUUAUGG
AUGGCAGCGUUGCUU-3� (antisense); HSP90, 5�-GCUUUGAGGUGGUAUACAU
UU-3� (sense) and 5�-PAUGUAUACCACCUCAAAGCUU-3� (antisense). siRNAs
were completely dissolved in RNase-free distilled water (Dharmacon) at a final
concentration of 500 �mol/l before injection. To assess the effects of PKC-� and
HSP90 siRNAs on retinas, 1 and 3 �l siRNAs, each at a concentration of 500
�mol/l, were intravitreally injected into the right eye of OLETF and LETO rats at
35 weeks. Control rats received 1 and 3 �l distilled water into the left eye. Rats
were killed at 1, 2, and 5 days after the injection, and the effects of siRNAs on

PKC-� and HSP90 were determined by immunoblotting. Data are representative
of four independent experiments.
Antibodies. Mouse monoclonal antibodies against PKC-�, PI 3-kinase p85
(regulatory subunit), HSP90, and Akt; goat polyclonal anti-Thy-1 antibody; and
rabbit polyclonal anti-PP2A (catalytic subunit, 36 kDa) and anti-Akt antibodies
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Rabbit
polyclonal antibodies against PP2B and phospho-Akt were obtained from BD
Biosciences (San Jose, CA) and Cell Signaling (Danvers, MA), and mouse
monoclonal anti–�-tubulin antibody was purchased from Sigma. Horseradish
peroxidase–conjugated secondary antibodies were purchased from Pierce
(Rockford, IL). Cy 3–conjugated donkey anti-rabbit and anti-mouse IgGs and
Alexa Fluor 405–conjugated chicken anti-goat IgG were obtained from Amer-
sham Biosciences (Piscataway, NJ) and Invitrogen (Carlsbad, CA), respectively.

FIG. 1. Ganglion cell apoptosis in retinas of LETO and OLETF rats at 24 and 35 weeks. The TUNEL assay was performed after Thy-1
immunostaining, a specific ganglion cell marker, and then sections were stained with the nuclear marker DAPI. A and B–F: Representative images
of 35-week LETO and OLETF retinas. The arrows indicate TUNEL-positive ganglion cells in 35-week-old OLETF rats (B). The arrowheads in F

show the codistribution of TUNEL-positive signals (small arrowheads in C) and Thy-1–positive ganglion cells in 35-week OLETF retinas. The
number of co-positive cells was counted and the fold changes are presented as the means � SE (n � 4) (G). **P < 0.01 compared with 24-week
LETO and the other groups. INL, inner nuclear layer; IPL, inner plexiform layer; L (24) and L (35), 24- and 35-week LETO retinas, respectively;
O (24) and O (35), 24- and 35-week OLETF retinas, respectively; ONL, outer nuclear layer. Bars, 12.5 �m. (Please see http://dx.doi.org/10.2337/
db07-1431 for a high-quality digital representation of this figure.)
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Immunoblot analysis. Retinal protein extraction and immunoblot analysis
were performed as described previously (23). Total protein (30 �g) from LETO
and OLETF rat retinas was subjected to SDS-PAGE and then transferred to a
nitrocellulose membrane. Antibody incubations and washing were performed on

the membranes, and the immunoreactive proteins were visualized using an
enhanced chemiluminescent kit (Amersham Biosciences). Each membrane was
then stripped and reblotted with anti–�-tubulin antibody as a control. Data are
representative of four independent experiments. The fold changes in protein
levels are indicated below the blots in each figure.
Immunoprecipitation. Immunoprecipitations were performed as described
previously (24). Pre-cleared immune complexes were collected using protein-
G/A-agarose beads and washed with radioimmunoprecipitation assay buffer
(50 mmol/l Tris-HCl [pH 8.0], 150 mmol/l NaCl, 0.1% SDS, 0.5% sodium
deoxycholate, and 1% Nonidet P-40) containing protease inhibitors. SDS-
PAGE sample buffer was added to the beads, and final fractions were
subjected to immunoblot analysis. All immunoblots were reprobed with the
immunoprecipitating antibody to account for loading differences in protein
levels, and each reciprocal analysis was performed. Data are representative of
three to four independent experiments.
PKC-� kinase assay. We performed PKC-� kinase assay using the SignaTECT
PKC Assay System (Promega, Madison, WI) according to the manufacturer’s
protocol, as described previously (23). Briefly, PKC-� immune complexes
were collected using protein G/A-agarose beads, and then the beads were
resuspended in 20 �l kinase reaction buffer (25 mmol/l Tris-HCl [pH 7.5], 5
mmol/l �-glycerol phosphate, 2 mmol/l dithiothreitol, 0.1 mmol/l sodium
orthovanadate, 10 mmol/l MgCl2, and 0.5 �Ci [�-32P]ATP [3,000 Ci/mmol]).
Kinase activity was determined using a scintillation counter. Data are repre-
sentative of four independent experiments.
PP2A phosphatase assay. PP2A activity was determined using a PP2A-IP
phosphatase assay kit (catalog no. D-001810-01-20; Upstate, Temecula, CA)
according to the manufacturer’s protocol. Total protein (300 �g) from retinas was
incubated with 4 �g anti–PP2A-C (catalytic subunit) antibody and 40 �l protein
A-agarose beads for 2 h at 4°C with constant rocking. The immune complexes
were washed three times in Tris-buffered saline and once with Ser/Thr assay
buffer (50 mmol/l Tris-HCl [pH 7.0] and 100 �mol/l CaCl2). The phosphatase
reaction was initiated by the addition of 60 �l phosphopeptide substrate (final

FIG. 2. PKC-� activity in retinas of LETO and OLETF rats at 24 and 35
weeks. A PKC activity assay was performed using PKC-� immune
complexes and the SignaTECT PKC assay system. [�-32P]ATP-labeled
PKC-� was measured by scintillation counter. Data are the means � SE
(n � 4). **P < 0.01 compared with 24-week LETO and the other groups.
L (24) and L (35), 24- and 35-week LETO retinas, respectively; O (24)
and O (35), 24- and 35-week OLETF retinas, respectively.

FIG. 3. Protein levels of PI 3-kinase, HSP90, PP2A, PP2B, phospho-Akt (Thr308) and -Akt (Ser473), and phospho-GSK in retinas of LETO and
OLETF rats at 24 and 35 weeks. A: Representative immunoblots of PI 3-kinase, HSP90, PP2A, and PP2B. B–D: Fold changes in these protein levels.
E, F, and G–I: Representative immunoblots of phospho-Akt and -GSK and the corresponding fold changes. The immunoblots were stripped and
reprobed with anti–�-tubulin or -Akt antibodies. Data are means � SE (n � 4). *P < 0.05 and **P < 0.01 compared with 24-week LETO and the
other groups. L (24) and L (35), 24- and 35-week LETO retinas, respectively; O (24) and O (35), 24- and 35-week OLETF retinas, respectively.
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reaction concentration of 750 �mol/l) and allowed to proceed for 30 min in a
shaking incubator. The reaction mixture was centrifuged briefly, and the super-
natant was transferred to a 96-well microplate. Malachite green phosphate
detection solution was added to each well and allowed to develop for 15 min at
room temperature. Free phosphate was quantified by measuring the absorbance
of each well at 650 nm using a microplate reader. Data are representative of four
independent experiments.
Akt kinase assay. Akt activity was measured using a nonradioactive Akt
kinase assay kit (Cell Signaling) according to the manufacturer’s protocol
without any modification. Akt immune complexes from total protein (300 �g)
from retinas were incubated with recombinant glycogen synthase kinase
(GSK)-3�/� fusion protein (30 kDa). Phosphorylation of GSK-3 was measured
by immunoblotting using anti–phospho-GSK-3�/� (Ser21/9) antibody. Data
represent the results of four independent experiments.
Immunohistochemistry. The preparation of frozen retinal sections and
immunohistochemical staining were performed as described previously (24).
After blocking, retinal sections were incubated with primary antibodies
against HSP90, PP2A, and phospho-Akt (Ser473) and biotinylated secondary
antibodies. The sections were washed in PBS, incubated with an avidin-
biotinylated horseradish peroxidase complex (ABC; Vector Laboratories,
Burlingame, CA), and developed using 0.025% 3,3�-diaminobenzidine tetrahy-
drochloride (DAB; Sigma)/0.003% H2O2 in PBS.

To confirm ganglion cell–specific expression of HSP90, PP2A, and phos-
pho-Akt, double-immunofluorescent staining was performed with Thy-1, a
ganglion cell marker, as described previously (24). Briefly, retinal sections
were incubated in a mixture of primary antibodies, rinsed in PBS, incubated
in a mixture of secondary antibodies, and then wet-mounted. Images were
obtained using a BH-2 Olympus microscope (Melville, NY) at a point that was
�0.8–1 mm from the optic nerve head. Data are representative of three
independent experiments.
Cell death assay. Cell death was determined using a Terminal dUTP
transferase nick end labeling (TUNEL) assay (In Situ Cell Death Detection kit;
Roche, Mannheim, Germany) according to the manufacturer’s protocol, as
described previously (25). To assess ganglion cell death, the TUNEL assay was
performed after Thy-1 immunofluorescent staining on retinal sections or flat
mounts. All sections were stained with the nuclear marker 40,6-diamidino-2-
phenylindole dihydrochloride (DAPI; Invitrogen) before being wet-mounted.
Whole retinal preparation and flat-mounting were carried out as described
previously (26). TUNEL-positive images were observed using a confocal
microscope (Axioplan2 Imaging; Zeiss). The number of cells that had co-
positive signal of TUNEL and Thy-1 was quantified using the Soft Imaging
System (Soft Imaging System; Münster, Germany). Data are representative of
four independent experiments from different retinal sections or flat mounts.
Data analysis. Densitometric analysis of immunoblots was performed using
SigmaGel 1.0 (Jandel Scientific, Erkrath, Germany) and SigmaPlot 4.0 (SPSS,
Chicago). All data are presented as means � SE. Statistical significance was
determined using one-way ANOVA followed by a Tukey post hoc test (SAS
Institute, Cary, NC) and the Mann-Whitney U test (SPSS). P 	 0.05 was
considered to be statistically significant.

RESULTS

During the course of this study, OLETF rats gained weight
faster than the control LETO rats. The mean body weights
of OLETF and LETO rats at 24 weeks were 688 � 10.5 and
471 � 8.2 g, respectively, and the difference in weight was
increased significantly at 35 weeks (732 � 20.1 and 520 �
11.2 g, respectively; P 	 0.05, n 
 5). Blood glucose levels
in OLETF and LETO rats were 14.5 � 0.5 and 6.2 � 0.3
mmol/l (P 	 0.05; n 
 5, respectively) at 24 weeks and
21.6 � 1.12 and 6.6 � 0.5 mmol/l (P 	 0.05; n 
 5,
respectively) at 35 weeks. OLETF rats exhibited a steady
increase in glucose levels from week 10, whereas LETO
rats sustained normoglycemia throughout the period of
study (data not shown).

The number of TUNEL-positive ganglion cells in 35-
week-old OLETF rats was significantly higher (3.5-fold;
P 	 0.01; n 
 4) than in 24-week-old LETO rats (Fig. 1G).
There were no significant differences between 24- or
35-week-old LETO and 24-week-old OLETF rats.

PKC-� activity was significantly higher (4.9-fold; P 	
0.01; n 
 4) in 35-week OLETF retinas than 24-week LETO
retinas (Fig. 2). There were no significant differences
between 24- or 35-week-old LETO and 24-week-old OLETF

rats. PKC-� protein levels were similar in all groups (data
not shown).

The protein levels of PI 3-kinase p85 and HSP90 were
increased in 24-week OLETF retinas compared with LETO
retinas (Fig. 3A–C); however, HSP90 levels were lower in
35-week OLETF retinas than in LETO retinas, and there
was no significant difference between PI 3-kinase levels in
both age-groups of OLETF rats. The levels of PP2A (cata-
lytic subunit) and cleaved PP2B (48 kDa) were not signif-
icantly different in 24-week-old LETO and OLETF rats but
were greatly increased in retinas from 35-week-old OLETF
rats (Fig. 3D). Phospho-Akt (Thr308) and -Akt (Ser473)
levels were increased (1.4- and 2.3-fold; P 	 0.05 and 0.01,
respectively; n 
 4) in 24-week OLETF retinas compared
with LETO retinas and decreased significantly (1.7- and
2.5-fold; P 	 0.05 and 0.01, respectively; n 
 4) in 35-week
OLETF retinas (Fig. 3E–H). Akt activity, based on phospho-
GSK–3�/� level (30 kDa), was significantly lower (twofold;
P 	 0.01; n 
 4) in 35-week-old OLETF rats than 24-week-
old LETO rats (Fig. 3I).

To assess whether PKC-� affects the association of Akt
with its binding partners, we subjected Akt immune com-
plexes to immunoblot analysis using anti-HSP90, -PP2A,
and -PP2B antibodies (Fig. 4). Akt binding to HSP90 or
PP2A was similar in 24-week LETO and OLETF retinas;
however, in 35-week OLETF retinas, this association was
significantly decreased or increased more than threefold
(P 	 0.01; n 
 4), respectively, compared with 24-week-
old LETO rats. Neither PI 3-kinase binding to HSP90 nor
PP2A or HSP90 binding to PP2A was detectable in all

FIG. 4. The associations with Akt and HSP90, PP2A, and PP2B in
retinas of LETO and OLETF rats at 24 and 35 weeks. Akt, HSP90, and
PP2A immune complexes were subjected to immunoblot analysis (A–
C). Data are representative blots of four independent experiments.
The blots were reprobed with the immunoprecipitating antibody to
account for loading differences. The immunoblot data were quantified
using densitometry and the fold changes in Akt-HSP90 and Akt-PP2A
binding are presented in D and E. Data are means � SE (n � 4). **P <
0.01 compared with 24-week LETO and the other groups. IP, immuno-
precipitation; L (24) and L (35), 24- and 35-week LETO retinas,
respectively; O (24) and O (35), 24- and 35-week OLETF retinas,
respectively.
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groups, there were no differences in PI 3-kinase binding to
PKC-� among groups, and PKC-�–PP2A binding appeared
only in 35-week OLETF rat retinas (data not shown).

HSP90 immunoreactivity was specific only in the
ganglion cell layer (GCL), and PP2A- and phospho-Akt
(Ser473) signals were positive in the nerve fiber layer
(NFL), the inner segment layer, and the GCL in 35-week
LETO and OLETF retinas (Fig. 5). HSP90 and phospho-
Akt signals in the GCL (Fig. 5, large arrows and arrow-
heads) were decreased and PP2A signals (Fig. 5, small
arrows) were increased in 35-week-old OLETF rats
compared with LETO rats. By double-immunostaining
with Thy-1 of HSP90, PP2A, and phospho-Akt (Ser473),

we confirmed that these positive signals colocalized to
ganglion cells (Fig. 5, right panels, insets). PKC-�
immunoreactivity was also observed throughout the
retina, including the GCL, and there was no significant
difference among 24- and 35-week-old LETO and OLETF
rats (data not shown).

In a previous study, we found that PKC-� activity was
greatly increased (4.9-fold; P 	 0.01; n 
 4) in 35-week
OLETF retinas compared with LETO retinas, and 5 �mol/l
rottlerin abrogated this effect (22). In this study, 5 �mol/l
rottlerin treatment also significantly decreased ganglion
cell death in 35-week OLETF retinas (2.4-fold; P 	 0.05;
n 
 4) compared with DMSO-treated OLETF retinas (Fig.

FIG. 5. Distribution of HSP90, PP2A, and phospho-Akt (Ser473) in retinas of LETO and OLETF rats at 35 weeks. Their positive signals in the GCL
are indicated by arrows, arrowheads, and small arrows, respectively. Insets show enlarged images of ganglion cells co-labeled with these proteins
and Thy-1, a specific ganglion cell marker. Data are representative of three independent experiments. INL, inner nuclear layer; IPL, inner
plexiform layer; IS, inner segment layer; ONL, outer nuclear layer; OPL, outer plexiform layer. Bars, 12.5 �m. (Please see http://dx.doi.org/
10.2337/db07-1431 for a high-quality digital representation of this figure.)
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6). However, rottlerin had no effect on PKC-� activity or
cell death in LETO rats (data not shown).

Rottlerin did not significantly affect PI 3-kinase p85 and
phospho-Akt (Thr308) protein levels, although it modestly
increased HSP90 levels in 35-week OLETF retinas (Fig.
7A–C). Furthermore, rottlerin greatly decreased PP2A
protein levels (2.5-fold; P 	 0.01; n 
 4; Fig. 7D) and
increased phospho-Akt (Ser473) levels (2.8-fold; P 	 0.01;
n 
 4; Fig. 7E–G). Rottlerin also blocked the decrease in
Akt activity in 35-week OLETF retinas (Fig. 7H). Akt
binding to HSP90 or PP2A was significantly increased or
decreased, respectively, (2.7- and 2-fold; P 	 0.01, respec-
tively; n 
 4; Fig. 7I–M) in rottlerin-treated 35-week
OLETF retinas compared with the untreated group.

We next examined the effect of PKC-� and HSP90 siRNA
treatment on 35-week OLETF and LETO rat retinas. Three
microliters siRNA significantly reduced PKC-� and HSP90
protein expression in OLETF and LETO rats 1 day (30.2 �
1.1 and 11.1 � 0.8%; P 	 0.05, respectively; n 
 4) and 2
days (70 � 2.1 and 50.1 � 1.8%; P 	 0.01 and 0.05,
respectively; n 
 4) after the injection, whereas 1 �l siRNA
did not show these effects. No effects were shown at 5
days after siRNA injection (data not shown). Distilled
water treatment did not show any effect on PKC-� and
HSP90 protein expression in the retinas. Figures 8 and 9

FIG. 6. The effects of rottlerin treatment on ganglion cell death in
retinas of LETO and OLETF rats at 35 weeks. The effects of rottlerin
(5 �mol/l; 3 �l) were examined 24 h after an intravitreal injection into
the right eye of rats. As a control, 0.5% DMSO (3 �l) was introduced
into the left vitreous. Data (fold changes) are means � SE (n � 4).
**P < 0.01 compared with DMSO-treated LETO and the other groups;
†P < 0.05 compared with DMSO- and rottlerin-treated OLETF retinas.

FIG. 7. The effects of rottlerin treatment on protein levels of PI 3-kinase, HSP90, PP2A, and Akt; Akt activity; and the associations with Akt and
HSP90 or PP2A in retinas of LETO and OLETF rats at 35 weeks. Immunoblot data are representative of four independent experiments (A and
E). B–D and F–H: Fold changes in protein levels after rottlerin treatment. Akt, HSP90, and PP2A immune complexes were subjected to
immunoblot analysis using the indicated antibodies (I–K). The immunoblots were reprobed with the immunoprecipitating antibody to account for
loading differences. Data are representative blots of four independent experiments. L and M: Fold changes in Akt-HSP90 and Akt-PP2A binding
after rottlerin treatment. Data are means � SE (n � 4). *P < 0.05 and **P < 0.01 compared with DMSO-treated LETO and the other groups; †P <
0.05 and ††P < 0.01 compared with DMSO- and rottlerin-treated OLETF retinas. IP, immunoprecipitation; Rott, rottlerin; L (24) and L (35), 24-
and 35-week LETO retinas, respectively; O (24) and O (35), 24- and 35-week OLETF retinas, respectively.
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show data at 2 days after 3-�l siRNA (500 �mol/l) injec-
tion. PKC-� siRNA significantly decreased PP2A protein
levels and phosphatase activity and Akt-PP2A binding in
35-week OLETF retinas (Fig. 8A–C), whereas it modestly
increased Akt-HSP90 binding (Fig. 8D–F). PKC-� silencing
also significantly increased phospho-Akt (Ser473) levels
and Akt activity but did not affect phospho-Akt (Thr308)
levels (Fig. 8G and H). We also observed that ganglion cell
death in 35-week OLETF retinas was blocked by PKC-�

siRNA treatment (Fig. 8I–K). Additionally, we found that
HSP90-silenced LETO retinas show significant decreases
in Akt-HSP90 binding and Akt activity and increases in
Akt-PP2A binding and ganglion cell death (Fig. 9A–G).

DISCUSSION

We have demonstrated here that PKC-� activation is
responsible for neuro-retinal apoptosis in diabetic OLETF
rats via the inactivation of Akt.

FIG. 8. Changes in Akt signaling and cell death in retinas of 35-week-old OLETF rats after PKC-� knockdown using RNA interference. A:
Representative immunoblots of PKC-�, PP2A, HSP90, and Akt, and the fold changes in these protein levels are indicated below the blots. B and
C: Results from PKC-� kinase and PP2A phosphatase assays. D–F: Representative immunoblots of Akt, HSP90, and PP2A immune complexes. The
immunoblots were reprobed with the immunoprecipitating antibodies to account for loading differences. G and H: Representative immunoblots
of phospho-Akts and the result from Akt kinase assay using a recombinant GSK-3�/� fusion protein and the corresponding fold changes are
indicated below the blots. I: A representative immunoblot of cleaved caspase-3. The immunoblots were stripped and reprobed with anti–�-tubulin,
-Akt, and –pro-caspase-3 antibodies. Data are representative images of four independent experiments. J: Result of the TUNEL assay performed
after Thy-1 immunostaining in flat mounts of 35-week OLETF rat retinas. The number of their co-positive cells was counted (K). Data are means �
SE (n � 4). *P < 0.05 compared with distilled water– and PKC-� siRNA-treated 35-week OLETF retinas. DW, RNase-free distilled water; IP,
immunoprecipitation. Bars, 12.5 �m. (Please see http://dx.doi.org/10.2337/db07-1431 for a high-quality digital representation of this figure.)
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Previously, we found that PKC-� acts as a selective
mediator of neuronal apoptosis in the retinas of 35-week-
old OLETF rats (22). In the current study, we demon-
strated that apoptosis occurs only in ganglion cells of the
35-week OLETF retinas (Fig. 1) and that PKC-� activity is
greatly increased in 35-week OLETF retinas compared
with 24- or 35-week LETO and 24-week OLETF retinas
(Fig. 2). PKC-� immunoreactivity was observed through-
out the retina and was highest in the GCL group (data not
shown). These results indicate that PKC-� activation is
involved in ganglion cell death in OLETF rat retinas.

The activity of Akt is regulated by its association with a
variety of binding partners, and Akt binding to PP2A
results in the dephosphorylation and inactivation of Akt,

consistent with our results. Moreover, HSP90 physically
associates with Akt and disrupts the PP2A-Akt complex,
stabilizing Akt activity (13,15,16). As expected, protein
levels of PI 3-kinase, HSP90, and phospho-Akt and Akt
activity were moderately increased in 24-week OLETF
retinas compared with LETO retinas, but these were
significantly decreased, with the exception of PI 3-kinase
levels, in 35-week-old OLETF rats (Figs. 3 and 4). PI
3-kinase–Akt survival signals were differently regulated in
OLETF rat retinas at 24 and 35 weeks. The significant
reduction in these signaling components in 35-week-old
OLETF rats may reflect the retinal damage associated with
the pathological progression of diabetes, whereas these
increases in 24-week-old OLETF rats may relate to func-

FIG. 9. Changes in Akt signaling and cell death in retinas of 35-week-old LETO rats after HSP90 knockdown using RNA interference. A:
Representative immunoblots of HSP90, PP2A, and Akt, and the fold changes in these protein levels are indicated below the blots. B–D:
Representative immunoblots of Akt, HSP90, and PP2A immune complexes. The immunoblots were reprobed with the immunoprecipitating
antibodies to account for loading differences. E: Result from Akt kinase assay using a recombinant GSK-3�/� fusion protein. The corresponding
fold change is indicated below the blot. Data are representative images of four independent experiments. F: Result of the TUNEL assay performed
after Thy-1 immunostaining in flat mounts of 35-week LETO rat retinas. The number of their co-positive cells was counted (G). Data are means �
SE (n � 4). *P < 0.05 compared with distilled water– and HSP90 siRNA-treated 35-week LETO retinas. DW, RNase-free distilled water; IP,
immunoprecipitation. Bars, 12.5 �m. (Please see http://dx.doi.org/10.2337/db07-1431 for a high-quality digital representation of this figure.)
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tional compensation for diabetes-induced cellular stress.
Either PP2A or PP2B cleavage was specifically increased
in 35-week OLETF retinas. Furthermore, Akt binding to
HSP90 was greatly decreased and its association with
PP2A was greatly increased in 35-week OLETF retinas
compared with other groups. The levels of Akt-PP2B
complexes were similar between LETO and 24-week
OLETF retinas, and PI 3-kinase binding to HSP90 or PP2A
was not detected in any of the groups (data not shown).
Interestingly, the immunoreactivity of HSP90, PP2A, and
phospho-Akt (Ser473) was altered specifically in ganglion
cells of 35-week OLETF retinas compared with LETO
retinas (Fig. 5), in agreement with the results of the
TUNEL assay (Fig. 1). Taken together, our results suggest
that Akt inactivation is due to the upregulation of PP2A
rather than a PI 3-kinase–dependent pathway and that
PP2A plays an important role in ganglion cell death in
OLETF rat retinas.

PKC-� inhibition or knockdown by rottlerin or siRNA
treatment significantly abrogated not only PKC-� activa-
tion and ganglion cell death but also PP2A activation and
its association with Akt. PKC-� inhibition also decreased
HSP90, phospho-Akt (Ser473), and phospho-GSK levels
and the association of Akt with HSP90 in 35-week OELTF
retinas (Figs. 6–8). However, these PKC-� downregula-
tions had no significant effects on the levels of PI 3-kinase
and phospho-Akt (Thr308) and PKC-�–PI 3-kinase binding.
Also, we found that HSP90 knockdown decreases Akt-
HSP90 binding and Akt activity and increases Akt-PP2A
binding and ganglion cell death in 35-week LETO retinas
(Fig. 9A–G). Therefore, our findings indicate that PKC-�
regulates ganglion cell death in OLETF rats through up-
regulating PP2A that dephosphorylates phospho-Akt
(Ser473), competing with Akt stabilization by HSP90. A
recent study reported that PKC-� enhances PP2A by its
direct binding (27). Consistently, downregulation of PKC-�
by rottlerin or siRNA decreased both PP2A protein levels
and phosphatase activity in 35-week OLETF rat retinas.
Furthermore, PKC-� also bound to PP2A in 35-week
OLETF retinas (data not shown). Therefore, we suggest
that PKC-� directly acts on PP2A in the OLETF rat retina,
resulting in retinal apoptosis.

PI 3-kinase–dependent activation of Akt is mediated by
PKC-�, which is required for cell survival in various cancer
and immune cells (1,2,28). However, Zhong et al. sug-
gested that PKC-� downregulation suppresses apoptotic
signals through a novel PI 3-kinase–independent survival
pathway (29). As such, we found that PKC-� inhibition did
not affect PI 3-kinase levels, but it abrogated neuronal
apoptosis, increasing Akt signaling including Akt disasso-
ciation from PP2A and phosphorylation of Akt on Ser473.
Thus, it seems likely that PI 3-kinase–independent Akt
pathway mediates PKC-�–induced apoptosis during diabetes.

Rottlerin has virtually no effect on PKC-� activity in cells
in culture (30–33), whereas it specifically inhibits PKC-�
activity and PKC-�–mediated apoptosis at concentrations
of 3–6 �mol/l (5,34,35), consistent with our results. In
addition, rottlerin can inhibit many other kinases, includ-
ing mitogen-activated protein kinase–activated protein ki-
nase 2 (MAPKAP-K2) and p38MAPK (30,36), in a dose-
dependent manner, whereas it has no significant effect on
these kinases in OLETF rat retinas (data not shown).
Therefore, this discrepancy may be due to differences in
the doses of rottlerin used or in the physiological and
pathological state of the animals.

In conclusion, our data suggest that PKC-� mediates

neuronal death in retinas of diabetic rats via PP2A activa-
tion and Akt signaling inhibition. Ganglion cell death
occurs early as an initial event in diabetic retinopathy, and
the mechanism of this cell death is unknown. Therefore,
our data provide new insights into the mechanism of diabe-
tes-associated neuro-retinal damage, showing that specific
PKC-� inhibitors may have potential for therapeutic agents
for the prevention of human diabetic retinopathy.
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