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A B S T R A C T   

Purpose: To evaluate the effectiveness of machine learning model based on magnetic resonance 
imaging (MRI) in identifying microsatellite instability (MSI) status and PD-L1 expression in 
endometrial cancer (EC). 
Methods: This retrospective study included 82 EC patients from 2 independent centers. Radiomics 
features from the intratumoral and peritumoral regions, obtained from four conventional MRI 
sequences (T2-weighted images; contrast-enhanced T1-weighted images; diffusion-weighted im-
ages; apparent diffusion coefficient), were combined with clinicopathologic characteristics to 
develop machine learning model for predicting MSI status and PD-L1 expression. 60 patients from 
center 1 were used as the training set for model construction, while 22 patients from center 2 
were used as an external validation set for model evaluation. 
Results: For predicting MSI status, the clinicopathologic model, radscore model, and combination 
model achieved area under the curves (AUCs) of 0.728, 0.833, and 0.889 in the training set, 
respectively, and 0.595, 0.790, and 0.848 in the validation set, respectively. For predicting PD-L1 
expression, the clinicopathologic model, radscore model, and combination model achieved AUCs 
of 0.648, 0.814, and 0.834 in the training set, respectively, and 0.660, 0.708, and 0.764 in the 
validation set, respectively. Calibration curve analysis and decision curve analysis demonstrated 
good calibration and clinical utility of the combination model. 
Conclusion: The machine learning model incorporating MRI-based radiomics features and clini-
copathologic characteristics could be a potential tool for predicting MSI status and PD-L1 
expression in EC. This approach may contribute to precision medicine for EC patients.   
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1. Introduction 

Endometrial cancer (EC) is the second most commonly occurring gynecological malignancy among women globally, with a rising 
incidence [1,2]. The therapeutic options available for advanced or recurrent cases of EC are currently limited [3,4]. It is worth noting 
that patients with advanced or recurrent EC have a poor prognosis, with reported data showing an approximate 5-year survival rate of 
only 17 % [5]. 

In recent years, immunotherapy has emerged as a novel and promising treatment modality for cancer, demonstrating significant 
efficacy in the treatment of various solid tumors. Programmed death protein-1 (PD-1) inhibitors have emerged as a promising ther-
apeutic option for the treatment of advanced or recurrent EC patients. Notably, the US Food and Drug Administration (FDA) has 
approved PD -1 immune checkpoint inhibitors for the treatment of adult patients with recurrent or advanced microsatellite unstable 
(MSI)/DNA mismatch repair deficiency (dMMR) EC [6,7]. This recommendation is based on clinical evidence demonstrating the ef-
ficacy of PD-1 inhibitors in improving patient outcomes, as well as the underlying biological rationale of targeting the PD-1 pathway in 
MSI/dMMR tumors [8]. The latest NRG-GY018 and GOG-3031 trials are global, multicenter, randomized, double-blind phase III trials, 
and the results of both show that the combination of immune therapy and chemotherapy for maintenance therapy (pembrolizumab 
and dostarlimab-gxly, two PD-1 inhibitors) can significantly improve Progression-Free Survival (PFS) in the MSI/dMMR population [9, 
10]. Additionally, Among gynecological malignancies, EC holds the highest occurrence of MSI/dMMR. MSI/dMMR EC is characterized 
by several features, including high tumor burden, increased infiltration of lymphocytes, and upregulated expression of PD-L1. Patients 
with these characteristics are more likely to benefit from immunotherapy [11–13]. 

Precision medicine has raised expectations for individualized treatments, but the research and availability of such treatments are 
limited by time and economic constraints [14]. To provide timely and accurate treatment options for EC patients, it is crucial to 
develop a rapid and prospective method for detecting immune therapy-related protein expression in EC. Radiomics is useful for 
capturing the characteristics of tissues and lesions. The integration of radiomics and genomics is called radiogenomics, which in-
vestigates the correlation between the two, including genomic and gene expression analysis. Radiogenomics holds great potential for 
predicting molecular features of tumors through easily accessible and cost-effective medical imaging [14,15]. 

Magnetic resonance imaging (MRI) is a commonly used imaging modality for the diagnosis of EC. With its excellent soft tissue 
contrast, MRI is recommended by the National Comprehensive Cancer Network (NCCN) guidelines as a preferred imaging modality for 
assessing the extent of local disease during the initial workup [15]. According to the International Federation of Gynecology and 
Obstetrics (FIGO) guidelines, MRI findings are considered the preferred criteria for staging of EC [16]. Therefore, in this study, 
radiomic features are extracted from four standard MRI sequences (T2WI, T2-weighted images; CE-T1WI, contrast-enhanced 
T1-weighted images; DWI, diffusion-weighted images; ADC, apparent diffusion coefficient). The aim of this study is to develop a 
machine learning model to predict DNA mismatch repair status and PD-L1 expression for optimizing the treatment of EC patients. 

2. Material and methods 

2.1. Patients 

The Academic Ethics Committee of Shaoxing People’s Hospital approved this retrospective study and waived the requirement for 
written informed consent from patients. A total of 82 patients diagnosed with EC were enrolled in the study, of whom 60 underwent 
examinations at center 1 between 2011 and 2022, and 22 underwent examinations at center 2 between 2017 and 2022. The inclusion 
criteria for the study were as follows:(1) Histologically confirmed EC; (2) Preoperative MRI examination; and (3) Availability of 
qualified postoperative pathological specimens stored in the tissue bank. 

In the present study, strict exclusion criteria were applied, which included the following: (1) Administration of radiotherapy, 
preoperative neoadjuvant chemotherapy, or any other interventions for the lesion before MRI or surgical intervention; (2) Suboptimal 
image quality due to susceptible artifacts, as assessed by the experienced radiologist; (3) Incomplete MRI sequences; and (4) Presence 
of a lesion with a maximum diameter of less than 1 cm. 

2.2. MRI protocols 

Center 1: MRI imaging was performed with a 3.0 T MR scanner (Siemens Verio, Germany) and an 8-channel phased-array surface 
coil. Pelvic enhanced scanning was performed on all patients, with the following detailed scanning parameters: (1) T2WI: FOV: 320 ×
320 mm, slice thickness: 4 mm, repetition time (TR)/echo time (TE): 4500 ms/97 ms. (2) CE-T1WI: FOV: 288 × 288 mm, slice 
thickness: 3 mm, TR/TE: 3.48 ms/1.3 ms. (3) DWI (b-values of 0 and 1000 s/mm2): FOV: 160 mm × 160 mm, slice thickness: 5 mm, 
TR/TE: 6700 ms/92 ms. (4) ADC: FOV: 160 mm × 160 mm, slice thickness: 5 mm, TR/TE: 6700 ms/92 ms. 

Center 2: MRI imaging was performed with a 1.5T MRI scanner (Siemens Avanto, Germany) and a 6-channel phased array surface 
coil. Pelvic-enhanced scans were performed on all patients, with the following detailed scanning parameters: (1) T2WI: FOV: 320 ×
320 mm, slice thickness: 4 mm, TR/TE: 5210 ms/79 ms. (2) CE-T1WI: FOV: 320 × 320 mm, slice thickness: 4 mm, TR/TE: 735 ms/11 
ms. (3) DWI (b-values of 0 and 800 s/mm2): FOV: 160 mm × 136 mm, slice thickness: 5 mm, TR/TE:8900 ms/84 ms. (4) ADC: FOV: 
160 mm × 136 mm, slice thickness: 5 mm, TR/TE: 8900 ms/84 ms. 
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2.3. Tumor segmentation and feature extraction 

The volume of interest (VOI) for EC was delineated in four MRI sequences (T2WI, CE-T1WI, DWI, ADC) using the 3D-slicer software 
(version 5.2.1). Subsequently, a VOI+3 mm was generated by expanding the VOI by 3 mm and manually removing areas outside 
including fibroids, cysts, and fluid accumulation. Imaging features were extracted from the VOI using the AK software (Artificial 
Intelligent Kit, GE Healthcare, China). The image data processing settings for the two centers were as follows: normalized with the 
mean standard deviation as the center, resampled to a voxel size of 1 × 1 × 1 mm3 using B-spline interpolation, and a fixed bin width of 
8 used in the histogram for gray dispersion. 

All image segmentations were conducted by Reader 1, who had 7 years of experience in Pelvic MRI imaging. After more than one 
week, a subset of 30 patients was randomly selected. The image segmentation process was repeated by Reader 1, Reader 2, and Reader 
3, all of whom had more than 5 years of experience in Pelvic MRI imaging. The reliability of the radiomics features was assessed using 
intraclass and interclass correlation coefficients (ICCs). The intra-class correlation coefficient was tested using one-way random effects, 
while the inter-class correlation coefficient was tested using two-way random effects combined with consistency. Radiomics features 
with ICCs >0.75 were retained. 

2.4. Pathological examination 

The determination of MSI status is based on immunohistochemistry (IHC) staining for four MMR proteins (MLH1, MSH2, PMS2, 
and MSH6). Tumors that exhibit nuclear staining for all four markers in at least 10 % of invasive tumor cells are classified as pMMR/ 
microsatellite stable (MSS) (Fig. 1A), whereas those that do not meet these criteria are classified as dMMR/MSI (Fig. 1B) [17]. 

There is no consensus on a standardized approach for evaluating PD-L1 expression using IHC in clinical practice. Previous reports 
have suggested a threshold for the percentage of tumor cells stained, ranging from 1 to 10 %. PD-L1 positivity has been defined as cases 
with PD-L1-stained cells comprising more than 1 % of the total tumor cells (Fig. 1. C) [18], while those that do not meet these criteria 
are classified as negative PD-L1 expression (Fig. 1. D). 

2.5. Feature selection and machine learning model construction 

The feature values were normalized using Z-score normalization. Features with an absolute value of Pearson correlation coefficient 
≥0.9 were excluded. Next, the SelectPercentile (percentile = 80) and Least Absolute Shrinkage and Selection Operator (LASSO) al-
gorithms were used for dimensionality reduction and feature selection. Finally, logistic regression models were constructed. 

The performance of the models was evaluated based on three criteria. Firstly, receiver operating characteristic (ROC) curve analysis 
was used to assess discriminative performance, and quantified by the corresponding AUC with 95 % confidence intervals (CIs), 

Fig. 1. Immunohistochemistry of MMR and PD-L1 in EC. Image magnification of × 200. A. A 54 years old female patient pathologically confirmed 
as a well differentiated EC, with pMMR. B. A 58 year old female patient pathologically confirmed as a moderately differentiated EC, with dMMR. C. 
A 50 years old female was diagnosed as a moderately differentiated EC with positive PD-L1 expression. D. A 49 year old female patient patho-
logically confirmed as a moderately differentiated EC with negative PD-L1 expression. 
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sensitivity, specificity, and accuracy. The AUCs were compared using Delong’s test. Secondly, the calibration curve was used to 
measure the consistency between predicted and actual probabilities to evaluate calibration performance. Thirdly, decision curve 
analyses (DCA) was used to evaluate the clinical utility of the model, which quantifies the net benefit of threshold probability intervals. 
Radiomics feature selection and model building were performed with Python programming language version 3.7.5 (Python Software 
Foundation, Wilmington, DE, USA). Model evaluation, including generation of ROC curve, calibration curve, and DCA, was performed 
using R software version 4.2.2 (The R Foundation for Statistical Computing, Vienna, Austria). Packages and coefficients can be found in 
the Additional file 1. The flowchart of the study is shown in Fig. 2. 

Fig. 2. Radiomic workflow including tumor segmentation, feature extraction, feature selection, model building, and model evaluation. T2WI, T2- 
weighted images; CE-T1WI, contrast-enhanced T1-weighted images; DWI, diffusion-weighted images; ADC, apparent diffusion coefficient; ICC, the 
intraclass and interclass correlation coefficient; LASSO, least absolute shrinkage, and selection operator; ROC, receiver operating characteristic; 
DCA, decision curve analyses. 
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2.6. Statistical analysis 

The data were analyzed with SPSS 24.0 (Armonk, NY). The Mann-Whitney U test was used to analyze the continuous data (non- 
normally distributed values). The Chi-squared test was used for comparison between categorical variables. For all two-sided tests, a p- 
value of <0.05 was considered statistically significant. 

3. Results 

3.1. Patient 

Initially, this study included 76 patients from center 1 and 55 patients from center 2. After applying exclusion criteria, a total of 82 
patients were eventually enrolled in the study, with 60 patients recruited from center 1 and the remaining 22 patients recruited from 
center 2. Of the enrolled patients, 28 had dMMR, 54 had pMMR, 26 tested positive for PD-L1 expression, and 56 tested negative for PD- 
L1 expression based on IHC analysis. The patient selection process is depicted in Fig. 3. 

The clinicopathologic characteristics of dMMR and pMMR tumors, as well as PD-L1-positive and PD-L1-negative tumors, are shown 
in Table 1. DNA mismatch repair status showed no significant differences in age, histologic type, or deep muscle infiltration (p > 0.05), 
but showed significant differences in grade and FIGO stage (p < 0.05). The PD-L1 expression showed no significant differences in age 
or histologic type (p > 0.05), but showed significant differences in grade, and deep muscle infiltration (p < 0.05). 

3.2. Feature selection 

A total of 10528 features were extracted, 1316 × 4 (T2WI, CE-T1WI, DWI, ADC) × 2 (Intratumor and Peritumor), which including 
first-order features, shape features, and texture features such as gray level co-occurrence matrix (GLCM), gray level size zone matrix 
(GLSZM), gray level run-length matrix (GLRLM), neighboring gray-tone difference matrix (NGTDM), gray-level dependence matrix 
(GLDM), log features, wavelet features, and local binary pattern (LBP) features. 

Of the 10528 radiomic features extracted from the MRI images, 7125 features were found to be stable (ICC≥0.75). For the model 
predicting MSI status, feature selection was performed based on Pearson correlation, removing features with an absolute Pearson 
correlation coefficient≥0.9. After univariate feature selection (SelectPercentile), 623 features were retained, and then the LASSO 
algorithm was used to select the 8 most valuable radiomic features from the training set. The radiomic score was calculated for each 

Fig. 3. Workflow shows the selection of the studying population and exclusion criteria.  
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patient using the 8 nonzero coefficient features and used to construct the prediction model. For the PD-L1 expression prediction model, 
features were selected similarly based on Pearson correlation, with those having an absolute Pearson correlation coefficient ≥0.9 
removed. After univariate feature selection (SelectPercentile), 440 features were retained, and then the LASSO algorithm was used to 
select the 8 most valuable radiomic features from the training set. The radiomic score was calculated using the 8 nonzero coefficient 
features and used to construct the prediction model. The selected features and their descriptions are shown in Table 2. The formula for 
calculating the rad-score and the corresponding feature weighting diagram are included in Additional file 2. 

3.3. The predictive power of machine learning models 

The performance of the clinicopathologic, radscore, and combination predictive models for EC MSI status and PD-L1 expression 
was evaluated using ROC curves. The AUCs of models (clinicopathologic, radscore, and combination) for predicting MSI status in the 
training set (Fig. 4 A) and validation set (Fig. 4 B) were 0.728, 0.833, 0.889, and 0.595, 0.790, 0.848, respectively. The AUC of models 
(clinicopathologic, radscore, and combination) for predicting PD-L1 expression in the training set (Fig. 4 C) and validation set (Fig. 4 
D) was 0.648, 0.814, 0.834, and 0.660, 0.708, 0.764, respectively. The AUC, sensitivity, specificity, and accuracy values are presented 
in Table 3. Delong’s test was used to compare the differences in AUC between the models, and the results are shown in Table 4 p < 0.05 
indicates statistical significance. Calibration curve analysis (Fig. 5A–D) and DCA (Fig. 6A–D) were conducted on both the training and 
validation set, revealing favorable calibration and clinical applicability. 

4. Discussion 

The aim of the study was to develop a machine learning model for predicting genetic information, MSI status and PD-L1 expression, 
in EC patients by using four conventional MRI sequences and clinicopathological features. Previous research in the field of radio-
genomics has demonstrated the feasibility of using imaging data to predict clinically relevant molecular profiles in various cancers, 
including breast cancer, lung cancer, glioblastoma, and pancreatic cancer [19–22]. In this study, the machine learning model based on 
MR multi-sequence imaging and clinicopathological features has also demonstrated good discrimination efficiency in predicting the 
MSI status and PD-L1 expression of EC, as well as good adaptability and clinical effectiveness. 

To our knowledge, limited research has been conducted on the use of radiomics-based methods for evaluating genetic information 
related to MSI status in EC according to current medical literature, and no studies have been carried out to predict PD-L1 expression. A 
previous study has used intratumoral radiomic features based on T1 and T2 MRI sequences to predict MSI status in EC [23]. However, 
this study did not take into account the radiomic features from the tumor margin. Numerous studies across multiple tumor types have 
reported the value of radiomics of the tumor margin in revealing correlations with tumor biology, prognosis, and treatment response 
[24–30]. In this study, the machine learning model was constructed by combining intratumoral and peritumoral radiomic features. 
Significantly, our findings demonstrated that the peritumoral features contributed more to the combination model compared to the 
intratumoral features, which is consistent with the findings of Harini Veeraraghavan et al. [31]. Several studies have demonstrated the 
correlation between radiomic features of the tumor margin and tumor infiltrating lymphocyte (TIL) density in breast cancer [25,28]. In 
addition, it is also known that the composition of tumor TILs is higher in dMMR tumors than in pMMR tumors [32,33]. Therefore, we 
speculate that the greater contribution of peritumoral radiomic features to the model may be related to the significant lymphocytic 
infiltration around dMMR tumors. Furthermore, two additional sequences, DWI and ADC, were included in this study compared with 
previous studies, which are also of greater value for EC typing, grading, and staging. 

Previous studies have reported a prevalence of dMMR in EC ranging from 25 % to 31 % [8,34]. In our study, we observed that 

Table 1 
Clinicopathological parameters and DNA mismatch repair status, PD-L1 status.   

DNA mismatch repair status p value PD-L1 status p value  

pMMR N(%) dMMR N(%)  negative N(%) positive N(%)  
Total 54 (65.9) 28 (34.1)  56 (68.3) 26 (31.7)  
Age 59.37 ± 9.57 58.75 ± 9.64 0.78 59.07 ± 9.82 59.32 ± 9.13 0.91 
Histologic type 
EEC 49 (59.8) 26 (31.7) 1.00 50 (61.0) 25 (30.5) 0.62 
Non-EEC 5 (6.1) 2 (2.4)  6 (7.3) 1 (1.2)  
Grade 
I 42 (51.2) 11 (13.4) <0.01* 46 (37.8) 7 (15.8) <0.01* 
II/III 12 (14.6) 17 (20.7)  10 (28.0） 19 (18.3)  
Deep muscle infiltration 
- 45 (54.9) 20 (24.4) 0.21 49 (59.8) 16 (19.5) <0.01* 
+ 9 (11.0) 8 (9.8)  7 (8.5) 10 (12.2)  
FIGO stage 
I-II 53 (64.6) 23 (28.0) 0.03* 54 (65.9) 22 (26.8) 0.15 
III-IV 1(1.2) 5 (6.1)  2 (2.4) 4 (4.9)  

*p < 0.05, significant. Continuous variables were presented as mean ± standard deviation, while categorical variables were reported as patient 
numbers with percentages in parentheses. EEC, Endometrioid Endometrial Carcinoma; FIGO, International Federation of Gynecology and Obstetrics; 
dMMR, deficient mismatch repair; pMMR, proficient mismatch repair. 
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Table 2 
Selected features of the models.  

Model Feature name Description 

MSI Wavelet-HLL_firstorder_Maxinmum_T1WI_peritumor The maximum gray level intensity of the ROI  
Log-sigma-3-0-mm-3D_gldm_LowGrayLevelEmphasis_T2WI_peritumor The distribution of low gray-level values  
Lbp-3D-k_glcm_ClusterShade_DWI_peritumor The skewness and uniformity measurement  
Log-sigma-2-0-mm-3D_firstorder_Maxinmum_T1WI_peritumor The maximum gray level intensity of the ROI  
Original_glcm_Correlation_T2WI_peritumor The linear dependency of gray level values to their respective voxels  
Wavelet-LLH_glszm_GrayLevelNonUniformityNormalized_DWI_intratumor The variability of gray-level intensity values in the image  
Wavelet-LLH_glszm_SmallAreaEmphasis_DWI_peritumor The distribution of small size zones  
Original_glcm_Imc_T2WI_peritumor The correlation between the probability distributions 

PD-L1 Wavelet-HHH_firstorder_Kurtosis_DWI_peritumor The “peakedness” of the distribution of values in the image ROI.  
Log-sigma-2-0-mm-3D_gldm_DependenceNonUniformityNormalized_DWI_peritumor The similarity of dependence throughout the image  
Wavelet-HHL_glszm_SizeZoneNonUniformityNormalized_T2WI_peritumor The variability of size zone volumes  
Wavlet-HHH_glszm_SmallAreaLowGrayLevelEmphasis_DWI_intratumor The proportion in the image of the joint distribution of smaller size zones with lower gray-level values  
Lbp-3D-k_firstorder_Kurtosis_ADC_peritumor The “peakedness” of the distribution of values in the image ROI.  
Wavelet-HLL_firstorder_Skewness_DWI_peritumor The asymmetry of the mean value  
Wavelet-HLL_firstorder_Skewness_T2WI_intratumor The asymmetry of the mean value  
Wavelet-HLH_glszm_SizeZoneNonUniformityNormalized_T1WI_intratumor The variability of size zone volumes 

T1WI, T1-weighted images; T2WI, T2-weighted images; DWI, Diffusion-weighted images; ADC, Apparent diffusion coefficien. 
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Fig. 4. The ROC curves to predict MSI status in the training (A) and validation set (B). The ROC curves to predict PD-L1 expression in the training 
set (C) and validation set (D). A. B. C.D. 

Table 3 
The predictive performance of the models.   

Model Training set  Validation set    

AUC (95 % CI) SEN SPE ACC AUC (95 % CI) SEN SPE ACC 
MSI Clinicopathologic 0.728 (0.597–0.835) 0.619 0.846 0.767 0.595 (0.368–0.796) 0.429 0.733 0.636  

Radscore 0.833 (0.714–0.917) 0.810 0.846 0.833 0.790 (0.566–0.932) 0.286 0.933 0.727  
Combination 0.889 (0.781–0.955) 0.810 0.949 0.900 0.848 (0.632–0.963) 0.429 0.867 0.727 

PD-L1 Clinicopathologic 0.648 (0.514–0.767) 0.609 0.676 0.650 0.660 (0.429–0.845） 0.750 0.556 0.591  
Radscore 0.814 (0.693–0.903) 0.870 0.676 0.750 0.708 (0.478–0.880) 0.750 0.500 0.546  
Combination 0.834 (0.716–0.918) 0.913 0.649 0.750 0.764 (0.537–0.916) 0.750 0.333 0.410 

AUC, the area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; CI, confidence interval. 

Table 4 
Results of the Delong’s test.   

Model MSI PD-L1    

Training Validation Training Validation 

Combination vs Radscore 0.135 0.494 0.449 0.341 
Combination vs Clinicopathologic 0.030* 0.096 0.006* 0.696 
Radscore vs Clinicopathologic 0.227 0.257 0.051 0.866 

*p < 0.05, significant. 
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approximately 34.1 % of EC cases exhibited dMMR, which is similar to the findings of previous studies. The most extensive study to 
date regarding PD-L1 expression in EC encompassed 700 patients and found that PD-L1 expression occurred in approximately 30 % of 
dMMR tumors and less than 5 % of pMMR tumors. Other studies reported even higher rates of PD-L1 expression, up to 53 %, in dMMR 
tumors [35,36]. In our study, we observed that 65.4 % of dMMR EC cases displayed positive PD-L1 expression, whereas 20.3 % of 
pMMR cases demonstrated PD-L1 positivity. These results suggest a greater frequency of PD-L1 expression than those documented in 
prior studies. Nevertheless, it is important to note that all above studies consistently found higher expression of PD -L1 in dMMR cases 
compared with pMMR cases. The discrepancies in reported percentages can likely be attributed to methodological differences and 
variations in the threshold for determining positivity. McMeekin et al. analyzed clinical data from 1024 cases of endometrial endo-
metrioid carcinoma (EEC) and found that EEC with dMMR was associated with poor prognostic factors such as advanced FIGO stage 
and high tumor grade. The study confirmed this correlation and also found that PD-L1 expression was correlated with high tumor 
grade, and deep muscle infiltration. Interestingly, this experiment revealed no significant correlation between DNA mismatch repair 
status and the histologic type of EC. Although this finding is consistent with the conclusions of previous studies by Zijing Lin et al. [23], 
it should be noted that our experiment had a relatively small sample size. Therefore, further validation with larger datasets is required 
to confirm this observation. MMR IHC and PD-L1 IHC are valuable techniques for the accurate determination of DNA mismatch repair 
status and PD-L1 expression. However, they are highly influenced by technical and subjective factors, moreover, IHC is generally 
performed only focally. In this study, a machine learning method is proposed. This method has the potential to overcome the limi-
tations of focal IHC and provide a more comprehensive evaluation of lesions. 

Our study has several limitations. Firstly, due to the small size of our patient cohort and the retrospective nature of the study, while 
the proposed model has been validated in an external dataset, larger prospective validation is still needed to verify the robustness of 
our model before implementation in clinical practice. Secondly, utilizing deep learning algorithms can further enhance radiogenomics 
analysis. Deep learning can identify significant features without the need for segmentation, and its performance is superior to 
traditional machine learning methods based on “hand-crafted” features, given sufficient training data [37]. Thirdly, due to the var-
iations in MR imaging parameters and MRI vendors, the heterogeneity exhibited in our study potentially impacts the extracted 
radiomics feature values and model performance, although each patient scan was normalized to obtain a standard distribution of 

Fig. 5. Calibration curves of the prediction models that predict the MSI status in the training set (A) and validation set (B). Calibration curves of the 
prediction models that predict the PD-L1 expression in the training set (C) and validation set (D). 
The gray line is the ideal calibration curve when the predicted value is equal to the actual value. The closer the model calibration curve is to this line, 
the better the prediction ability of this model is. 
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image intensities to reduce heterogeneity, here is still a need for further improvements to ensure feature reproducibility. Finally, our 
study mainly included early-stage primary EC cases. Given that pembrolizumab and dostarlimab-gxly have currently been approved by 
the FDA for advanced or recurrent diseases, it will be important to validate our results in advanced disease settings. 

5. Conclusion 

In the field of precision medicine for EC, the application of MRI-based machine learning models represents a promising tool for 
predicting MSI status and PD-L1 expression. This approach could contribute to the implementation of immunotherapy for EC patients 
and ultimately improve treatment outcomes in the future. 
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