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Diffusion-weighted magnetic resonance imaging (dMRI) of the brainstem is technically
challenging, especially in young autistic children as nearby tissue-air interfaces and
motion (voluntary and physiological) can lead to artifacts. This limits the availability of
high-resolution images, which are desirable for improving the ability to study brainstem
structures. Furthermore, inherently low signal-to-noise ratios, geometric distortions,
and sensitivity to motion not related to molecular diffusion have resulted in limited
techniques for high-resolution data acquisition compared to other modalities such as
T1-weighted imaging. Here, we implement a method for achieving increased apparent
spatial resolution in pediatric dMRI that hinges on accurate geometric distortion
correction and on high fidelity within subject image registration between dMRI and
magnetization prepared rapid acquisition gradient echo (MPnRAGE) images. We call
this post-processing pipeline T1 weighted-diffusion fused, or “TiDi-Fused”. Data used
in this work consists of dMRI data (2.4 mm resolution, corrected using FSL’s Topup)
and T1-weighted (T1w) MPnRAGE anatomical data (1 mm resolution) acquired from
128 autistic and non-autistic children (ages 6–10 years old). Accurate correction of
geometric distortion permitted for a further increase in apparent resolution of the
dMRI scan via boundary-based registration to the MPnRAGE T1w. Estimation of fiber
orientation distributions and further analyses were carried out in the T1w space.
Data processed with the TiDi-Fused method were qualitatively and quantitatively
compared to data processed with conventional dMRI processing methods. Results
show the advantages of the TiDi-Fused pipeline including sharper brainstem gray-white
matter tissue contrast, improved inter-subject spatial alignment for group analyses
of dMRI based measures, accurate spatial alignment with histology-based imaging
of the brainstem, reduced variability in brainstem-cerebellar white matter tracts, and
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more robust biologically plausible relationships between age and brainstem-cerebellar
white matter tracts. Overall, this work identifies a promising pipeline for achieving
high-resolution imaging of brainstem structures in pediatric and clinical populations who
may not be able to endure long scan times. This pipeline may serve as a gateway for
feasibly elucidating brainstem contributions to autism and other conditions.

Keywords: dMRI (diffusion magnetic resonance imaging), MPnRAGE, autism, brainstem, boundary-based
registration

INTRODUCTION

Precise quantification of brainstem microstructure in autistic1

children is important as cytoarchitectural properties of the
brainstem may contribute to the etiology of autism spectrum
disorder (ASD). Brainstem white matter in autistic youth
has been associated with motor skills (Hanaie et al., 2013;
Travers et al., 2015; Surgent et al., 2021), sensory features
(Jou et al., 2009; Wolff et al., 2017), and core autism traits
(Travers et al., 2015; Wolff et al., 2017). Further, epidemiological,
behavioral, histological, and model organism-based studies have
generated hypotheses regarding brainstem contributions to ASD
[reviewed by Dadalko and Travers (2018)]. Intriguingly, the first
biology-based theory of autism (Rimland, 1964) suggested that
autism traits were associated with abnormalities in the reticular
formation, a cluster of gray matter nuclei within the brainstem.
However, direct testing of this hypothesis has been limited by
technical challenges that have prevented high-resolution imaging
capable of probing the detailed structures of the brainstem
in vivo.

Traditional magnetic resonance imaging (MRI) has lacked
sufficient quality to characterize the intricately interwoven white
matter bundles that wrap around the non-uniformly shaped gray
matter nuclei within the brainstem, which itself is a relatively
small structure. Structural, T1-weighted (T1w) MRI can achieve
high spatial resolution but demonstrates poor contrast between
the gray and white matter in the brainstem. This poor contrast
makes it challenging to distinguish specific brainstem white
matter tracts and gray matter nuclei. In comparison, diffusion
MRI (dMRI), a powerful neuroimaging modality for in vivo
quantification of white matter microstructure, can distinguish
between different tissue types and fiber orientations within
the brainstem, thereby revealing distinctions among brainstem
substructures. However, geometric distortions that impact the
brainstem are common in dMRI (Jezzard and Balaban, 1995;
Du et al., 2002; Irfanoglu et al., 2015) and can make brainstem
white matter tracts appear spuriously intertwined (Irfanoglu
et al., 2012). Additionally, higher dMRI spatial resolution is
needed due to the small size of brainstem structures (Ford et al.,
2013; Lützkendorf et al., 2018) but comes at the cost of a lower
signal-to-noise ratio (SNR) at each voxel (Edelstein et al., 1986;
Jones, 2012), much longer scan times, or amplified imaging
artifacts due to bulk motion and magnetic field inhomogeneities
(Holdsworth et al., 2019). Moreover, increased involuntary

1Identity-first language is used throughout the article to reflect the preference of
those in the autism community (Kenny et al., 2016; Bottema-Beutel et al., 2021).

head motion in autistic children (Yendiki et al., 2014) as well
as physiological motion related to cerebrospinal fluid (CSF)
pulsation (Karampinos et al., 2009), is likely to exacerbate these
limitations, making imaging of brainstem structures even more
challenging in autistic individuals.

To address these dMRI challenges, we recently implemented
a dMRI protocol that improves brainstem images by using
multi-shell diffusion acquisition to adjudicate among crossing
fibers (Pines et al., 2020) and by correcting for brainstem-
impacting echo planar imaging (EPI) geometric distortions
using multiple non-diffusion-weighted volumes with reverse
phase-encoded directions (Andersson et al., 2003; Smith
et al., 2004). Using these dMRI images and what we will
here forth refer to as the ‘‘conventional’’ dMRI processing
pipeline, we found improved delineations among the white
matter tracts of the brainstem compared to previous dMRI
processing pipelines (Figure 1). However, further improvements
to the apparent spatial resolution of brainstem dMRI at the
acquisition level would require increased scan time and/or
decreased SNR, neither of which are viable options. Longer
scan times would not be feasible for our sample of autistic
children and decreased SNR would have negative cascading
impacts on dMRI scan quality. Therefore, to address the need
for higher apparent spatial resolution in these data, the present
study tests a pipeline for combining (or fusing) T1w and
dMRI scans [T1 weighted-diffusion fused, or ‘‘TiDi-Fused’’
for short (phonetically pronounced tai-dee)] that ameliorates
common challenges in pediatric brainstem imaging and
enables increased apparent resolution of the brainstem and
cerebellar structures in autistic and non-autistic children.
This technique combines the complementary strengths of
both the T1w and dMRI scans to enhance tissue contrast and
apparent spatial resolution in the brainstem and surrounding
regions. To address the limitation of head motion in the
TiDi-Fused processing, our T1w images were acquired with
magnetization prepared rapid acquisition gradient echo
(MPnRAGE; Kecskemeti et al., 2016, 2018; Kecskemeti and
Alexander, 2020a). MPnRAGE retrospectively addresses head
motion artifacts that are common in pediatric neuroimaging
(Kecskemeti and Alexander, 2020b), provides more reproducible
cortical region definitions (Kecskemeti et al., 2021), and
produces sharper delineations of gray/white matter boundaries
than standard T1w images (Kecskemeti et al., 2018). The
anatomical accuracy of MPnRAGE allows for high fidelity
dMRI-to-T1w boundary-based registration.

Therefore, the aim of the present study was to compare
the quality of our TiDi Fused post-processing method with
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FIGURE 1 | Improvements to the quality of brainstem imaging through modifications to dMRI acquisition. Representative diffusion-weighted images from our
previous work including the current conventional method. Example FA maps derived from dMRI scans (A) with low spatial resolution and no EPI distortion correction
[used in Travers et al. (2015)], (B) with higher spatial resolution but no EPI distortion correction (collected between 2014 and 2016), and (C) with higher spatial
resolution and EPI distortion correction (collected between 2016 and 2020, conventional processing pipeline).

our conventional dMRI method in autistic and non-autistic
children (ages 6–10 years) using the following techniques:
(1) visual comparison of image characteristics in relation to
histology-based atlases (Sitek et al., 2019); (2) region-of-interest-
based comparisons of coefficients of variation (CoV) in an
atlas of brainstem-cerebellar white matter tracts (Tang et al.,
2018); and (3) effect size comparisons of age predictions for
the brainstem-cerebellar white matter tracts. We hypothesized
that the TiDi-Fused brainstem images would show both
visual and quantitative improvements over the conventional
pipeline through the visibly clearer brainstem and cerebellar
structural distinctions, improved registration with histologically
derived brainstem atlases, lower CoVs (reduced variability)
across brainstem tracts of interest, and stronger, positive
relationships between age and apparent fiber density (AFD;
Raffelt et al., 2012b).

MATERIALS AND METHODS

Participants
One-hundred and twenty-eight participants (ages 6.0–10.97,
37 female) were included in this study, with 56 in the autistic
group (6.14–10.84 years, 12 females) and 72 in the non-autistic
group (6.02–10.97 years, 25 females). No participants had
a previous diagnosis of tuberous sclerosis, Down syndrome,
fragile X, hypoxia-ischemia, notable and uncorrected hearing
or vision loss, or a history of severe head injury. The
institutional review board at the University of Wisconsin-
Madison approved all procedures. In each case, the child
participant provided assent, and a parent or guardian provided
informed consent.

To confirm previous community diagnoses of ASD,
participants in the autistic group were comprehensively
evaluated and met cutoffs on either: (1) the Autism Diagnostic
Observation Schedule, 2nd edition (ADOS-2; cutoff = 8;

Lord et al., 2012) and the Autism Diagnostic Interview-
Revised (ADI-R; Rutter et al., 2003b) or (2) the Social
Responsiveness Scale, second edition (SRS-2; cutoff = 60;
Constantino and Gruber, 2012) and the Social Communication
Questionnaire (SCQ; cutoff = 15; Rutter et al., 2003a).
Non-autistic participants were required to score less than
eight on the SCQ (Rutter et al., 2003a). Additionally,
participants were excluded from the non-autistic group if
they had a previous diagnosis of another neurodevelopmental
disorder, including ADD/ADHD, bipolar disorder, major
depressive disorder, or if they had a first-degree relative
with ASD. Supplementary Table 1 summarizes participant
details.

Image Acquisition
Imaging data were acquired on a 3T GE Discovery
MR750 scanner (Waukesha, WI) at the Waisman Center at the
University of Wisconsin–Madison. Diffusion-weighted images
(DWIs) were obtained using a 32-channel phased array head coil
(Nova Medical, Wilmington, MA) and a multi-shell spin-EPI
pulse sequence [9 directions at b = 350 s · mm−2, 18 directions
at 800 s · mm−2, and 36 directions at b = 2,000 s · mm−2,
and 6 non-diffusion-weighted (b = 0 s · mm−2) volumes;
TR/TE = 9,000/74.4 ms; FOV = 230 mm × 230 mm, in-plane
resolution 2.4 mm × 2.4 mm, interpolated with zero-filling
to 1.8 mm × 1.8 mm; 76 slices, slice thickness 3.6 mm, slice
spacing 1.8 mm; ∼10 min]. An additional six non-diffusion-
weighted volumes with reverse phase-encoded direction
were collected for use in correcting susceptibility-induced
artifacts, which tend to be severe around the brainstem
in EPI acquisitions. Whole-brain structural imaging was
done using a 3D T1w MPnRAGE sequence with 1 mm
isotropic resolution (∼8 min). The MPnRAGE pulse sequence
is a novel imaging method that combines magnetization
preparation using inversion recovery with a rapid 3D radial
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TABLE 1 | Comparison of conventional and TiDi-Fused processing pipelines.

Conventional pipeline TiDi-Fused pipeline

DWI Acquisition
Pulse Sequence Multi-shell spin EPI pulse sequence Multi-shell spin EPI pulse sequence

Resolution In-plane resolution 2.4 × 2.4 mm, interpolated to
1.8 × 1.8 mm

In-plane resolution 2.4 × 2.4 mm, interpolated to
1.8 × 1.8 mm.

Data Curation Denoising, corrections for Gibbs Ringing, eddy currents, EPI
distortion

Denoising, corrections for Gibbs Ringing, eddy currents, EPI
distortion.

Apparent Resolution
Enhancement*

Upsample DWI to achieve apparent resolution of 1.3 mm Fuse T1-weighted and diffusion images with
boundary-based registration (BBR) to achieve apparent
resolution of 1.0 mm.

Diffusion Data Modeling Estimate FOD and apparent fiber density (AFD) Estimate FOD and apparent fiber density (AFD)

Population Template
Construction*

Construct FOD population template using MRTrix3 Construct T1-weighted population template using ANTs.

Inter-Subject Spatial
Normalization*

Diffeomorphically transform individual FOD maps to FOD
template

(1) Diffeomorphically transform individual T1-weighted
images to T1-weighted population template
(2) Apply transformations to individual FOD maps.

Atlas Alignment* Align FOD template to atlas (MNI) space using ANTs Align T1-weighted template to atlas (MNI) space using
ANTs.

Region of Interest Mapping
to Individual Native Space

Transform data using warps generated from inter-subject
spatial normalization

Transform data using warps generated from inter-subject
spatial normalization.

Apparent Fiber Density
(AFD) Value Extraction

Calculate the weighted median values from regions/tracts of
interest in individual native space

Calculate the weighted median values from regions/tracts of
interest in individual native space.

*Denotes steps in which the method pipelines differ.

k-space readout (Kecskemeti et al., 2016). The MPnRAGE
reconstruction enables retrospective head-motion correction
(Kecskemeti et al., 2018), tissue-specific segmentation, and
reliable quantitative T1 mapping (Kecskemeti et al., 2021).

Image Processing
Data Curation
A comparison of the conventional and TiDi-Fused pipelines
are summarized in Table 1. In both pipelines, DWI data were
processed to minimize noise (Veraart et al., 2016a,b), Gibbs
ringing (Kellner et al., 2016), motion, eddy current (Andersson
and Sotiropoulos, 2016; Andersson et al., 2016, 2017) and EPI
distortion artifacts (Andersson et al., 2003).

Apparent Spatial Resolution Enhancement
In the conventional pipeline, a spatial resolution of dMRI data
was up-sampled usingMRtrix3’s ‘‘mrgrid’’ (Tournier et al., 2019)
with cubic interpolation to 1.3 mm isotropic voxels prior to
estimating the fiber orientation distributions (FODs2).

In the TiDi-Fused pipeline, image-modality fusion was
used to enhance the apparent spatial resolution. Image-
modality fusion was conducted via spatial alignment of mean
b0 volume to the T1w image derived from the MPnRAGE.
The spatial alignment was done using rigid transformations
(six degrees of freedom) implemented with the boundary-
based registration (BBR; Greve and Fischl, 2009) routine in
the FreeSurfer image analysis suite (Dale et al., 1999). With
BBR, brain tissue boundaries estimated with FreeSurfer on the
T1w image were maximally aligned with the expected image
intensity gradients across those boundaries in the b0 image.

2https://mrtrix.readthedocs.io/en/3.0.3/fixel_based_analysis/mt_fibre_density
_crosssection.html

The estimated transformation that resulted from the optimal
alignment was then applied to the entire dMRI series with
cubic B-spline interpolation up-sampled to the T1-w resolution
(1 mm isotropic) using ANTs (Avants et al., 2011). Finally,
the rotational component of the rigid body transformation
was applied to the dMRI encoding directions. Subsequently,
multiple operations on the diffusion scans, including estimation
of fiber orientation distributions, were carried out in the
up-sampled space.

Fiber Orientation Distribution
In the conventional and TiDi-Fused pipelines, dMRI data were
spherically deconvolved with positivity constraints (Jeurissen
et al., 2014) using an estimated shell and tissue specific
response functions (Dhollander et al., 2016; averaged across the
participants in the study) in order to estimate fiber orientation
distributions (FODs) at each voxel in the brain as shown in
Table 1.

Apparent Fiber Density
In both pipelines, following FOD estimation, apparent fiber
density (AFD; Raffelt et al., 2012b) was calculated. AFD
represents the sum of the amplitudes of the FOD lobes in each
voxel and has been proposed as a measure of intracellular volume
fraction from high angular resolution dMRI (Raffelt et al.,
2012b). In order to generate AFD, global intensity normalization
in the log-domain was first performed on the three different
(WM, GM, CSF) FODs using the ‘‘mtnormalise’’ command
in MRTrix3 (Dhollander et al., 2021). With normalized white
matter FOD maps in hand, the apparent fiber density was
computed as the first component (l = 0; typically referred to as
DC term) of the white matter FOD series scaled by 2

√
π.
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Inter-subject Image Alignment
In the conventional pipeline, an FOD template was created
using the ‘‘population_template’’ routine inMRtrix3 with default
settings (Tournier et al., 2019). This template was estimated from
all 128 individuals, thus resulting in spatially aligned individual
FODmaps to the template and corresponding diffeomorphic and
affine transforms.

In the TiDi-fused pipeline, a study-specific
T1-w template was first estimated using the
‘‘antsMultivariateTemplateConstruction’’ script in ANTs with
four iterations (Avants et al., 2010, 2011; Klein et al., 2010). This
template was also estimated from all participants. The resulting
affine and local non-linear transformations were composed and
then applied to the FOD maps with FOD reorientation using
MRTrix3 (Raffelt et al., 2012a). An FOD template was then
created from the aligned FOD maps by averaging them across
subjects. This resulted in the T1w and FOD templates in the
same spatial coordinate system.

Histological and Probabilistic Atlas Registration
Apparent fiber density was examined in 23 brainstem and
cerebellar probabilistic white matter tracts defined in an
atlas in which the tracts were identified by filtering whole
brain tractography using regions manually defined by a
neuroanatomist as described in more detail in Tang et al.
(2018). The MNI152 template was aligned to the FOD templates
created by the two processing pipelines. In the conventional
pipeline, this was achieved by affine and diffeomorphic image
alignment between the DC term of the template FOD and the
MNI T1w image using ‘‘antsRegistration’’ (Avants et al., 2011)
and mutual information as the cost function in the non-linear
stage. In the TiDi-Fused pipeline, the MPnRAGE-T1w study-
specific template was aligned with the MNI152 T1w image
also using ‘‘antsRegistration’’ with affine and diffeomorphic
transformations with correlation coefficient as the cost function
in the non-linear stage. The probabilistic tract atlas was
transformed to the FOD template space using the estimated
warps and cubic interpolation. The tracts were then mapped
to subject specific native space by applying the inverse
transformations estimated during the template construction.

Additionally, histology-based data were aligned to the FOD
templates created in each pipeline using the same procedure
outlined above. The data consist of the BigBrain 3-D Volume
Data Release 2015 (Amunts et al., 2013) 100 µm version with
optimal alignment to ICBM152 2009b non-linear symmetric3,
500 µm (Fonov et al., 2009) T1w template conducted by Sitek
et al. (2019). The auditory brainstem nuclei also published in
Sitek et al. (2019), were then mapped to each of the estimated
FOD templates. A comparison of the histological data aligned
to ICBM152 and the study specific template spaces is shown in
Supplementary Figure 1.

Track Density Imaging
Track density imaging (TDI) is a post processing approach based
on tractography that offers the ability to increase anatomical
contrast in white mater (Calamante et al., 2010). To visually

3http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

compare the resulting contrast in TDI in the brainstem with
the BigBrain histology data, we produced TDI maps based on
the FOD templates generated with each of the two pipelines. In
each case, whole brain probabilistic tractography was performed
using MRTrix3 using the white matter FODs seeded from a
white matter mask that was generated by thresholding the DC
term (≥0.05) of the FOD (Tournier et al., 2010). Twenty million
streamlines were generated and used to calculate TDI maps at
an isotropic spatial resolution of 0.25 mm. To display directional
information of fibers, TDImaps were represented as directionally
encoded color maps. Histology overlaid on the TDI maps is
shown in Figure 2.

Statistical Analysis
Weighted median values of the AFD in 23 brainstem tracts in
native space were extracted for both the conventional dMRI and
TiDi-Fused pipelines. Coefficients of variation (CoVs) across the
subjects defined as the ratio of the standard deviation to the
mean values of the weighted medians, were computed for each of
the tracts. Statistical differences between the two pipelines were
assessed using aWilcoxon signed-rank test, in consideration that
the data may not be normally distributed.

Pearson correlations between age and AFD in the
conventional and TiDi-Fused pipelines were performed for
each brainstem white matter region of interest. Model fit was
tested through examination of R2 values to represent explained
variance. To directly test whether there were significant
differences in the model fit between the conventional and
TiDi-Fused pipelines, a mixed effects linear model was also
conducted in each region of interest, predicting AFD as a
function of age, pipeline (conventional vs. TiDi-Fused), and the
age-by-pipeline interaction.

RESULTS

Enhanced Brainstem Visualization
TiDi-Fused processing of dMRI images resulted in enhanced
visualization of gray and white matter structures within the
brainstem and cerebellar areas compared to conventional
dMRI processing. Figure 2 visually shows the benefits of the
TiDi-Fused pipeline in terms of spatial alignment of population-
level data to a histologically derived atlas of the brainstem.
Specifically, TiDi-Fused processed images show crisp alignment
with histologically defined boundaries in the pontine region
and strong registration of dorsal brainstem white matter tracts,
demonstrating the effects of enhanced apparent resolution and
improved tissue contrast in the TiDi-Fused images. At the
single subject-level, dMRI images processed with the TiDi-Fused
pipeline, demonstrate improved visibility of gray-white matter
boundaries and sharpened patterns of cerebellar arborization
(Figure 3).

Improved Precision in Estimates of White
Matter Properties
Improvements to estimates of brainstem white matter
microstructural properties were assessed through analysis
of AFD CoV within 23 brainstem white matter tracts that were
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FIGURE 2 | Histology overlays on TDI. Top panel: Histology on Track Density Imaging maps resulting from each of the two pipelines—sagittal (right), coronal
(middle), and axial (left). Bottom panel: Amplified sagittal view of histology on TDI in brainstem highlights the better spatial alignment resulting from TiDi-Fused. Note
the arrows pointing to areas were the conventional pipeline leads to badly aligned regions with histology. In contrast, using TiDi-Fused leads to a mapping of
histology that is much better supported by the underlying TDI contrast.

precisely delineated in dMRI data processed with conventional
and with TiDi-Fused pipelines. All white matter regions of
interest had lower CoV measurements in the tracts derived from

the TiDi-Fused pipeline compared to those calculated from
images processed with the conventional pipeline (Figure 4A).
A Wilcoxon signed-rank exact test comparing the CoVs of
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FIGURE 3 | Single-subject-level improvement (non-autistic 7-year-old) in gray-white matter contrast seen in apparent fiber density (AFD) in the brainstem and
cerebellum. We chose the first scan of the study to demonstrate this, but this effect was representative of the dataset.

brainstem regions processed with the conventional (M = 9.3%,
SD = 1.8%) and TiDi-Fused pipelines (M = 7.2%, SD = 1.6%)
showed that CoV was significantly reduced in the TiDi-Fused
pipeline, z = −5.15, p < 2.4e-07. Across the regions, the
reduction in CV was on average 2.1% (95% confidence interval:
1.7% to 2.5%).

In 21 of 23 white matter tracts, the AFD values extracted
from TiDi-Fused processed data showed stronger correlations
with age, as indexed by higher R2, than those extracted from

the conventional pipeline (Figure 4B, Supplementary Table 1).
The only tracts that did not show improved linear fit were in the
left inferior cerebellar peduncle (ICPMC and ICPVC). Further,
a positive relationship between AFD and age was found in 23 of
23 tracts using the TiDi pipeline but only 12/23 tracts using the
conventional pipeline (Supplementary Table 2).

Linear mixed effects models were used to determine whether
the dMRI pipeline optimization significantly impacted estimates
of the relationship between age and AFD. In 21 of 23 brainstem
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FIGURE 4 | Quantitative analysis of original and optimized pipelines using
brainstem white matter regions of interest. (A) Comparison of coefficient of
variation in the original and optimized pipelines. (B) Proportion of age
trajectory variance (R2) explained by apparent fiber density (AFD) in each
white matter tract.

white matter tracts, significant age-by-pipeline interactions
(p < 0.05) were found (Supplementary Table 3), indicating that
the optimized dMRI pipeline statistically altered estimates of
AFD-age relationships. The left SCPSC and left frontopontine
tracts were the only white matter regions not to show statistically
significant age-by-pipeline interactions.

DISCUSSION

To set the stage for in vivo testing of hypotheses regarding
brainstem contributions to autism symptoms, this study set
out to implement and test a T1w-dMRI fused (TiDi-Fused)
processing pipeline that enhances resolution and accurate
delineation of brainstem structures in autistic and non-autistic
children. The TiDi-Fused pipeline harnesses the strengths of
T1w and dMRI imaging techniques to generate high apparent
resolution dMRI maps without sacrificing SNR or requiring long
scan times. Previously, high brainstem anatomical clarity using
dMRI has only been possible through the use of ex vivo imaging
(Ford et al., 2013) or lengthy acquisition protocols (∼60 min)

that are not suitable for a pediatric population (Shi and Toga,
2017), making the present application of TiDi-Fusion to a
neurodiverse pediatric sample a critical advancement in pediatric
neuroimaging. Through direct comparison of our TiDi-Fused
pipeline and our conventional dMRI processing pipeline,
we demonstrated substantial improvement in visualization,
alignment, and quantification of brainstem structures in autistic
and non-autistic youth.

TiDi-Fused processing greatly improved the ability to
distinguish white matter tracts and gray matter nuclei in the
anatomically complex brainstem, leading to high-resolution
representations of brainstem structures in autistic children from
data collected in vivo. TiDi-Fused processing enhanced visual
assessment of brainstem white matter pathways and improved
alignment with a histological atlas of precisely delineated gray
matter nuclei. These high-resolution brainstem images and
well-defined regions of interest generated from the TiDi-Fused
processing pipeline provide the opportunity to test hypotheses
regarding the contributions of the brainstem to autism that
have been produced in other scientific fields [e.g., histology,
cellular biology, model organisms; reviewed by Dadalko and
Travers (2018)]. For example, TiDi-Fused processing offers
the opportunity to delineate brainstem structures, like the
reticular formation, which was at the heart of Rimland’s (1964)
hypothesis. In this way, TiDi-Fused processing may now enable
examinations into the relatively unexplored territory of the
brainstem in autism and in other difficult-to-image populations
with conditions that may involve the brainstem (e.g., Alzheimer’s
or Parkinson’s disease; Halliday et al., 1990; Simic et al., 2009;
Arribarat et al., 2020). Moreover, while the TiDi-Fused pipeline
involves registration with the T1w component of the MPnRAGE
sequence, future work may benefit from fusing the dMRI with
other quantitative structuralMRI images or contrasts, whichmay
provide additional information about brainstem composition.

Compared to the conventional pipeline, the TiDi-Fused
pipeline not only enhanced the quality of brainstem visualization
but also statistically improved the reliability of microstructural
property measurements. This quantitative improvement of
the TiDi-Fused pipeline over the conventional pipeline was
demonstrated in two ways: (1) lower variability (CoV) across
all measurements of AFD in brainstem white matter tracts; and
(2) stronger relationships with age. The increased reliability
of the TiDi-Fused data, as indexed by lower CoV across
all brainstem white matter tracts, is especially critical in the
brainstem, as the brainstem white matter bundles are smaller in
size thanmost cerebral whitematter structures and can be heavily
impacted by spurious measurements. This notion is further
supported by the improved estimates of AFD-age relationships in
the data processed with the TiDi-Fused pipeline compared to the
data processed with the conventional pipeline. AFD values from
TiDi-Fused data also show more biologically plausible (positive)
age trajectories that are corroborated by previous accounts of
AFD development of large white matter tracts in non-autistic
youth (Dimond et al., 2020) and align with previous work done
to assess diagnostic differences in white matter development in
various white matter tracts throughout the brain (Andrews et al.,
2021). The TiDi-Fused processing pipeline, therefore, appears to
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allow for more reliable estimates of white matter microstructure
(less variability) and improved biological plausibility, which can,
in turn, enhance the validity of in vivo assessments of brainstem-
behavior relationships in autistic and non-autistic youth.

The present findings should be contextualized in light of
limitations. One potential limitation was that we compared
across different apparent resolutions: 1.3 mm3 in the
conventional scans compared to 1.0 mm3 in the TiDi-Fused
scans. While a more direct comparison would have been to
compare 1 mm3 to 1 mm 3, we opted to keep our conventional
scan at the MRTrix3 recommended apparent resolution of
1.3 mm3 (Fibre density and cross-section - Multi-tissue CSD)
to maintain consistency with current best practices. Another
limitation is that we did not have a measure of ground truth for
brainstem neurobiology in our participants. To compensate, we
opted for visual alignment with histology data and quantitative
measures that examined reliability (CoV) and biological
plausibility (age effects). However, future work should examine
additional measures to validate this approach.

Overall, the TiDi-Fused processing pipeline demonstrated
enhanced assessment of brainstem structures in autistic
children, providing the opportunity to conduct feasible in vivo
investigations of the brainstem that has not to date been possible.
The TiDi-Fused processing pipeline increases apparent spatial
resolution without compromising SNR or requiring long scan
times, resulting in both visual and quantitative improvements
to brainstem analysis in autistic and non-autistic children.
Therefore, the present pipeline represents a critical advancement
in our ability to use MRI to understand the role of the brainstem
in autism.
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