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Abstract: Diarrheagenic E. coli (DEC) strains are important causes of gastrointestinal diseases world-
wide, especially in developing countries. This study aimed to investigate the presence, antibiotic
resistance, and potential biofilm formation in dairy products in Isfahan, Iran. A total of 200 samples,
including traditional and pasteurized dairy products, were analyzed. In 200 samples, 54 E. coli
isolates, including (48/110) and (6/90) positive samples of traditional and pasteurized dairy products,
were detected. Furthermore, pathogenic strains were isolated from 30% of traditional dairy products
and 5.55% of pasteurized dairy products. Most isolates were classified as enteropathogenic E. coli
(EPEC). Moreover, antibiotic resistance was evaluated using the disk diffusion method for pathogenic
E. coli. Overall, 73.68% of contaminated samples by pathogenic strains were resistant to at least one
antibiotic. The highest resistance was observed against streptomycin (57.9%), followed by tetracycline
(50%). Additionally, all isolates were sensitive to amikacin. For evaluating biofilm formation, the
violet crystal assay was applied on a polystyrene microplate well for pathogenic isolates. In total,
68.42% of isolates were able to form biofilms. The presence of E. coli in dairy products indicates
potential health risks for Iranian consumers. Serious measures are needed to control and prevent the
spread of this pathogen.
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1. Introduction

Food-borne diseases are a major public health concern around the world [1]. The
rate of food-borne diseases is estimated at 30% in developed countries, and up to 2 mil-
lion deaths are reported each year in developing countries [2]. Escherichia coli (E. coli) is
among the 31 major pathogens that cause food-borne diseases, with adverse effects on the
individual’s health [3]. This bacterium is a Gram-negative bacillus, which belongs to the
Enterobacteriaceae family and the genus Escherichia. The lower intestine of warm-blooded
humans and animals have a low abundance of E. coli (0.1% of the entire gut microbiome),
which is mostly without harmful effects [4–6]. However, there are E. coli groups with
virulence factors that can lead to diarrheal diseases in healthy humans [7]. Therefore, E.
coli as an indicator of fecal contamination has been used to evaluate the hygienic quality of
foodstuffs for nearly a century [8,9].

The most well-studied diarrheagenic E. coli (DEC) pathotypes include enteropathogenic
E. coli (EPEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), enteroinva-
sive E. coli (EIEC), enterohemorrhagic (Shiga toxin-producing) E. coli (EHEC/STEC) [10].
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The DEC contain adhesive factors, which allow them to settle beyond the natural envi-
ronment of the large intestine as hair-like fimbriae [6]. Detecting DEC strains involves
the identification of phenotypic features and encoded genes [5]. EPEC, which is a major
cause of potentially fatal diarrhea in infants, contains attaching and effacing (eaeA) and
bundle-forming pilus A (bfpA) genes, which play a role in the attachment of bacteria to
intestinal epithelial cells and lead to significant cytoskeletal alterations and polymerized
actin accumulation under the adherent bacteria [5,8]. Isolates with bfpA and eaeA are known
as typical EPEC (tEPEC), while negative bfpA isolates are classified as atypical EPEC
(aEPEC) [5].

Among the recognized DEC, ETEC is a major cause of diarrhea in travelers and young
children every year, particularly in developing countries [11,12]. The ETEC is involved in
pathogenesis by producing heat-labile (lt) and heat-stable (st) enterotoxins [8]. The EIEC
can attack colonic epithelial cells and replicate within epithelial cells and macrophages [8].
It is phenotypically and genotypically similar to Shigella and causes invasive and dysenteric
diarrhea [5,13]. EAEC infectivity appears to be accomplished by the colonization of the
small and large bowel mucosal surfaces and the elaboration of enterotoxins [14]. It is known
as the cause of acute and persistent diarrhea [5]. STECs produce cytotoxins called Shiga
Toxin 1 (stx1) and Shiga Toxin 2 (stx2). In addition to causing diarrhea, this strain can lead
to HUS, which is associated with acute renal failure and anemia [6]. The most common
serotype associated with the outbreak of EHEC in the food industries is the serotype E. coli
O157:H7, which is a cause of major concern [4].

Foods of animal origin are major sources of food-borne diseases, which often lead
to gastrointestinal disorders [2]. Milk and dairy products may be contaminated with
different microorganisms, which are associated with farm animal diseases due to poor
sanitation, inappropriate storage conditions, and inexperienced workers [4,15]. Obviously,
the safety of milk-borne pathogenic bacteria is important for public health. E. coli is an
important human bacterial pathogen that can be transferred to milk and dairy products [4].
However, the lack of data on contamination with E. coli in milk and dairy products in
developing countries, such as Iran, has posed serious challenges to disease surveillance
and risk assessment [16].

The dairy industry of Iran is one of the largest dairy industries in the Middle East.
The dairy products per capita usage was estimated at 95 kg in 2003, which is about 10 kg
more than the rate reported in 2002, whereas in 2014, it reduced to 60 kg [17]. Overall,
the consumption of traditional unprocessed raw milk-based products is popular in Iran
for cultural reasons, as well as the accepted health benefits [18]. On the other hand, the
consumption of traditional milk products and raw milk leads to the outbreak of food-borne
pathogens [19].

Although dairy products may be harmful to consumers due to the potential presence
of E. coli, another factor that could exacerbate the problem is the widespread use of antibi-
otics in the livestock industry to prevent disease and increase growth. The irrational and
uncontrolled use of antimicrobials in human and veterinary medicine is associated with
the antimicrobial resistance spread in bacteria, which has become a main health problem
worldwide [20,21]. Genetic factors, such as horizontal gene transfer and clonal develop-
ment of resistant isolates, contribute to the antibiotic resistance of bacteria [22]. Overall, the
development of antimicrobial resistance in the colonizing pathogens of animals leads to the
distribution and emergence of resistant E. coli, which can be transferred to humans through
consumption or contact with infected milk or milk products [23]. Antimicrobial-resistant
infections cause the death of almost 700,000 people annually around the world, and this
rate is predicted to reach 10 million by 2050 [24]. A noticeable increase in antimicrobial
resistance in Gram-negative bacteria, including E. coli in Iran over the years [21], high-
lights the importance of investigating the antimicrobial resistance of E. coli in milk and
dairy products.

Biofilms are responsible for many food-borne pathogen outbreaks. Food industries
face the challenge of microbial biofilm formation by E. coli, which can have negative
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implications for food safety globally [25,26]. Around 80% of microbial infections that occur
in the United States are caused by food contamination with biofilm [27]. They are formed
by a community of microorganisms, which grow and bind to each other on surfaces, which
leads to the adhesion of cells by producing extracellular polymeric substances [28]. The
process of biofilm formation by E. coli occurs within only 2 hours, and biofilms can persist
in the environment of food processing plants for up to 10 years despite regular cleaning
and sanitation [16]. Overall, the formation of biofilms by E. coli due to the production
of extracellular polymer matrix and protection of microorganisms against disinfectant
compounds can increase the possibility of pathogenicity [22].

Although the presence of DEC strains in various food products has been investigated
in several countries, most studies in Iran have only examined milk and dairy products for
the existence of pathogenic E. coli and have emphasized the identification of the EHEC
serotypes such as E. coli O157:H7. However, the prevalence of DEC strains in Iranian dairy
products is not well-established. Therefore, the present study aims at determining the
phenotypic and molecular features of E. coli in raw milk, traditional dairy products, and
pasteurized dairy products, collected from various markets in Isfahan, Iran, and to identify
pathogenic E. coli in terms of virulence groups and antibiotic resistance profiles according
to their origin and possibility of biofilm generation. Overall, our results can be used in
addition to the available information on DEC in milk and dairy products.

2. Materials and Methods
2.1. Sampling

The present study was performed using the multistage sampling method in Isfahan,
Iran, which is a subtropical city with arid summers (mean temperature, 16 ◦C; mean rainfall,
120 mm; altitude, 1555 m; longitude, 51◦30 E; latitude, 32◦31 N) and 15 municipal districts.
The samples were distributed in bulk (traditional products) and packaged (industrialized
and pasteurized products approved and certified by the Iranian Ministry of Health) in
two groups of supply centers, including supermarkets and bulk grocery stores. The dairy
products were classified into 9 groups, including boiled milk, cheese, kashk, yogurt, ice
cream, butter, pizza cheese, cream, and doogh (yogurt drink), and 10 samples were collected
from each product. In total, 90 samples of each group of traditional (raw-based milk) and
industrialized products were prepared. In addition, 20 samples of raw milk, which were
distributed only in bulk stores, were purchased. Raw milk samples are also classified in
the traditional dairy samples. Overall, 110 and 90 samples of traditional and pasteurized
dairy products were collected, respectively. All samples were transferred immediately to
the laboratory of Infectious Diseases and Tropical Medicine Research Center in Isfahan
University of Medical Sciences in sterilized plastic bags in a cold box.

2.2. Culture, Screening, and Biochemical Tests of E. coli

Nearly 25 g of homogenized, solid dairy specimens and 25 mL of liquid dairy and
milk products were mixed with 225 mL of phosphate-buffered saline (pH = 7.2; Merck,
Darmstadt, Germany), respectively, followed by shaking for 1 minute. Next, 1 mL of the
homogenized solution was inoculated into EC-Broth medium (10 mL; Merck, Darmstadt,
Germany) and incubated for 24 h at 44.5 ◦C. Following incubation, 15 µL of gas-positive
tubes was streaked on MacConkey Agar (Merck, Darmstadt, Germany), and the cultures
were incubated at 37 ◦C for 24 h. We considered the red/pink colonies suspicious and were
streaked on the eosin methylene blue (EMB) agar plates (HiMedia, Mumbai, India). The
presumptive E. coli colonies (metallic green glossy colonies with a dark or purple center)
were identified by Gram staining and oxidase and catalase tests.

The confirmation of presumptive E. coli isolates was performed by biochemical iden-
tification (IMViC tests). All isolates were subcultured on different media, including the
Sulfide Indole Motility (SIM) medium, Methyl Red/Voges-Proskauer (MR-VP) medium,
Simmons Citrate agar, Lysine Indole Motility (LIM) medium, and Triple Sugar Iron (TSI)
agar, for further identification and biochemical tests.
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Biochemically confirmed E. coli isolates were selected and subcultured again on the
brain-heart infusion (BHI) agar for molecular confirmation. Finally, the isolates were kept
at −70 ◦C in trypticase soy broth with glycerol (20% v/v) for additional tests [22,29].

2.3. Extraction of Genomic DNA and Molecular Identification of E. coli

For DNA extraction, working cultures were prepared on BHI agar followed by incu-
bation at 37 ◦C for 24 h. 3 to 5 colonies were suspended in 300 µL of lysis buffer (40 mM
Tris-acetate, pH = 7.8; 20 mM sodium acetate; 1 mM EDTA; and 1% SDS) and were subjected
to incubation for 20 min at 40 ◦C. Next, the cell pellet was resuspended in 200 µL of NaCl
(5 M) solution for the removal of proteins and cell debris and inverted at least 20 times. The
mixture was centrifuged at 14,000 rpm for 20 min. Then, 400 µL of absolute ethanol (96%
vol/vol) and 20 µL of 3 M sodium-acetate were added to the vial. Following incubation at
−20 ◦C for 90 min, DNA was precipitated through centrifugation at 12,000 rpm for 20 min.
Then, the supernatant was dried in thermoblock while the lids of the microtubes were
open, dissolved in 50 µL of deionized water, and kept at −20 ◦C for further use [30]. The
extracted DNA templates were calculated using a NanoDrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) and assessed via 1.5% agarose gel electrophoresis.
Moreover, the purity of the samples was examined in the wavelengths of 260 nm and
280 nm. To detect virulence factors, 2 4-plex polymerase chain reaction (PCR) reactions
were performed with multiple target gene templates to detect the strains. The primers are
presented in Table S1 [31].

Each PCR tube had a total volume of 25 µL, consisting of 10 pmol/µL of each primer
(1 µL) and 5 µL of extracted DNA in 12.5 µL of 2× PCR Master Mix (Amplicon, Odense,
Denmark), along with 5.5 µL of nuclease-free water. The PCR protocol was as follows:
denaturation at 95 ◦C for 5 minutes, and then, 36 cycles of 95 ◦C for 45 s, annealing at
50.5 ◦C for 45 s and at 72 ◦C for 45 s, and a final extension step at 72 ◦C for 10 min in a
thermal cycler (Bio-Rad Laboratories, Hercules, California, USA). The PCR products were
electrophoresed on 2% (w/v) agarose gel, consisting of Safe DNA Gel Stain (SinaClon,
Tehran, Iran), and visualized under a UVIdoc transilluminator. A 50-bp DNA ladder
(SinaClon, Iran) was also used as a molecular weight marker. The control strains included
E. coli O157:H7 ATCC43895 and E. coli ATCC25922 (non-pathogenic). Furthermore, positive
PCR samples for specific primers were confirmed using a single PCR assay [31,32].

2.4. Antibiotic Resistance Testing

Antibiotic resistance of all E. coli isolates was evaluated using the Kirby-Bauer disk
diffusion in Mueller-Hinton agar plates (Gibco, Middleton, WI, USA), considering the
instructions of the Clinical and Laboratory Standards Institute [33].

In the current study, bacterial suspension densities comparable to 0.5 McFarland
turbidity standard were prepared. The following antibiotic discs (OxoidTM, Hampshire,
UK) were used: ampicillin (AM, 10 µg), amikacin (AN, 30 µg), amoxicillin/clavulanic acid
(AMC, 20/10 µg), cefoxitin (FOX, 30 µg), cefotaxime (CTX, 30 µg), ceftriaxone (CRO, 30 µg),
chloramphenicol (C, 30 µg), ciprofloxacin (CP, 5 µg), trimethoprim/sulfamethoxazole (SXT,
125/23.75 µg), gentamycin (GM, 10 µg), kanamycin (K, 30 µg), nalidixic acid (NA, 30),
tetracycline (TE, 30 µg), and streptomycin (S, 10 µg). The inoculated plates of all pathogenic
E. coli isolates were incubated aerobically at 37 ◦C for 18–24 h. Besides, E. coli ATCC25922
was used as a quality control strain. Finally, multidrug resistance (MDR) was considered as
resistance against at least 3 or more classes of antibiotic agents [34].

2.5. Biofilm Formation Assay

In brief, pathogenic strains were grown in tubes, including 5 mL of Luria-Bertani (LB)
broth (QueLab, Montreal, QC, Canada) and incubated overnight at 35.5 ◦C. Next, 1.3 µL
of overnight cultures were inoculated in 96-well polystyrene flat-bottomed microplate
wells (SPL Life Sciences, Pocheon, Korea), containing 130 µL of LB broth. The plates
were incubated overnight at 30 ◦C without shaking, and the optical density (OD) of each
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well was determined at the absorbance of 620 nm, using a BioTek Epoch™ Multi-Volume
Spectrophotometer System (BioTek Instruments, Winooski, VT, USA).

After removing the broth, the wells were rinsed once with sterile saline (150 µL) to
remove any adherent bacteria; they were left to air-dry for 20 min. Next, all of the wells
were stained with 130 µL of 1% crystal violet for 5 min. After discarding the colorant, the
wells were rinsed 4 times with distilled water (180 µL) and air-dried for 1 hour. To each
well, 130 µL of 96% ethanol was added to dissolve the residual stain in the biofilm matrix.
The OD of stained and attached bacteria, as well as the control wells, was read at 540 nm.
The extent of biofilm formation was measured based on the following formula:

BFI = (AB − CW)/G

where BFI represents the biofilm production index; AB denotes the OD540 of attached and
stained bacteria; CW represents the OD540 of stained control wells without bacteria; and
G is the OD620 of cells grown in the suspended culture. The assays were performed in
triplicate [35]. A BFI value of 0.35–0.69 indicated week biofilm formation; a BFI value of
0.70–1.09 indicated moderate biofilm formation; a BFI value >1.10 indicated strong biofilm
formation; and a BFI value <0.35 indicated no biofilm formation [15].

2.6. Statistical Analysis

Data analysis was done using SPSS 20. Fisher’s exact test and Chi-square test were em-
ployed to determine significant correlations. p-value less than 0.05 was regarded as significant.

3. Results
3.1. Prevalence of E. coli Isolates

Of 200 samples of dairy products tested in this study, E. coli was isolated from 54 (27%)
samples based on their morphological, biochemical, and molecular characteristics (Table 1).

Table 1. The prevalence of E. coli and its virulence factors isolated from milk and dairy products.

Sample Source No. (%) of E. coli Positive No. (%) Virulence Factor
Positive

Milk
boiled 1 (10) 1 (10)

pasteurized 1 (10) 1 (10)
raw 18 (90) 9 (45)

Cheese
traditional 5 (50) 4 (40)

pasteurized ND *** ND ***

Butter
traditional 5 (50) 3 (30)

pasteurized 2 (20) 1 (10)

Yogurt traditional 3 (30) 2 (20)
pasteurized ND *** ND ***

Kashk *
traditional 2 (20) 2 (20)

pasteurized ND *** ND ***

Cream
traditional 4 (40) 4 (40)

pasteurized 1 (10) 1 (10)

Doogh ** traditional 3 (30) 3 (30)
pasteurized ND *** ND ***

Ice cream
traditional 3 (30) 2 (20)

pasteurized 1 (10) 1 (10)

Pizza cheese
traditional 4 (40) 3 (30)

pasteurized 1 (10) 1 (10)

Total 54 (27) 38 (19)
* Kashk: An Iranian dairy product prepared by prolonged boiling of yogurt. ** Doogh: An Iranian drink prepared
by adding salt and water to yogurt. *** ND: Not Detected.



Foods 2022, 11, 960 6 of 16

The prevalence of E. coli isolates was higher in traditional dairy products (48/110,
43.6%) compared to pasteurized dairy products (6/90, 6.7%) (p < 0.001). Among 54 positive
colonies, 38 (70.4%) isolates were identified as EPEC (n= 20), ETEC (n = 7), EIEC (n = 7),
and STEC (n = 4). The EPEC was the most common pathotype, as 20/54 (37%) isolates
exhibited the presence of eaeA and bfpA genes. The ETEC, as well as EIEC, was detected in
7 out of 54 isolates (13%) due to the presence of related genes. The stx2 gene for STEC was
identified in 4 out of 54 isolates (7.40%). However, no EAEC isolate was found in any of
the dairy products. The virulence genes in pathogenic E. coli isolates from traditional and
pasteurized dairy products are shown in Table 2.

Table 2. Virulence genes in pathogenic E. coli isolates from traditional and pasteurized milk and
dairy products.

Sample Source EPEC (bfpA+ eaeA) * EPEC (eaeA) ETEC (lt) ETEC (st) EIEC (ial) STEC
(stx2)

Milk
boiled ND ** 1 (10) ND ND ND ND

pasteurized ND ND ND ND 1 (10) ND
raw 1 (5) 5 (25) ND 1 (5) ND 2 (10)

Cheese traditional ND 1 (10) ND 1 (10) 1 (10) 1 (10)

Butter
traditional 1 (10) 2 (20) ND ND ND ND

pasteurized ND 1 (10) ND ND ND ND

Yogurt traditional ND ND ND 2 (20) ND ND

Kashk traditional ND ND 1 (10) ND 1 (10) ND

Cream
traditional 1 (10) 2 (20) ND ND 1 (10) ND

pasteurized ND ND ND 1 (10) ND ND

Doogh traditional 1 (10) ND ND ND 1 (10) 1 (10)

Ice cream
traditional ND ND ND ND 2 (20) ND

pasteurized 1 (10) ND ND ND ND ND

Pizza
cheese

traditional 1 (10) 1 (10) 1 (10) ND ND ND
pasteurized ND 1 (10) ND ND ND ND

Total 6 (11.1) 14 (25.9) 2 (3.7) 5 (9.2) 7 (13) 4 (7.4)

* EPEC strains can be found in two forms, namely, typical EPEC (with eaeA and bfpA genes) and atypical EPEC
(without bfpA gene). ** ND: not detected.

These virulence genes were more commonly found in raw milk (45%) (p < 0.05)
compared to other samples. In raw milk, EPEC was the most common pathotype (30%),
followed by STEC (10%) and ETEC (5%), respectively. On the other hand, in butter, cream,
and pizza cheese, EPEC was the most common pathotype (20%, 15%, and 15%, respectively)
(Table S2). There was no significant relationship between the virulence genes and the type
of dairy samples.

3.2. Antibiotic Resistance Patterns of E. coli

Out of 38 virulent E. coli isolates evaluated for antibiotic sensitivity, 16 (42.10%) were
MDR. All MDR strains were obtained from traditional dairy products (p < 0.001), and
7 were detected in raw milk. The antibiotic susceptibility profile of 38 E. coli isolates is
shown in Figure 1.
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Figure 1. Antimicrobial resistance patterns of 38 E. coli strains isolated from traditional and
pasteurized dairy products. AM: ampicillin, AN: amikacin, AMC: amoxicillin/clavulanic acid,
FOX: cefoxitin, CTX: cefotaxime, CRO: ceftriaxone, C: chloramphenicol, CP: ciprofloxacin, SXT:
trimethoprim/sulfamethoxazole, GM: gentamicin, K: kanamycin, NA: nalidixic acid, TE: tetracycline,
S: streptomycin.

All isolates were susceptible to amikacin. Susceptibility to gentamicin, cefoxitin,
amoxicillin/clavulanic acid, and chloramphenicol was estimated at 97.4%, 89.5%, 86.8%,
and 86.8%, respectively. The analysis of antibiotic susceptibility revealed that more than
70% of pathogenic strains (28/38) were resistant to 1 or more tested antibiotics. More
than half of the strains showed resistance to streptomycin and tetracycline. A significant
difference was detected in the relationship between resistance against tetracycline and
the type of samples (traditional or pasteurized products) (X2 = 5.76, df = 1, p = 0.016).
Additionally, the ETEC isolates (st gene) were resistant to 1 or more antibiotics. Pathogenic
E. coli strains isolated from Kashk were all resistant to streptomycin and tetracycline,
pathogenic E. coli strains collected from ice cream were all resistant to streptomycin, and
pathogenic E. coli strains isolated from yogurt were all resistant against tetracycline and
sulfamethoxazole/trimethoprim.

3.3. Biofilm Formation of E. coli

All 38 pathogenic isolates were evaluated for biofilm formation. Overall, 11 (28.9%)
isolates classified as strong biofilm producers, 4 (10.5%) isolates showed moderate biofilm
formation, 11 (28.9%) isolates showed weak biofilm formation, and 12 (31.6%) isolates did
not form any biofilms. The biofilm formation patterns of E. coli strains from traditional
and pasteurized dairy products are summarized in Table S3. The biofilm formation of
isolated pathogenic E. coli from different dairy products, regardless of the product group
(traditional vs. pasteurized), is shown in Table S4.

Based on the results, the majority of strains, categorized as strong biofilm producers,
were collected from traditional dairy products. There was a significant relationship between
pathotypes and biofilm formation (p < 0.05). The evaluation of the antibiotic resistance
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patterns of antibiotics and biofilm formation showed a significant relationship between
tetracycline resistance and biofilm formation in all studied products (p < 0.05) (Table 3).

Table 3. Antibiotic resistance patterns of biofilm-producing E. coli strains detected in milk and
dairy products.

Antibiotic Resistance in Different Degrees of Biofilm Formation

Antibiotics

No. (%) of
Strong Biofilm

Formation
(n = 11)

No. (%) of
Moderate Biofilm

Formation
(n = 4)

No. (%) of Weak
Biofilm

Formation
(n = 11)

No. (%) of
Non-Biofilm

Former
(n = 12)

AM 2 (18.2) 1 (25) 4 (36.4) 4 (33.3)
AN 0 0 0 0

AMC 0 0 0 2 (16.7)
FOX 0 0 1 (9.1) 2 (16.7)
CTX 1 (9.1) 0 2 (18.2) 1 (8.3)
CRO 1 (9.1) 0 2 (18.2) 1 (8.3)

C 1 (9.1) 0 1 (9.1) 3 (25)
CP 0 1 (25) 2 (18.2) 0 (0)
SXT 3 (27.3) 2 (50) 8 (72.7) 3 (25)
GM 0 0 0 1 (8.3)
K 3 (27.3) 0 2 (18.2) 1 (8.3)

NA 0 0 1 (9.1) 0
TE 5 (45.5) 2 (50) 9 (81.8) 3 (25)
S 7 (63.6) 1 (25) 8 (72.7) 6 (50)

Total 23 7 40 27
AM: ampicillin, AN: amikacin, AMC: amoxicillin/clavulanic acid, FOX: cefoxitin, CTX: cefotaxime, CRO: ceftriax-
one, C: chloramphenicol, CP: ciprofloxacin, SXT: trimethoprim/sulfamethoxazole, GM: gentamicin, K: kanamycin,
NA: nalidixic acid, TE: tetracycline, S: streptomycin.

4. Discussion

The prevalence of DEC is unknown in Iran, and little is known about the prevalence of
these strains in milk and dairy products. Also, Iranian health authorities have not reported
any statistics for this disease. Besides, no standard guideline has been developed for the
control and prevention of DEC, and there are no available tests in Iran. Generally, the
eating habits of Iranians differ from those of Western populations. Although several dishes
have entered the Iranian diet, there are many popular traditional food recipes and products.
Iran is one of the largest manufacturers of dairy products in the Middle East. The first
step to convince the legislative system and the food industry to monitor the DEC strains
is to investigate their prevalence rates. The present study revealed that the likelihood of
infection is relatively high after the consumption of milk and dairy products, resulting in
poisoning in humans. To the best of our knowledge, this is the first study on the prevalence,
antibiotic resistance, and possible biofilm formation of DEC strains in traditional and
pasteurized dairy products in Iran.

In this study, E. coli was found in 54 dairy samples (27%). Comparison of our results
with some previous studies, it is indicated higher, lower, and similar prevalence rates.
The contamination rate in this study was almost similar to the prevalence reported in
Iran (181/600 samples; 30.16%) [36] and Ethiopia (129/380 samples; 33.9%) [37]. On the
other hand, the prevalence rate observed in our study was higher than in some studies.
The overall prevalence of E. coli has been reported in milk and dairy products in Iran
(50/600 samples; 8.3%) [38] and Brazil (28/147 samples; 19.9%) [39]. Compared to the
present study, higher rates have been reported in the literature for the prevalence of E. coli
in dairy products. For example, the prevalence rate was estimated at 52.4% (11/21 samples)
in China [34] and 68.7% (103/150 samples) in Iran [40]. The findings of the present study
regarding the presence of E. coli in packaged and pasteurized dairy products revealed that
the prevalence of E. coli in pasteurized dairy samples was 6.7% (6/90 samples), which is in
line with the prevalence of pasteurized dairy products reported by Rosario et al. in 2021
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(9/138, 6%) [41]. Generally, the existence of non-infectious E. coli in dairy products is not
risky, whereas the presence of E. coli cells with virulence factor pathogenicity is risky [29].

In the present study, 38 out of 200 samples (19%) were contaminated with DEC. This
situation was also observed in 5.5% of pasteurized dairy products (90 samples) and 30%
of raw milk and traditional dairy products (110 samples). It should be noted that these
isolates were characterized into different pathotypes (Table 2 and Table S2). The difference
in the prevalence rates can be related to continuous monitoring of food health and safety
authorities in Iran concerning the appropriate packaging and storage of industrialized food
products (p < 0.001). Among the identified pathotypes, EPEC had the highest prevalence
(20 EPEC pathotypes in 54 E. coli isolates; 37%). A total of 14 isolates were identified as
atypical EPEC and 6 as typical EPEC (Table 2 and Table S2). Based on the results, 10%
of all milk and dairy product samples showed EPEC contamination. In another study in
Iran, 17 out of 206 (8.25%) raw milk samples were positive for EPEC [42]. Moreover, in a
study conducted in Brazil, a prevalence of 22.1% was reported for EPEC in pasteurized
milk isolates [43]. In Mexico, 13 out of 190 (6.84%) E. coli isolates were EPEC, which
is lower than the rate measured in the current study. Also, the higher prevalence of
atypical EPEC versus the typical type in the present study is consistent with the results of
their study [5]. Although in our study, the prevalence of atypical EPEC was higher than
typical EPEC. This situation can be attributed to the transfer of E. coli from livestock to
dairy products or hygiene non-compliance of the personnel working in the processing
environment (Table 2). Typical EPEC is the main cause of diarrhea in developing countries,
and it is rarely detected in industrialized countries. The prevalence of atypical EPEC has
been higher than typical strains in recent years; accordingly, they have been introduced as
newly emerging strains [22,44].

In the present study, following EPEC, the highest prevalence was attributed to ETEC,
with a prevalence of 13% (7 ETEC pathotypes in 54 E. coli isolates); the contamination rate
of milk and dairy products was estimated at 3.5%. A study conducted in Italy showed that
23 out of 149 isolates (15.43%) from raw and filtered milk were ETEC [45]. However, the
rate reported in the present study is higher than in some previous studies. For instance, in
Iran, ETEC was not identified in any of the dairy samples (n = 102) [46]. Also, in another
study conducted in Iran, only one ETEC isolate was found in 111 raw milk and 39 cheese
samples [40].

In the current study, the frequency of EIEC, similar to ETEC, was estimated at 13%,
and the rate of contamination was 3.5% in all examined samples. Correspondingly, a study
in South Africa, investigating 46 samples of pasteurized and non-pasteurized milk that
were distributed without packaging (or in bulk), reported one positive isolate of EIEC
pathotype (2%) [47]. In some other studies examining the prevalence of this pathogen
in food and clinical samples, the frequency was not found to be high [48]. Moreover, in
149 isolates from bulk and filtered raw milk, which were collected from different regions of
Italy, 6 were (4.02%) identified as EIEC [45]. In a study in Iran, EIEC was not found in any
of the food samples, including dairy products [40].

In the current study, the prevalence of STEC was 7.40% (3/54 E. coli isolates), and 2%
of dairy samples were infected with this pathotype, which indicates the low prevalence of
infection. All of these strains showed pathogenicity of the Shiga toxin 2 (stx2) gene as the
most important clinical gene in STEC. Generally, the likelihood of developing hemolytic
uremic syndrome (HUS) due to the stx2 gene depends on STEC [19,49]. The global estimate
of acute infection with STEC is 2,801,000 cases annually, including 3890 cases of HUS. In
Iran, the mortality rate of STEC ranges from 19.5% to 35% in medical centers and hospitals.
With a prevalence of 18%, HUS is the second leading cause of acute kidney injury (AKI)
in children in Iran [50]. The findings of the present study are in line with some previous
research. In a study conducted in Iran, 6 STEC strains (4%) were found in 150 raw milk and
cheese samples [40]. In Italy, analysis of 95 samples showed that 2 samples of raw milk and
1 sample of mozzarella cheese were infected with STEC (3.15%) [49]. A study conducted in
Mexico investigated 143 samples of dairy products and found 3 E. coli samples infected
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with STEC (2.09%) [5]. The prevalence rate reported in the present study is higher than that
of some previous studies. For instance, in a study conducted in Switzerland on 796 slices
of cheese from raw milk, 39 samples were positive for the stx gene [51]. However, the
presence of STEC in dairy products is lower than that of some previous studies. In Egypt,
36 isolates of STEC were isolated from 125 (28.8%) raw milk and dairy samples; overall,
20 isolates contained both stx1 and stx2 genes, 10 isolates only contained stx1 genes, and
6 isolates only contained stx2 genes [52]. Among isolates identified in the present study,
there was no EAEC pathotype; nevertheless, in some studies, very low prevalence rates
have been reported for EAEC. In Mexico, 143 E. coli isolates were investigated, and 2 EAEC
isolates (1.39%) were identified in dairy products [5]. Of 149 bulk and filtered raw milk
isolates from Italian regions, 2 EAEC strains (1.34%) were found (45). In Iran, Fallah et al.
(2021) examined 111 samples of raw milk and 39 cheese samples and found 4 EAEC isolates
(2.66%), all of which were found in raw milk [40].

There was no significant difference in the prevalence of E. coli among different dairy
products in the present study (Table S2). In some studies, the prevalence of E. coli in
products such as doogh, kashk, and yogurt, has been reported to be lower. The limited
presence of E. coli in these products can be due to the acidic pH and high temperature of
the fermentation process, which are preventive factors for the presence of E. coli [38,46].
Therefore, the prevalence of E. coli in these products is commonly attributed to cross-
contamination or inattention to providing an appropriate temperature in a sufficient amount
of time, especially in traditional dairy production [38]. On the other hand, the presence
of E. coli in pasteurized milk does not indicate the ability of this bacterium to survive
pasteurization temperatures and may be related to the personnel’s inattention to hygienic
principles after pasteurization. Factors affecting the prevention and control of E. coli
contamination include appropriate management of livestock, milking systems, and washing
systems, observance of public health guidelines by the personnel, establishment of good
manufacturing principles, and use of a hazard analysis critical control points (HACCP)
system in the dairy industry. Overall, these factors can be responsible for the difference
between the results of the present study and other research [1].

Currently, antibiotic resistance is recognized as a serious economic, social, and com-
munity health problem worldwide [53]. The extensive use of antibiotics in the livestock
industry for disease prevention has led to MDR strains in various pathogenic bacteria,
causing difficulties in their eradication [16]. This issue can be the main reason for the high
prevalence of antibiotic resistance in E. coli isolated from raw milk samples and traditional
dairy products in the present study [36]. Overall, these issues suggest the importance
of continuous monitoring of antibiotic resistance in food pathogens, such as E. coli [54].
Beta-lactam antibiotics, such as ampicillin, cefalotin, and penicillin, are among the most
effective and widely used agents for the treatment of bacterial infections due to the high
immunity of food products against E. coli. Besides, in veterinary medicine, antibiotics, such
as gentamicin, tetracycline, ampicillin, streptomycin, chloramphenicol, and trimethoprim,
are widely prescribed in Iran [55]. In developing countries, tetracycline, ampicillin, and
sulfamethoxazole-trimethoprim are widely used due to their low cost and availability for
the treatment of diarrhea. It seems that the widespread use of these antibiotics has increased
the resistance of diarrhea bacteria and raised concerns among veterinarians and physicians,
particularly in developing countries [56]. In this study, MDR profile was reported for
16 out of 38 (73.3%) isolates collected from milk samples and dairy products with DEC.
Almost half of the identified strains showed MDR phenotypes, which is in line with reports
from Asia and Africa [57,58]. Besides, all isolates from dairy products were sensitive to
amikacin in the present study. In this regard, a study investigating the prevalence of E. coli
in 280 animal, human, and food (i.e., milk, cheese, beef, chicken, and yogurt) samples,
found 216 E. coli isolates; none of the isolates was resistant to amikacin, which is in line
with the present findings. The observed lack of sensitivity may be due to the uncommon
use of antibiotics in treatments [22]. In the present study, high sensitivity to cefoxitin and
chloramphenicol was observed in the isolates, which is consistent with the study by Olowe
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et al. (2019) in the UK [22]. Generally, chloramphenicol is an antibiotic that has not been
approved for animal use. The usage of this antibiotic is generally limited, explaining the
low resistance of E. coli. In the current study, the highest antibiotic resistance of the isolates
was related to streptomycin, tetracycline, and ampicillin, respectively. Similar to the present
study, high resistance to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin was
reported [22,40,59]. In Iran, resistance to ampicillin and tetracycline was reported to be
higher than the rate measured in the present study, and resistance to gentamicin was
estimated at 100%, which is not consistent with the present findings [36]. There was a
significant difference between dairy types (traditional and packaged) in terms of resistance
to tetracycline (p < 0.01).

There was no significant association between antibiotic resistance and pathogenicity. In
contrast, it was reported a significant association between antibiotics and pathogenicity [60].
Tetracycline is used as an animal growth promoter. Therefore, its high resistance is not
unexpected in this study [61]. Additionally, a study conducted in Egypt investigated the
presence of O157:H7 E. coli in 1600 food samples, including 800 dairy samples and 800 meat
samples. Resistance to streptomycin and tetracycline was estimated at 87.1% and 80.6%,
respectively, which were higher than the rates measured in the present study [62].

In the present study, observation of MDR in E. coli isolates may suggest the irrational
use of antimicrobial agents or genetic mutations [1,7,49]. In this study, all 16 pathogenic
MDR E. coli isolates were collected from traditional dairy products. It should be noted that
raw milk and traditional dairy products are not commonly licensed and certified, and the
source of production is unknown; this group of products is not adequately supervised by
the health authorities in Iran. Therefore, they may be prepared from the milk of animals
with mastitis, receiving high levels of antimicrobial agents to treat their disease [63]. In a
study in Ethiopia, Bag et al. (2021) reported the highest resistance to amoxicillin (94.5%),
followed by ampicillin (89.5%) and tetracycline (89.5%) in the milk of animals with mastitis.
They also found that E. coli was resistant to all antimicrobial classes in farms [64]; these
results suggest an association between high antibiotic resistance and mastitis, as reported
in our study. Since the resistance of E. coli to antibiotics acts as a potential factor in
animals with mastitis, it can play an important role in the resistance of E. coli in the breast
environment, leading to the failure of treatments with antimicrobial agents [64,65]. E. coli
is one of the main causes of mastitis in cattle, with an increasing prevalence in recent
years. In the mammary glands, E. coli is considered to be self-limiting. Nonetheless, the
possibility of relapse is high due to the continued presence of E. coli in the mammary
glands, which may be related to the ability of E. coli to adhere to and invade the mammary
epithelium [64]. Besides the effect of mastitis, differences in resistance to different types of
antibiotics between our study and other research may be attributed to differences in the
veterinarians’ prescriptions, access to antibiotics in veterinary pharmacies, and antibiotic
prices in different countries [36].

Biofilm has been introduced as a frequent source of E. coli infection. One of the most
important reasons for introducing E. coli as the main cause of infection worldwide is its
stability and resistance to biofilm formation, which facilitates its entry into food products,
causing great economic losses in the food industry, especially the dairy industry [16].
Since biofilm formation is associated with increased tolerance for stress conditions and
pathogenicity, the ability of E. coli strains to form biofilms represents a survival strategy
and allows these microorganisms to persist longer in the environment; consequently, the
likelihood of food contamination is increased [7]. In the present study, 68.42% of the isolates
were able to form biofilms. Overall, 28.9%, 10.5%, and 28.9% of these isolates had a high,
moderate, and weak ability to form biofilms. As shown in Table S3, biofilm formation was
often higher in traditional dairy products. In another similar study, biofilm formation was
examined in samples isolated from meat and dairy products. The results showed that out of
32 E. coli isolates, 4 (12.5%), 11 (34.37%), and 15 (46.87%) isolates had a high, moderate, and
weak ability to form biofilms, respectively. Moreover, in a study by de Campos et al. (2018),
4 out of 39 (10.3%) isolates of pasteurized milk were able to produce biofilms [39]. Also,
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in a study by Kadhum and Khudor (2021), 9 out of 11 (81.81%) E. coli isolates from milk
contained genes responsible for biofilm formation [66]. In the present study, no significant
association was found between biofilm-forming strains and antibiotic resistance (Table 3).
No significant association between antimicrobial resistance phenotypes and pathogenicity
genes was reported [19]. However, it was found that all MDR isolates were able to form
biofilms [22].

It also reported that E. coli strains, which were isolated from dairy products and were
both heat resistant and MDR, had the strongest biofilm formation on polystyrene [67].
The present study also confirmed the relatively high capacity of biofilm formation on
polystyrene surfaces, highlighting the importance of attention to hygiene principles in the
food industry. Besides, biofilm formation facilitates the survival of bacteria at different
levels, including the bovine mammary glands. Therefore, biofilm-producing isolates
may be related to mastitis rather than contamination after milking [39]. Several studies
have shown that E. coli can bind to various surfaces, including food-contact surfaces
(e.g., stainless steel, polyvinyl chloride, polystyrene, polypropylene, and glass) and form
biofilms. Besides, it can resist chemicals, pressure, and heating procedures in the food
industry [16]. Additionally, the biofilm formation of microorganisms, including E. coli, can
be strengthened by foods that remain on surfaces, mainly due to irregular cleaning [68].
There was no significant association between the type of dairy products and the biofilm
formation ability (Table S4). Binding can occur in less than 2 hours in many bacterial species,
including E. coli [16], and biofilm is formed in less than 24 h [28,69]. Maximum biofilm
formation can be achieved by increasing the contact time to 96 h [16]. In the food industry,
cleaning and disinfecting solid surfaces are usually done every 8 hours. It was shown that
an 8-hour interval is appropriate for binding and formation of biofilms on stainless steel
surfaces and polyvinyl chloride, which is problematic for the food industry [69]. Even if
regular cleaning is done, the formed biofilms can persist for up to 10 years [70]. Overall,
milk and dairy products, due to the presence of nutrients and appropriate surfaces for
biofilm formation, may be contaminated with various microorganisms, such as E. coli,
which is a potential risk factor. Therefore, continuous cleaning and disinfection are of
crucial importance.

5. Conclusions

This study provided evidence regarding the prevalence of E. coli in pasteurized and
traditional dairy products in Iran. The presence of pathogenic and antibiotic-resistant E. coli
strains is considered a potential risk factor for consumers of dairy products. The existence
of MDR E. coli in dairy products is a concerning issue, which suggests the possibility
of transmission to humans and can negatively affect pharmaceutical interventions. In
this study, antibiotic resistance of E. coli strains to antibiotics, especially streptomycin
and tetracycline, was observed. Antibiotic resistance was higher in traditional dairy than
pasteurized. Improper use of antibiotics in the livestock industry in Iran can be responsible
for these problems. The ability of E. coli strains to form biofilm can lead to contamination,
which endangers the health of consumers. In addition, biofilm formation can enhance
antibiotic resistance. In this study, a significant relationship was seen between biofilm
formation and tetracycline resistance.

The higher prevalence of DEC in traditional dairy products, compared to pasteurized
products, indicates the potential of these bacteria to directly or indirectly infect consumers.
This difference can be related to continuous monitoring and follow-up of food hygiene
and safety authorities in Iran. Besides, due to the high tendency of the population to pur-
chase traditional dairy products, it is necessary to provide information about their further
processing (i.e., heating time and temperature) because the absence of such information
can increase the likelihood of human infection and poisoning. According to the present
findings, appropriate hygiene measures, such as regular hygienic supervision and training
of the operators and personnel involved in the production of traditional products, are
necessary. In addition, increased attention of veterinarians to the prescription of drugs
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can prevent the expansion of antibiotic resistance genes. Moreover, regular washing and
disinfection strategies of devices and equipment can reduce the possible biofilm formation
of E. coli in milk and dairy products. Overall, based on the present findings, consumption
of industrial and pasteurized dairy products is preferred to traditional dairy products.
However, further studies with a larger sample size are needed to expand our knowledge.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods11070960/s1, Table S1: The PCR primers used to identify virulence
genes of pathogenic E. coli in this study; Table S2. Distribution of virulence genes of E. coli strains
collected from milk and various dairy products; Table S3. Biofilm formation patterns of E. coli isolates
detected in traditional and pasteurized dairy products; Table S4. Biofilm formation in the studied
dairy products.
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