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Abstract

The evolution of therapeutics for and management of human immunodeficiency virus-1 (HIV-1) infection has shifted it from

predominately manifesting as a severe, acute disease with high mortality to a chronic, controlled infection with a near typical

life expectancy. However, despite extensive use of highly active antiretroviral therapy, the prevalence of chronic widespread

pain in people with HIV remains high even in those with a low viral load and high CD4 count. Chronic widespread pain is a

common comorbidity of HIV infection and is associated with decreased quality of life and a high rate of disability. Chronic

pain in people with HIV is multifactorial and influenced by HIV-induced peripheral neuropathy, drug-induced peripheral

neuropathy, and chronic inflammation. The specific mechanisms underlying these three broad categories that contribute to

chronic widespread pain are not well understood, hindering the development and application of pharmacological and

nonpharmacological approaches to mitigate chronic widespread pain. The consequent insufficiencies in clinical approaches

to alleviation of chronic pain in people with HIV contribute to an overreliance on opioids and alarming rise in active addiction

and overdose. This article reviews the current understanding of the pathogenesis of chronic widespread pain in people with

HIV and identifies potential biomarkers and therapeutic targets to mitigate it.
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Introduction

The prevalence estimates of chronic pain associated with

human immunodeficiency virus-1 (HIV-1) infection vary

widely, ranging from 25% to 90% of people with HIV

(PWH) depending on the cohort.1–3 The prevalence of

pain associated with end-stage patients with acquired

immunodeficiency syndrome (AIDS) is not unlike that

of end-stage patients with cancer,4 yet far fewer studies

have focused on mechanisms of pain related to HIV and

AIDS than cancer. The current review seeks to consoli-

date and review the existing body of literature regarding

the etiology of chronic pain in PWH. The review is

focused around three key mechanistic areas of current

scientific interest: (1) host immune cells, (2) viral pro-

teins, and (3) antiviral therapy.

Pain physiology

A conscious perception of pain is defined as an unpleas-

ant sensory and emotional experience associated

with actual or potential tissue damage.5 A common

framework to facilitate our understanding of pain delin-
eates four key events: sensory transduction, transmis-
sion, perception, and modulation. A noxious stimulus
or tissue injury causes release of allogenic chemical medi-
ators of pain and inflammation and neurotransmitters
including interleukins (ILs), neuropeptides (substance
P, calcitonin gene-related peptide), prostaglandins, his-
tamine, bradykinin, glutamate, and norepinephrine.6

These mediators stimulate first-order peripheral afferent
neurons to generate an action potential in a process
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known as sensory transduction. Sensory information is
then propagated and transmitted centrally via synaptic
contact with second-order neurons within the dorsal
horn of the spinal cord. Spinal projection neurons
ascend via the spinothalamic tract to the thalamus,
where third-order neurons then transmit information
to limbic regions and somatosensory cortex where pain
is consciously perceived. The spinal dorsal horn is a crit-
ical site of modulation, where incoming signals may be
inhibited or excited via local (segmental or propriospi-
nal) circuits or by descending input from supraspinal
structures.

Acute pain serves a physiological purpose to alert the
organism to imminent or ongoing tissue damage or
injury and elicit a response for self-preservation.
However, chronic pain can occur even in the absence
of a noxious stimulus, such as tissue damage, and is
characterized by changes in the way pain-related signals
are processed and modulated. Peripheral injury and
inflammation lead to local increases in chemical media-
tors that lower activation thresholds and increase
responsiveness in peripheral nerves, where transduction
occurs (peripheral sensitization). Intense or prolonged
input to the central nervous system (CNS) as well as
factors that influence pain modulation (e.g., stress) can
further lead to amplification of nociceptive signaling
within the spinal dorsal horn and brain (central sensiti-
zation). The consequences of these sensitization process-
es are the hyperalgesia and/or allodynia that are
characteristic of chronic pain.

Epidemiology of chronic pain in HIV

Chronic pain, defined as lasting at least three months
and not associated with ongoing tissue injury,7 is a bur-
densome comorbidity of HIV infection. In PWH, chron-
ic pain is associated with a high rate of disability and
decreased quality of life.8 In particular, the prevalence of
chronic pains at more than one anatomical site (i.e.,
chronic widespread pain (CWP)) in PWH ranges from
25% to 90%.2,3,9,10 As with other chronic pains, women
are more likely to have chronic HIV-related pain and are
at a higher risk for under treatment of their pain.11

Chronic pain associated with HIV includes regional
and widespread musculoskeletal pain3 of neuropathic
and inflammatory nature.10,12,13 The primary sites of
HIV-related CWP are the joints, head, legs, and
back,14,15 with 53.7% of PWH rating their pain as
severe.3 HIV-related CWP leads to serious health con-
sequences, including up to 10� greater odds of function-
al impairment.9 Disproportionately high rates of chronic
pain in PWH have been attributed to virus- and drug-
induced peripheral neuropathies16,17 and chronic, non-
neuropathic inflammation.12 Despite an increase in
awareness that pain is a significant problem for PWH,

including the creation of an International Task Force on
Pain and AIDS in 1994 to address this problem, the
prevalence of HIV-related pain since the 1980s has not
diminished. This underscores the fact that highly active
antiretroviral therapy (HAART) and current pain man-
agement strategies are not sufficient to address the indi-
vidual and socioeconomic burden of pain in PWH.

Opioid use in PWH with CWP

Despite a lack of evidence demonstrating their long-term
efficacy,18,19 prescription opioids remain an essential ele-
ment of long-term pain management in PWH. Their use
as a chronic therapy brings a complex set of issues and
risks both in the general population and in PWH. In the
general population, the epidemic of prescription opioid
misuse has resulted in a transition to injectable forms of
illicit opioids (e.g., heroin), with almost 80% of new
heroin users reporting prior prescription opioid
abuse.20 Within the HIV patient population, those with
a history of illicit substance abuse are statistically more
likely to report pain.21 Furthermore, comorbid illicit
substance abuse increases pain symptoms in PWH22

despite physician-prescribed pharmaceutical pain treat-
ment, underscoring the inadequacy of current pain man-
agement strategies in this population.23 PWH with a
history of opioid dependence often need higher doses
of opioids to treat acute bouts of pain due to the devel-
opment of tolerance,24,25 and long-term opioid use leads
to depression and may paradoxically worsen chronic
pain.26 From a public health perspective, there is an
increased chance of transmitting and acquiring hepatitis
B and C due to opioid use-related engagement in high
risk behaviors.27 Therefore, there is an urgent need to
develop novel, targeted therapeutic strategies and mini-
mize the use of opioids in PWH.

Mechanisms of chronic pain in HIV

Peripheral immune cells

The peripheral immune system may play an important
role in the development of HIV-associated hypersensi-
tivity. The activation of pro-inflammatory pathways in
peripheral immune cells in adaptive response to infection
with the HIV-1 virus may come at the cost of changes in
afferent nociceptive signaling that contribute to the
development of hypersensitivity and pain-related syn-
dromes. As is typical with viral infection or peripheral
tissue injury, there is an early activation and prolifera-
tion of resident macrophages with concurrent recruit-
ment and inflammatory specialization of infiltrative
macrophages. Macrophages are the earliest and most
prolific of the infiltrating cells observed with nerve
injury and neuro-inflammation and, importantly, this
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pattern is conserved across various preclinical models of
neuropathy.28 Injury leads to macrophage release of
matrix metalloproteases that further contribute to
recruitment and infiltration of immune cells to the initial
site of damage.29 This peripheral inflammatory milieu
causes neuronal damage as well as direct stimulation
of nociceptors with signal amplification leading to glial
cell activation, thus provoking an innate, macrophage-
driven immune response more proximally within dorsal
root ganglia (DRG), where primary afferent somata
are located.29,30

Recent studies have shown that during HIV-1 infec-
tion in humans and simian immune virus (SIV) infection
in macaques, monocyte/macrophages traffic to the
DRG and cause damage resulting in peripheral neurop-
athy.31–34 Hahn et al. showed that the exposure of super-
natant from macrophages infected with HIV-1 strains to
dissociated, cultured human DRG neurons induced
somata and axonal mitochondrial dysfunction and neu-
rite retraction.32 Treatment with antioxidants rescued
the neuronal cell body but not the axon from the toxic
mitochondrial effects of the culture supernatants.32

Laast et al. demonstrated that the SIV-infected maca-
ques had significantly lower C-fiber conduction velocity
in sural nerves than uninfected animals, and the magni-
tude of decline correlated strongly with extent of DRG
macrophage infiltration.33 Lakritz et al. further demon-
strated that the loss of intraepidermal nerve fiber
density during SIV peripheral neuropathy is mediated
by monocyte activation and elevated monocyte chemo-
tactic proteins.35

Once activated, resident macrophages release
damage-associated molecular patterns that serve to fur-
ther activate and recruit immune cells, including T helper
type 1 (Th1) cells. Th1 cells release the cytokine
interferon-gamma capable of instigating the Janus
kinase-signal transducer and activator of transcription-
1 (JAK-STAT-1) signaling pathway and inducing acti-
vation of the pro-inflammatory macrophage pheno-
type.28,36 Pro-inflammatory macrophages express
inflammatory cytokines including IL-1b, IL-6, and
tumor necrosis factor (TNF)-a, which enhance local
neuro-inflammation, play a role in establishing a neuro-
pathic pain state, and lead to peripheral and central sen-
sitization (Figure 1).28,30 Conversely, Th2 cells release
IL-4 and IL-13 that promote the development of the
pro-resolution, macrophage phenotype characterized
by expression of the anti-inflammatory cytokine IL-10
(Figure 1). The ratio of pro-resolution to anti-
inflammatory macrophages appears important in neuro-
pathic pain, and pharmacologic attempts to modulate
this balance have been reviewed recently.28 In a recent
study of PWH who self-reported chronic pain, plasma
levels of IL-1b were significantly higher than in individ-
uals without chronic pain.12 Measurement of cytokines

in PWH demonstrated that the ratios of pro- and
anti-inflammatory cytokines (TNF-a/IL-4, IL-6/IL-4,

and interferon-c/IL-10) were higher in PWH with

peripheral neuropathy.37 Moreover, overexpressing
IL-10 has been shown as a therapeutic strategy to

decrease TNF-a and increase mechanical pain threshold

in rats with neuropathic pain.38

In addition to their direct effects on inflammation and

sensitization, macrophages are important for the recruit-
ment of other immune cells. Macrophages guide neutro-

phils and lymphocytes to the site of injury through

chemokine signaling,29 and together with Schwann
cells synergistically contribute to a positive feedback

loop of cellular recruitment and neuro-inflammation.28

The infiltration of lymphocytes into DRG and spinal
cord has been demonstrated in an LP-BM5, a murine

retroviral isolate, infected murine AIDS (MAID)

model.39 Specifically, these immune cells released
redox-active species into DRG neurons, resulting in oxi-

dative damage and increased mechanosensitivity of the

hindpaw.39 The role of macrophages in neuropathic pain
is further emphasized by demonstration of reduced

mechanical hypersensitivity and Wallerian degeneration

in rats after depletion of macrophages with dichloro-
methylene diphosphonate-containing liposomes.40

Other animal models limiting macrophage recruitment
have also demonstrated a corresponding reduction in

neuronal degeneration and hyperalgesia.41

CWP has commonly been attributed to both diffuse
inflammatory processes and to failed pain inhibitory sys-

tems.42 Mechanisms of these endogenous inhibitory sys-

tems have included both central mechanisms and those
involving peripheral actions of opioids, particularly in

deep tissues.43 Macrophages are a rich source of opioid

Figure 1. Pro-inflammatory M1 macrophages release pro-algetic
cytokines, IL-1b, IL-6, and TNF-a. However, pro-resolution M2
macrophages release anti-inflammatory cytokines, IL-10, and anti-
algetic endogenous opioid peptides Met-enkephalin, dynorphin A,
and b-endorphin. IL: interleukin; TNF: tumor necrosis factor; TGF:
transforming growth factor.
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peptides44–47 that inhibit inflammatory pain by binding
peripheral opioid receptors.48–50 Compared to pro-
inflammatory (M1 phenotype) macrophages, pro-
resolution (M2 phenotype) macrophages contain and
release higher amounts of opioid peptides (met-enkephalin
(ENK), dynorphin A (DYN), and b-endorphin (END))
and can therefore produce analgesia51 (Figure 1).
Preclinical adoptive transfer of M2 cells at the site of
injury has been shown to reduce mechanical hypersensi-
tivity and is reversed by the administration of naloxone
methiodide,51 a peripherally acting opioid receptor antag-
onist. Similarly, promoting the polarization of naive mac-
rophages toward the M2 phenotype52,53 has been shown
to attenuate postoperative pain54 and decrease tactile
hypersensitivity.55 Lakritz et al. demonstrated that the
number of M1-like monocytes/macrophages correlated
with more severe DRG histopathology and loss of intra-
epidermal nerve fibers in SIV peripheral neuropathy.56

In the context of HIV infection, it must be emphasized
that macrophages play a crucial role as viral reservoirs,
especially in the periphery. Polarization of macrophages to
the M1 phenotype appears to help keep viral replication in
check to some extent and to facilitate immune system
clearance of infected cells.57

Envelope glycoprotein gp120

HIV-1 infection generates direct neuronal injury, insti-
gates processes that result in inflammatory neuronal
degeneration, and causes a generalized inflammatory
milieu that contributes to pain independent of the con-
current cellular destruction. The viral envelop glycopro-
tein, gp120, plays a key role in viral entry and has
attracted considerable attention for its role in contribut-
ing to neurotoxicity as well as establishing an inflamma-
tory state. HIV gp120 facilitates viral entry through
CD4-receptor binding and membrane fusion, with
CCR5 and C-X-C chemokine receptor type 4
(CXCR4) functioning as coreceptors on the target cell.
In many preclinical studies, HIV gp120 has been linked
to mechanical hyperalgesia58 and importantly can exert
an effect on cells even in the absence of cellular viral
infection59,60 as direct neuronal infection is rare.

HIV gp120 binding to CCR5 has been linked to neu-
rotoxicity and upregulation of pro-inflammatory gene
expression in macrophages consistent with an M1 pheno-
typic state, demonstrating the potential role of viral
immune modulation in the generation of pain.61 HIV
gp120 ligation of CXCR4 on Schwann cells leads to
TNF-a/TNF receptor-1 (TNFR-1) neuronal apoptosis
by initiating the release of Regulated on activation,
normal T cell expressed and secreted (RANTES) and
causing production of TNF-a within the DRG.62 This
effect was noted in the absence of macrophages detected
in DRG cultures, demonstrating the ability of gp120 to

potentially cause downstream neurotoxicity, axonal
degeneration, and inflammatory mediator release inde-
pendent of the host immune response. Zheng et al. further
explored the interplay between gp120, TNF-a, and micro-
glia in modulating mechanical allodynia. They found that
in vivo application of gp120 to rat sciatic nerve caused
mechanical allodynia, increased TNF-a mRNA expres-
sion in the lumbar spinal dorsal horn, and that colocali-
zation implicated microglia in the release of TNF-a and
increased TNF-a within the DRG of rats after gp120
application.63 Importantly, these investigators were able
to reverse the allodynia with a glial cytokine inhibitor,
with a soluble TNF receptor, and by administering
siRNA for TNF-a, drawing a direct linkage between the
viral protein, glial cells, and a phenotype consistent with
neuropathic pain.63

Yi et al. further elucidated the mechanisms down-
stream of TNF-a involved in gp120-induced neuropathic
pain.64 Again using HIV gp120 application onto the rat
sciatic nerve, they demonstrated that gp120 increased
TNF-a, TNFR-1, mitochondrial superoxide, phosphor-
ylation of cyclic adenosine monophosphate (cAMP)
response element binding protein (CREB), and levels
of phosphorylated cytosine-cytosine-adenosine-adeno-
sine-thymidine (CCAAT)/enhancer binding protein-b
(pC/EBPb) in the ipsilateral spinal dorsal horn.64By
sequential inhibition of the above-mentioned individual
components, the authors demonstrated that the gp120-
induced neuropathic pain was mediated by the following
pathway: TNF-a/TNFR-1—mitochondrial superox-
ide—pCREB—pC/EBPb.64 Other studies have also
shown that C/EBPb in DRG is involved in neuropathic
pain and is a potential target for ameliorating neuro-
pathic pain.65 Similarly, increase in phospho-CREB
levels have been reported in pain-positive HIV
patients.66 The gp120-induced mitochondrial superoxide
production has been shown to be mediated by an
increase in mitochondrial fission protein, dynamin-
related protein-1 (Drp-1).67 The inhibition of Drp-1
reduced mitochondrial reactive species production and
gp120-related neuropathic pain in rats.67 Moreover,
gp120 has been shown to directly disrupt microtubule
transport of mitochondria within the neuron, providing
yet another mechanism by which cellular function is dis-
rupted and intracellular energy deficits could result in
axonal degeneration and a consequent neuropathic
phenotype.68

Adenosine triphosphate (ATP) plays a critical role in
acute pain signaling in the DRG as well as in the devel-
opment and maintenance of chronic pain.69,70 ATP acti-
vates purinergic P2 receptors, classified into (1) P2X
receptors, which are ionotropic ligand-gated ion chan-
nels, and (2) P2Y receptors, which are metabotropic
G-protein-coupled receptors. Seven P2X receptors
(P2X1-7) and eight P2Y receptors (P2Y1, P2Y2, P2Y4,
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P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) have current-
ly been recognized.71,72 Several P2 receptors have been
implicated in gp120-induced hypersensitivity. In two
recent studies, Yi and colleagues studied the role of
P2Y12 in a rat model of neuropathic pain induced by
gp120 combined with the antiretro viral drug, ddC (20,30-
dideoxycytidine). They found that gp120þddC treat-
ment increased the expression of P2Y12 receptor in
DRG. In contrast, genetically reducing P2Y12 receptor
expression in DRG reduced the release of pro-
inflammatory cytokines and relieved mechanical and
thermal hyperalgesia in gp120þddC-treated rats.73

Another study demonstrated elevated expression of
P2X3 protein in DRG in gp120-treated rats that corre-
lated with neuropathic hypersensitivity sensitive to phar-
macological antagonism of P2X3.74,75 Upregulation of
DRG expression of P2X7 has also been demonstrated
following gp120 treatment. Subsequent treatment with
the P2X7 antagonist, brilliant blue G, decreased hyper-
algesia and P2X7 expression, and also decreased IL-1b
and TNF-a receptor expression while increasing IL-10 in
gp120-treated DRG.76 Together, these provide compel-
ling evidence that the activation and upregulation of P2
receptors in DRG mediate grp120-induced pain and are
therefore targets for HIV-associated pain.

Finally, important interactions between gp120 and
other mediators of chronic pain in HIV have been out-
lined. Using two neuropathic pain models to investigate
the interplay between HAART neurotoxicity and gp120,
the combined administration of both HAART and
gp120 resulted in evidence of neuropathic pain greater
than HAART alone, suggesting either an additive or
synergistic effect.77 In a more recent study, Takahashi
et al. examined the interactions between HIV gp120 and
opioid exposure. The group found that intrathecal
administration of gp120 and morphine for five days
induced greater persistent mechanical allodynia relative
either gp120 or morphine alone.78 Together, the above-
mentioned studies show that gp120-initiated macro-
phage activation and inflammatory cytokine release in
the DRG and peripheral nerves along with direct axonal
damage and neuronal apoptosis are likely concurrently
contributing to the effects seen in animal models and
individuals with HIV sensory neuropathy (HIV-SN).79,80

Trans-activator of transcription (Tat)

Trans-activator or transcription (Tat) is the first protein
produced and released by infected host cells after HIV
infection. It continues to be expressed from reservoir
host cells, despite HAART and persists within CNS tis-
sues contributing to neuro-inflammation and consequent
neurotoxicity.81,82 Tat causes neurotoxicity through
DNA double strand breaks83 and via N-methyl-D-
aspartate receptor-mediated alterations in intracellular

calcium hemostasis84–86 and glutamate excitotoxicity.87

Its expression is associated with microglial priming and
IL-1b release88 and it activates nuclear factor-kB,89 fac-
tors that lead to increased expression of inflammatory
cytokines including IL-6 and TNF-a. While much initial
attention has focused on the role of Tat neurotoxicity
within the CNS leading to neurocognitive dysfunction, it
may also contribute to HIV-SN through similar mecha-
nisms. Recently, Tat mRNA expression was noted in
DRG and skin samples after induction of its expression
in mice, with an associated reduction in nerve fiber den-
sity and concurrent progressive mechanical hypersensi-
tivity without motor impairment.90 This is consistent
with the clinical syndrome of HIV-SN, providing evi-
dence that Tat may be integral in HIV-SN pathogenesis.
Moreover, Tat has been shown to induce marked hyper-
excitability and apoptosis of primary DRG neurons.91

Again in consideration of interactions between HIV-
relevant proteins and opioids, Tat has been implicated in
modification of opioid tolerance and physical depen-
dence. Fitting et al. demonstrated that the induction of
Tat mRNA in mice corresponded to a significant loss of
morphine-induced antinociception, as assessed by the
tail-flick test.92 In a second study by the same group,
the induction of Tat in mice resulted in increased toler-
ance for morphine, based on nociceptive assays and
locomotor activity.93 Furthermore, the induction of
Tat resulted in reduced physical dependence to chronic
morphine exposure.93 Importantly, chronic Tat expres-
sion is noted in immune cells despite pharmacological
therapy and irrespective of viral load, providing a chal-
lenging but potentially promising target for future
therapeutic interventions.

Viral protein R (Vpr)

Viral protein R (Vpr) is observed early after HIV infec-
tion. It initially helps mediate viral replication and then
is synthesized and exported later in the viral life cycle
where it facilitates viral infection of macrophages and
monocytes. As a highly conserved gene with a crucial
role in viral infection, replication, and spread, it is an
enticing therapeutic target.94 Detectable levels of Vpr
increase in late stage disease in the blood and cerebro-
spinal fluid of PWH. As an extracellular protein, Vpr
triggers apoptotic pathways, stimulates inflammatory
cytokine release, and interferes with ATP production
leading to accumulation of reactive oxygen species
and increasing oxidative stress.95 Similar to gp120, the
role of Vpr in CNS symptoms and HIV-related neuro-
cognitive changes is a common focus in the literature,
but scarce prior work has delved into the potential of
its neurotoxicity in the context of neuropathic pain. In
exception, Acharjee et al.96 sought to examine the pres-
ence of peripheral Vpr and the role it may play in
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establishing neuropathic pain in PWH. They reported
Vpr expression in DRG autopsy specimens from HIV-
infected individuals. Furthermore, by establishing an
HIV infection in human DRG cultures, they were
able to demonstrate Vpr expression as well as evidence
of neuronal damage and innate immune system activa-
tion.96 Mechanistically, they found increased cytosolic
calcium levels in human and rat DRG neurons exposed
to Vpr with an increase in neuronal excitability. They
further demonstrated in a transgenic model expressing
the Vpr gene on an immune-deficient the presence of
mechanical allodynia associated with inflammatory
cytokine dysregulation. In sum, these findings effective-
ly link Vpr to both direct and indirect mechanisms of
neuronal toxicity.96

Antiretroviral drugs

The development of pharmacologic agents to treat HIV
infection and the widespread implementation of HAART
has significantly reduced HIV-related mortality, thereby
changing the dynamic of the disease process and refram-
ing HIV as a chronic entity no longer merely confined to
an acute, severe condition. The long-term requirement for
viral suppression by antiretroviral agents (ARVs) exposes
PWH to both acute and chronic side effect profiles of
ARVs. One common side effect of ARV is peripheral
neuropathic pain. The determination whether viral pro-
teins or ARV therapy are responsible for pathological
basis of HIV-SN is often based upon the timing of
ARV institution, as the etiology of the neuropathy is gen-
erally indistinguishable based on clinical symptoms.97

ARV toxic neuropathy is also characterized by axonal
loss and axonopathy as has been demonstrated in
models developed in an attempt to isolate the toxic effects
of these agents from the confounding neurotoxicity of the
HIV viral proteins described above.79

The nucleoside reverse transcriptase inhibitors
(NRTIs, including stavudine, zalcitabine, zidovudine,
and didanosine) are particularly associated with the
development of HIV-SN. Zalcitabine, although rarely
used clinically today, has proven particularly useful
in the model development for the study of neurotoxicity
in vitro and in vivo.79 The preponderance of evidence in
both animal and human studies seems to implicate
NRTI-induced mitochondrial dysfunction as a pivotal
step leading to disruptions in calcium homeostasis and
a pro-apoptotic state.79 In a model of NRTI-induced
neuropathy, Ferrari and Levine98 found that inhibitors
of the electron transport chain, oxidative stress, and cas-
pase signaling were able to antagonize the mechanical
hyperalgesia that occurred after NRTI exposures.
Furthermore, they found that the combination of alco-
hol consumption (a known comorbid risk factor for
HIV-SN development) and NRTI exposure was capable

of producing mechanical hyperalgesia at respective

dosages that do not independently affect nociception.

This affect was attenuated by electron transport train

and oxidative stress antagonism (but interestingly, not

caspase inhibition), providing additional evidence as to

the role mitochondria may play in HIV-SN.98

There is concurrent evidence of inflammatory dysre-

gulation with macrophage infiltration and expression of

inflammatory and nociceptive chemokines and cyto-

kines.Specifically, exposure to zalcitabine induced mac-

rophage infiltration and increased chemokine (C-C

motif) ligand 2 (CCL2) and TNF-a expression in the

DRG.77,79,80 Similar to viral neurotoxicity, Schwann

cells also appear instrumental in the pathogenesis of

ARV-related neuropathy. Schwann cell exposure to

recombinant gp120 leads to expression of C-X-C motif

chemokine ligand 12 (CXCL12), which in turn interacts

with CXCR4 and likely causes hyperalgesia through a

similar mechanism as seen in in vivo gp120 toxicity.62,79

While significant focus has revolved around the more

profoundly neurotoxic NRTIs, there is recent evidence

that protease inhibitors may be able to independently

elicit neuropathic changes as well as potentiate the neu-

ropathic actions of NRTI therapy. In one observational

study, the addition of a protease inhibitor to ARV ther-

apy with stavudine, didanosin, or zalcitabine was asso-

ciated with a higher incidence of development of both

asymptomatic and symptomatic peripheral neuropa-

thy.99 Huang et al.100 demonstrated mechanical hyper-

sensitivity in rats treated with the protease inhibitor

indinavir independent of HIV infection. They addition-

ally demonstrated a reduction in intraepidermal nerve

fibers on immunostaining of the hind paw after indinavir

treatment, thus linking the altered response to

Figure 2. HIV-1 proteins, gp120, Tat, and Vpr along with the
antiviral drugs increase the release of pro-inflammatory and pro-
algetic cytokines, IL-1b, IL-6, and TNF-a from M1 macrophages,
which contributes the development of chronic pain in HIV.
IL: interleukin; TNF: tumor necrosis factor.
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mechanical stimuli to a potentially explanatory histolog-
ical change consistent with findings characteristic of
HIV-SN in humans.

Conclusion

Recent research into the pathogenesis of chronic pain
associated with HIV infection indicates that its etiology
is multifactorial and involves the host immune response,
HIV-1 proteins, and antiretroviral medications
(Figure 2). Intriguingly, each of the HIV-1 proteins
seems to have a distinct downstream signaling pathway
capable of inducing peripheral neuropathic changes and
pain. It is also evident that, despite low viral count and
nearly normal CD4 levels in PWH on HAART, the cir-
culating or cellular levels of HIV-1 proteins including
gp120, Tat, and Vpr remain high. Treatment strategies
aimed at targeting a single particular molecule (protein
or drug) yield promising results in animal models of
peripheral neuropathy. Despite these encouraging find-
ings, translation to the abrogation of chronic pain in
humans, where a myriad of instigating factors are simul-
taneously present and potentially acting synergistically,
poses a significant challenge. Moreover, currently, there
are no known genetic manipulations or pharmaceutical
drugs known to reduce the burden of HIV-1 proteins in
humans. It is encouraging, however, that a common con-
vergence becomes apparent in review of the current lit-
erature. It is evident from the studies mentioned in this
review that most of the HIV-associated chronic pain
pathways converge at the release of inflammatory cyto-
kines, TNF-a, IL-1b, and IL-6 from peripheral immune
cells. The inflammatory cells involved in the develop-
ment and maintenance of chronic pain contain fewer
endogenous opioids compared to their pro-resolution
counterparts,51 which may further contribute to increase

pain in PWH. Therefore, pharmaceutical and nonphar-

maceutical therapies along with lifestyle modifications

aimed at lowering chronic inflammation may have a

better chance in succeeding to alleviate chronic pain

in PWH.
The multifactorial nature of HIV-associated chronic

pain warrants a multimodal clinical approach to address

a complex process. Direct acknowledgment of the com-

plexity of HIV-associated chronic pain syndrome when

communicating with patients may help in setting expect-

ations and discussion options for treatment. We high-

light some general clinical considerations related to

HIV-associated chronic pain in Table 1 that reflect find-

ings from the literature we have summarized. While

research progresses to develop novel therapeutic

approaches, physicians should recognize and validate

the challenging nature and significance of HIV-

associated chronic pain in the day-to-day life of

their patients.
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