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Abstract

Background: Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-
eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been
reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of
Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the
most abundant is Eidolon helvum, the African Straw-coloured fruit bat.

Methodology/Principal Findings: Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for
Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected.
Virus RNA concentrations in feces were low.

Conclusions/Significance: The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant
extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans.
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Introduction

The subfamily Paramyxovirinae in the family Paramyxoviridae

comprises the five genera Respiro-, Morbilli-, Rubula-, Avula-,

and Henipavirus, as well as a group of yet unclassified viruses [1].

The genus Henipavirus contains two of the most pathogenic

viruses known in humans, Hendra- and Nipah virus, which were

discovered only in 1994 and 1998, respectively [2–5]. Both viruses

cause severe encephalitis in humans, exemplified by the Nipah

virus outbreaks in Malaysia, India and Bangladesh with case

fatality rates ranging from 40–100% [6–10]. Work on these viruses

is restricted to biosafety level-four laboratories. Typically,

Henipaviruses are not circulating in humans, but can be acquired

from domestic animals such as pigs or horses [6,11]. Direct

transmission of Nipah virus between humans has been described

and transmission from bats to humans was implicated in Nipah

virus outbreaks not related to pig farming [12–14]. Drastic control

measures may be necessary to contain outbreaks of Henipaviruses,

as exemplified by the culling of more than one million pigs during

a Nipah virus outbreak in Malaysia in 1999 [11]. Henipaviruses

seem to have their primary reservoir in fruit bats of the genus

Pteropus, in the family Pteropodidae. Serologic evidence for

Henipavirus infection in bats has been reported in a geographic

range covering Australia, Malaysia, Thailand, Cambodia, In-

donesia, Bangladesh, India, and Madagascar [9,15–20]. Hendra

virus was isolated from bats in Australia, and Nipah virus in

Malaysia and Cambodia. Detection of Henipavirus RNA has been

accomplished in Thailand (Nipah virus) and Australia (Hendra

virus) [20]. Consequently, the geographic range of Pteropus seems

to limit the geographic range of Hendra and Nipah virus

encephalitis in humans [8,20,21].

Interestingly, a recent serological study on E. helvum, a fruit-eating

bat that occurs in Africa but not in Asia, implicated the presence of

antigenetically related viruses [22]. This is remarkable because E.

helvum is highly abundant in Africa and colonies are believed to

conduct annual transcontinental migration, following the rainfall

gradient to suitable feeding grounds, with reports on individual bats

travelling up to 2,000 kilometres [23,24]. E. helvum is a rather large

fruit bat that roosts exposed and at high densities in trees during

daytime. The animals are frequently hunted and consumed by

humans as a supplementary source of protein [25–27].

In spite of serological evidence, it has never been confirmed so far

that Henipaviruses exist in African bats. In the current study we

positively identified putative Henipaviruses for the first time in E.
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helvum in Ghana. Jointly with recent serological data [22], our results

suggest a tremendous extension of the geographic range of this virus

genus, which is one of the most pathogenic known to humans.

Materials and Methods

For all capturing and sampling, permission was obtained from

the Wildlife Division, Forestry Commission, Accra, Ghana.

Samples were exported under a state contract between the

Republic of Ghana and the Federal Republic of Germany, and

under an additional export permission from the Veterinary

Services of the Ghana Ministry of Food and Agriculture.

Geographic co-ordinates of the sampling site were

N06u42902.00 W001u37929.90. Bats were identified as E. helvum

by trained field biologists on site. Additionally, of those samples

that yielded positive RT-PCR results, mitochondrial DNA was

amplified and sequenced for species confirmation as described

[28]. Bat droppings were collected on plastic film. Ca. 100 mg of

feces were suspended in 500 ml of RNAlater solution immediately

after dropping. Suspensions were homogenised by vortexing and

50 ml were suspended into 560 ml of Buffer AVL from the Qiagen

viral RNA mini kit (Qiagen, Hilden, Germany) and processed

further according to the instructions of the manufacturer as

described earlier [29]. Elution volume was 50 ml. Broad-range

PCR for the genus Henipavirus was done as recently described,

yielding amplicons of 496 base pairs located across domains I and

II of the polymerase gene [30]. Sanger sequencing of PCR

products was done using dye terminator chemistry (Applied

Biosystems). Bayesian inference of phylogeny was done using

BEAST, version 1.4.8 [31] with both nucleotide- (GTR+I+-
gamma) and codon-based (SRD06) substitution models [32]. The

most applicable population model was determined by using both

the ESS statistic for all traces and the Bayes factor test on the

posterior probability trace of each run with TRACER. Metrop-

olis-coupled Markov-chain Monte Carlo (MCMC) chains with

2X10E7 iterations were sampled every 1000 generations, resulting

in 20,000 sampled trees.

Based on prior findings [33,34], isolation of virus was attempted

from feces suspended in RNAlater solution. Vero and CaCo2 cells

were used, as well as primary cells from colon, lung and kidney of

Myotis nattereri, E. helvum and Rousettus aegyptiacus bats (own

unpublished data). No cytopathic effect was observed and no

virus growth was seen by RT-PCR, despite repeated trials (data

not shown).

Results

During February 2008, a large colony of E. helvum fruit bats was

studied in the zoological gardens of Kumasi, Ghana (Figure 1).

The colony was estimated to contain approximately 400,000 bats

[35]. During five days in early February, plastic film (12 m2) was

laid out in the late afternoon and early in the morning under

several trees densely occupied by bats, in order to collect fecal

samples. Due to a low frequency of droppings received on the

plastic film (about one dropping per 2 minutes), and due to the

distance between the individual droppings on plastic film, it was

assumed that individual droppings stemmed from different

individual bats.

In total, three of 215 fecal samples yielded RT-PCR products.

496 base pair fragments of all products were sequenced and

aligned with homologous fragments of Paramyxoviridae reference

strains, including Hendra and Nipah viruses from GenBank.

Figure 1. The Eidolon helvum colony at Kumasi zoological gardens, Ghana. Photos from A. Seebens and F. Gloza-Rausch.
doi:10.1371/journal.pone.0006367.g001

Novel Bat Paramyxoviruses
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Supplemental figures S1 and S2 show nucleotide and amino acid

alignments of the novel bat paramyxoviruses with Hendra and

Nipah virus prototype strains. Refer to Figure 2 for GenBank

Accession Numbers of all reference strains, including those of the

novel viruses described here.

As shown in Figure 2, the resulting phylogeny was in concordance

with current proposals of Paramyxoviridae taxonomy. The three viral

sequences from E. helvum were in close or basal association with the

currently established genus Henipavirus (Figure 2). One virus was

most closely related to Nipah viruses, extending the internal amino

acid distance within the genus Henipavirus from 6.8% to 32.9%

(Table 1). Inclusion of the two other viruses extended the internal

distance to 36.3%. In the analyzed fragment, the highest internal

distance in any mammalian paramyxovirus genus was observed in

Figure 2. L-gene phylogeny with novel bat paramyxoviruses. The phylogenetic tree was generated and annotated using BEAST version 1.4.8,
using a codon-based substitution and an expansion growth population model [31]. For better graphic visualization, only posterior probability values
below 1.0 are shown. The initial sequence alignment was based on a 496 base pair fragment from PCR screening. Exclusion of primer sites resulted in
a 439 bp fragment, and further exclusion of ambiguous sites resulted in a 426 base pairs gap-free alignment corresponding to nucleotides 9993–
10430 of Human parainfluenza virus 1 strain Washington/1964, GenBank Accession Number NC_003461. Novel bat paramyxoviruses are shown in
boldface type. GenBank Accession numbers of the novel viruses are FJ609191 (BatPV/Eid.hel/GH10/2008), FJ609194 (BatPV/Eid.hel/GH48/2008) and
GQ168929 (BatPV/Eid.hel/GH45/2008). Branches leading to the Henipavirus genus are in red color. Established genera in the Paramyxoviridae family
are indicated next to taxon names. Taxa are named according to the following pattern: Genus/typical host/virus abbreviation/accession number/
isolation year. HenipaV = Henipavirus, MorbilliV = Morbillivirus, RespiroV = Respirovirus, RubulaV = Rubulavirus, AvulaV = Avulavirus, MetapneumoV = -
Metapneumovirus, PneumoV = Pneumovirus, UPV = unclassified paramyxovirus. NiV = Nipah virus, HeV = Hendra virus, PPRV = Peste-des-petitsrumi-
nants virus, CeMV DMV = Cetacean morbillivirus strain dolphin morbillivirus, MeV = Measles virus, RPV = Rinderpest virus, PDV = Phocine distemper
virus, CDV = Canine distemper virus, SeV = Sendai virus, bPIV3 = Bovine parainfluenza virus 3, hPIV1 = Human parainfluenza virus 1, hPIV3 = Human
parainfluenza virus 3, SV5 = Simian parainfluenza virus 5, SV41 = Simian virus 41, MenPV = Menangle virus, MprPV = Mapuera virus, MuV = Mumps
virus, PorPV = Porcine rubulavirus, TioPV = Tioman virus, hPIV2 = Human parainfluenza virus 2, aMPV4 = Avian paramyxovirus type 4, aMPV6 = Avian
paramyxovirus type 6, aMPV9 = Avian paramyxovirus type 9, aMPV2 = Avian paramyxovirus type 2, aMPV3 = Avian paramyxovirus type 3,
NDV = Newcastle disease virus, hMPV = Human metapneumovirus, aMPV = Avian metapneumovirus, MPV = Murine pneumonia virus, bRSV = Bovine
respiratory syncytial virus, hRSV = Human respiratory syncytial virus, NarPV = Nariva virus, ASPV = Atlantic salmon paramyxovirus, TuPV = Tupaia
paramyxovirus, MosPV = Mossman virus, BeiPV = Beilong virus, JPV = J virus, FdlPV = Fer-de-lance virus.
doi:10.1371/journal.pone.0006367.g002
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the genus Rubulavirus at 40.8%, justifying association of the novel

bat paramyxoviruses with the genus Henipavirus.

After sequencing, individual real time PCR assays with TaqMan

probes were designed for each paramyxovirus sequence (assay

formulations available on request). Individual in-vitro transcribed

RNA standards were generated for each sequence with methodol-

ogy described earlier [36], and the paramyxovirus RNA concen-

trations in samples were determined. The sample that yielded strain

BatPV/Eid.hel/GH10/2008 contained 1,030 RNA copies per

milligram of feces. The two other samples (BatPV/Eid.hel/GH45/

2008; BatPV/Eid.hel/GH48/2008) contained below 50 copies of

RNA per milligram, i.e., they were detected but ranged below the

limit down to which reliable quantification was possible.

Discussion

Further to serological data provided by Hayman et al. [22], we

have detected paramyxoviruses closely related to Hendra and

Nipah virus in an African fruit bat, E. helvum. The genetic distance

between these viruses and Hendra and Nipah virus was

compatible with the distance observed within other established

Paramyxoviridae genera, suggesting that the novel viruses might

constitute members of the Henipavirus genus. The considerable

sequence divergence between the three novel putative Henipa-

viruses encountered in one huge colony might indicate substantial

genetic variability of related viruses in bats. Formal taxonomic

classification according to conventions for Paramyxoviridae will

require the characterization of additional genomic features, such

as the phylogenies of the nucleoprotein and F genes, the lengths of

intergenic regions, as well as the predicted transcription start sites

of subgenomic RNAs [1,3]. Unfortunately, sequencing of longer

genomic fragments was not successful from our samples, most

likely due to the low concentration of RNA encountered. This was

also the assumed reason for failure of virus isolation.

The novel viruses were detected from wild E. helvum that

occupied trees in a zoological garden in the centre of Kumasi,

Ghana’s second largest city with a population of 1.5 million. Large

colonies of E. helvum are widely observed in urban areas of

Subsaharan Africa [27,37]. In the location studied here, hundreds

of visitors and staff enter the zoo on a daily basis and may become

exposed. The ways of exposure may be key features in the

understanding of the origin of epidemics of bat-borne viruses, such

as Ebolaviruses, Henipaviruses, or Coronaviruses [9,38–41]. It has

been proposed that humans may be exposed to viruses from fruit

bats that chew fruits and spit out the pulp at feeding sites [42].

However, it appears that E. helvum uses urban habitats only for

roosting and rarely for feeding. Nevertheless, detailed studies on

the foraging behavior of E. helvum are lacking. Another way of

exposition may be via contact with bat urine or fecal material. In

this study we have sampled bat feces that are abundant under trees

in urban E. helvum roosting sites. Interestingly, the observed virus

RNA concentrations in fecal material were rather low as

compared to enteric viruses transmitted via the fecal-oral route

in humans [43–45]. Bat urine was frequently described to contain

Henipaviruses [15,41,46]. Despite immediate recollection of fecal

samples from plastic sheets in this study, contamination of these

samples with bat urine cannot be completely excluded. Overall,

our data suggests a limited risk of exposure to virus from bat feces.

This is important to note to prevent any premature action aiming

at extirpating flying foxes as potential virus hosts, as this may

disrupt important ecological functions, i.e., seed dispersal and

pollination. However, our sample size was limited and more

studies are required to determine whether RNA concentrations

may vary within bat colonies, and over time.

Another way of exposure to bat viruses may be via consumption

of bat meat for food or medical purposes [25,26]. E. helvum is

known to be one of the preferred bat species hunted for wild game

in Africa [47]. Future studies need to focus on whether there is a

relevant concentration of virus in organs or meat of bats, and

whether persons consuming bat meat on a regular basis might

show evidence of past infection.

Supporting Information

Figure S1 Nucleotide alignment of Henipavirus reference strains

and novel viruses. The entire 439 base pair polymerase fragment is

Table 1. Percentage amino acid identity.

Genus/Species [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

[1] Pneumovirus $53.8

[2] Metapneumo-virus 49.4–55.8 $82.1

[3] Avulavirus 18.9–26.4 21.6–30.4 $40.7

[4] Rubulavirus 19.3–26.7 22.0–27.3 37.3–50.7 $59.2

[5] Respirovirus 19.4–25.7 22.9–25.7 27.8–38.2 35.6–43.8 $69.9

[6] Morbillivirus 21.5–26.4 27.1–31.2 29.9–35.4 34.2–42.5 50.0–56.2 $77.4

[7] Hendra virusa 20.1–22.9 26.4–27.8 29.9–36.1 38.4–43.8 50.7–53.4 60.3–64.4 100

[8] Nipah virus Bangladeshb 20.1–23.6 26.4–27.8 31.2–35.4 40.4–43.8 51.4–54.1 62.3–65.1 93.2 100

[9] Nipah virus Malaysiac 20.1–23.6 26.4–27.8 31.2–34.7 39.7–43.2 52.1–54.1 62.3–65.1 93.8 99.3 100

[10] BatPV/Eid.hel/GH10/2008 23.6–24.3 25.7–25.7 30.6–35.4 37.7–43.2 50.0–50.0 61.6–64.4 65.8 67.1 67.1 100

[11] BatPV/Eid.hel/GH45/2008 23.6–25.7 25.7–27.1 29.2–32.6 36.3–41.1 51.4–54.8 58.2–64.4 61.6 63.7 63.7 58.2 100

[12] BatPV/Eid.hel/GH48/2008 25.0–26.4 27.1–28.5 27.8–34.0 35.6–40.4 52.7–54.1 57.5–63.0 61.6 63.7 63.0 61.6 69.9 100

Amino acid identity from analysis between sequences is shown. All positions containing alignment gaps and missing data were eliminated only in pairwise sequence
comparisons (Pairwise deletion option). There were a total of 159 positions in the final dataset. Located across domains I–II of the viral RdRp (nucleotides 9993–10430 in
Human parainfluenza virus 1 strain Washington/1964, NC_003461). Highest identity of bat paramyxoviruses with established species in boldface type.
aAF017149.
bAY988601.
cAF212302.
doi:10.1371/journal.pone.0006367.t001
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aligned with Hendra virus and Nipah virus reference strains.

Hendra virus on top serves as the comparison sequence in the

alignment. Dots represent identical bases in compared sequences;

deviations are spelled out.

Found at: doi:10.1371/journal.pone.0006367.s001 (0.02 MB

PDF)

Figure S2 Amino acid alignment of Henipavirus reference

strains and novel viruses. The 146 amino acids resulting from

translation of a 439 base pair polymerase fragment are aligned

with Hendra virus and Nipah virus reference strains. Hendra virus

on top serves as the comparison sequence in the alignment. Dots

represent identical amino acids in compared sequences; deviations

are spelled out.

Found at: doi:10.1371/journal.pone.0006367.s002 (0.01 MB

PDF)
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