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Abstract: Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs)
are always the first choice for treatment. However, more than 50% of patients with epilepsy
who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are
induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine
(CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450
isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered
bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam
(LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin
(VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of
AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and
bone metabolism and emphasizes the need for caution and timely withdrawal of these medications
to avoid serious disabilities.

Keywords: epilepsy; bone metabolism; anti-epileptic drugs (AEDs); classical anti-epileptic drugs
(AEDs); newer anti-epileptic drugs (AEDs); cytochrome P450 (CYP450); bone mineral density (BMD)

1. Introduction

Epilepsy, a common neurological disorder, affects about 50 million people around the world. The
prevalence of epilepsy is approximately 6.8 per 1000 in the US [1], 5.5 per 1000 in Europe, 1.5 to 14 per
1000 in Asia [2], and 3.3 per 1000 in Taiwan [3]. Although there are many alternative treatment choices
for epilepsy, including vagus nerve stimulation (VNS), surgery, and a ketogenic diet, anti-epileptic
drugs (AEDs) are always the first choice because numerous patients with epilepsy were seizure-free
while taking an AED [4]. However, AEDs should be used carefully because of drug-drug interactions
and potential side effects, such as dizziness, drowsiness, mental slowing, skin rashes, hepatotoxicity,
movement and behavioral disorders, and metabolic disturbances, such as weight gain, metabolic
acidosis, and nephrolithiasis [5]. Although few unusual adverse effects such as rickets, osteomalacia,
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and abnormal dentition were previously identified in patients taking the AEDs [6,7], more than 50% of
patients with epilepsy who take AEDs are reported to have bone abnormalities [8–10], and several
case-control studies have traced a link between long-term AED use, bone diseases [11–13], and the
increase of fracture risks [12,14,15]. The newer AEDs, including levetiracetam (LEV), oxcarbazepine
(OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) are also effective in
the treatment of various seizures, in addition to being safer and better-tolerated than the classical AEDs.
However, studies regarding the effects of the newer AEDs on bone health and growth are limited.

Symptoms of patients with AED-associated bone diseases include bone pain, muscle weakness,
and fractures, with minimal or no trauma. These symptoms do not appear until the first fracture
occurs [16]. Their biochemical studies may show abnormal serum levels of vitamin D metabolites,
phosphorous, Ca2+, and alkaline phosphatase. Routine X-rays can identify bone fractures, but cannot
detect these bone diseases if the reduction of bone mass density (BMD) is less than 30% [17]. BMD
represents a complex and dynamic balance between the actions of osteoclasts, which are responsible
for bone resorption, and the actions of osteoblasts, which are responsible for the bone-formation. The
values of BMD in twins and siblings with epilepsy receiving AEDs treatment were significantly lower
than that without treatment [18]. Dual energy X-ray absorptiometry (DXA) is an X-ray technique
to measure the levels of BMD [17]. One-third to two-thirds of epileptic patients with AEDs showed
abnormal BMD values by using DXA [9,19], but the safety of the ionizing radiation exposure is a
large concern.

Although it is clear that AEDs affect bone metabolism and increase fractures are not clear,
the metabolism of drugs may play an important role in the development of these adverse effects.
The metabolism of drugs can be divided into two phases. CYP 450 is responsible for the phase I
metabolism, including activation, metabolism, and clearance of medications. Several medications cause
unwanted side effects and decreased or no therapeutic effects because these medications, including
AEDs administered parenterally or non-parenterally, can induce or suppress CYP450, leading to
unanticipated drug-drug interactions [20]. Reports showed that enzyme-inducing AEDs (EIAEDs)
could induce CYP450 to accelerate the degradation of vitamin D, contributing to hypocalcemia [21–23],
reduced BMD, and a higher risk of fractures [24,25]. Studies showed that valproic acid (VPA), one
of the non-enzyme-inducing AEDs (NEIAEDs), was associated with low bone mass [13,26,27]. The
glucuronidation is responsible for the phase II metabolism. Organisms utilize glucuronidation to
detoxify environmental toxins and carcinogens and participate in essential biochemical processes.
UDP-glucuronosyltransferases (UGTs), which are the most important enzymes in the glucuronidation,
comprise a superfamily of key proteins, UGT1 and UGT2. Each of the proteins UGT1 and UGT2 has at
least eight isoenzymes [28]. UGTs facilitate the glucuronic acid group of uridine diphosphoglucuronic
acid (UDPGlcA) transferring to several structurally diverse chemicals, such as AEDs, to increase the
polarity and enhance their chemicals excretion in the urine and bile [29].

No definitive guidelines for evaluation of the effect of AEDs on bone metabolism are available.
The diagnosis and the treatments of epilepsy are commonly initiated in childhood and adolescence,
which are a critical period of growth in life. Therefore, it is worth conducting a short review to discuss
the impact of classical and newer AEDs and how the metabolites of these AEDs affect bone health.
The results of this review may allow for patients with AED-associated skeletal bone diseases to be
recognized earlier and appropriate therapy to be implemented without delay.

1.1. Benzodiazepines (BZDs)

BZDs, such as diazepam, lorazepam, midazolam, and clonazepam, are widely prescribed.
Minimal toxicity and rapid onset of action make BZDs among the top 100 most commonly prescribed
medications [30]. One of the main effects of BZDs is the enhancement of the neurotransmitter
gamma-aminobutyric acid (GABA) and GABA receptor-mediated chloride conductance, contributing
to the effects of sedation, hypnosis, anxiolysis, anti-seizure, and muscle relaxation [31,32]. Metabolism
of BZDs includes liver microsomal oxidation, hydroxylation, glucuronidation, acetylation, etc. [33].
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CYP3A4, CYP3A5, CYP2C19, and others are associated with the hydroxylation of BZD [34–36]. Some
hydroxylated metabolites of BZDs still have pharmacological activities. UGTs are responsible for the
process of glucuronidation of BZD [36,37]. Midazolam, S-oxazepam, and R-oxazepam undergoes
glucuronidation by UGT1A4 [36–38], UGT2B15 [37], and UGT2B7 and UGT1A9 [37], respectively.
Clonazepam undergoes acetylation by NAT2 [39,40] (Figure 1). BZD metabolites are mainly eliminated
through renal excretion. A retrospective investigation concluded that the use of diazepam, lorazepam,
and clonazepam [41,42] might induce a substantial number of fractures and consequential costs.
Temazepam, a metabolite of diazepam via CYP3A4, was found to increase the risk of fractures [43].
There was only one case report regarding the use of oxazepam and recurrent mandibular luxation [44].
BZDs have also been reported to disturb bone metabolism, including a reduction of BMD and
25-hydroxy vitamin D (25OHD), and an increase in the serum alkaline phosphatase (ALP) levels.
The levels of total calcium, phosphorus, magnesium, and parathyroid hormone (PTH) were unaffected
by BZDs [24,35] although some other results are controversial [45–47]. Interestingly, a report showed
that midazolam could exert negative effects on cell viability and osteogenic differentiation of cultured
human bone marrow stem cells, suggesting a detrimental effect of the use of midazolam on bone
formation and growth [48] (Table 1).
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Figure 1. Pathways of the benzodiazepines (BZD) biotransformation. CYP: cytochrome P450; UGT:
Uridine 51-diphospho-glucuronosyltransferase.

Table 1. Review of literature regarding each anti-epileptic drug (AED) on the bone metabolism.
Literature was classified into in vitro, in vivo, pediatric, adult, and animal group according to the study
design. Abbreviation: BZD: benzodiazepines; CBZ: carbamazepine; PT: phenytoin; PB: phenobarbital;
VPA: valproic acid; LEV: levetiracetam; OXC: oxcarbazepine; LTG: lamotrigine; TPM: topiramate;
GP: gabapentin; VB: vigabatrin.

Drug Study Design

In Vitro In Vivo Pediatric Adult Animal

BZD 48 24, 41, 42, 43, 44, 46, 47, 49 21, 44 24, 41, 42, 43, 46, 47, 79

CBZ 77 19, 42, 58, 29, 60, 61, 79,
81, 164 58, 60, 194 42, 59, 60, 61, 79, 81, 164, 194

PT 65, 66, 67, 77, 78, 79, 80, 82 42, 79, 80, 81, 86, 164 19, 42, 79, 80, 81, 86, 164, 195

PB 100 19, 42, 45, 79, 81, 100 100 19, 42, 45, 79, 81, 100 100

VPA 121, 125 19, 121, 122, 123, 124, 164 121, 122, 124 123, 164

LEV 140, 142, 143 142 142, 143 140

OXC 121 152, 153, 154, 156 153, 154, 155, 156 152, 155

LTG 121 19, 121, 162, 163, 164, 165 121, 162, 164, 165 19, 163, 164

TPM 121, 173 121, 174, 175 121, 174 121

GBP 19, 42 19, 42

VGB 198 194, 195 194, 195 194, 195
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1.2. Carbamazepine (CBZ)

CBZ, an iminodibenzyl derivative, is extensively bio-transformed in the liver and approximately
5% of CBZ is eliminated through renal excretion [49]. CBZ 10.11-epoxide (CBZ-E), which possesses
anti-convulsant properties, is generated through the action of CYP3A4, CYP3A5, and CYP2C8 [50,51].
CBZ diol is generated via the action of epoxide hydrolase 1 (EPXH1) (Figure 2). Although
glucuronidation is not important in the metabolism of CBZ, UGT2B7 may be involved in the
metabolism of CBZ and CBZ-E [52,53]. Other metabolites of CBZ include 2-OH CBZ and 3-OH
CBZ. The former is generated through the actions of multiple CYPs and the latter is produced by the
actions of CYP2B6 and CYP3A4 [50]. 2-OH CBZ is oxidized by CYP3A4 to produce an iminoquinone
intermediate [50], whereas 3-OH-CBZ is oxidized by CYP3A4 to generate CBZ o-quinone [50]. 3-OH
CBZ may generate radicals through the action of myeloperoxidase (MPO) [50].
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CBZ stabilizes voltage-gated sodium channels (VGSCs), minimizes VGSCs in the rest status
subsequently to be excited, and reduce polysynaptic responses to block post-tetanic potentiation.
These actions make CBZ a widely used AED for partial and secondary generalized seizures [54].
Additionally, CBZ’s structure is similar to that of the tricyclic anti-depressants and a function of CBZ is
a GABA receptor agonist. These may partially explain the effects of CBZ on bipolar disorder and the
treatment of pain in trigeminal neuralgia [50].

CBZ may cause several adverse effects, including sedation, ataxia, dizziness, nausea, vomiting,
constipation, diarrhea, interference with the metabolism of lipids and sex hormones, hyponatremia,
weight-gain, anemia, agranulocytosis, toxic epidermal necrolysis (TEN), Stevens Johnson syndrome
(SJS), and drug reactions with eosinophilia and systemic symptoms (DRESS) [55–57]. Erythromycin,
clarithromycin, and triacetyloleandomycin are the most potent CYP3A4 inhibitors and are best avoided
in CBZ-treated patients. Azithromycin does not interact with CYP3A4 and, therefore, does not affect
CBZ concentrations.

CBZ was reported to cause spinal bifida in 1% of neonates whose mothers had an exposure history
in pregnancy [58]. Moreover, long-term use of CBZ may increase the risks of fracture and bone loss,
induce a status of decreased bone and mineral metabolism, increase bone turnover, and decrease
BMD [19,42]. CBZ may induce CYP450 to decrease the levels of vitamin D. A study of previously
drug-naive Koreans with CBZ revealed a significant decrease in BMD [59]. On the contrary, high
levels of bone formation markers have been detected in patients treated with CBZ, despite normal
levels of vitamin D [60]. Pack et al. [61] found that serum calcium and estrogen levels were lower in
epileptic women in premenopausal status taking CBZ. However, there was no connection between
bone turnover marker or calciotropic hormone levels and BMD change in these women, suggesting
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it was estrogen rather than vitamin D that led to bone loss in epileptic women in premenopausal
status [61]. Whether CBZ affects bone through the induction of CYP450 and/or its metabolites remains
unknown (Table 1).

1.3. Phenytoin (PT)

PT (5,5-Diphenyl-Imidazolidine-2,4-Dione) is available in oral and intravenous formulations.
The bioavailability of oral PT is 70%–90% and the t1/2 of PT is 12–36 h. The peak blood level of PT
is 3–12 h [62]. Adverse effects, such as nausea, vomiting, gingival hyperplasia, burning sensation at
the local injection site, nystagmus, ataxia, hypotension, bradyarrhythmias, cardiac arrest, SJS, TEN,
and birth defects, may occur [62]. Dissolving PT in a base solution with pH of 12 that contains
sodium hydroxide, ethanol, and propylene glycol can improve the aqueous solubility. However,
the cardiovascular toxicity of intravenous phenytoin infusion may contribute to the strong effects of
propylene glycol on the vagal nerve [62]. Additionally, the high pH is responsible for propylene glycol’s
veno-irritant properties [62]. The therapeutic range of PT is narrow and the clearance of PT is variable
between individuals. Additionally, co-ingestion of PT with an antacid mixture of magnesium trisilicate
and aluminum hydroxide reduces serum PT concentrations [63]. Moreover, some medications, such as
Cisplatin and other anti-neoplastic drugs may affect serum PT concentrations [64]. All of them suggest
that it is necessary to do therapeutic drug monitoring when using PT.

PT inhibits GABA and glutamate transport [65], reduces calcium influx into neurons to decrease
the release of neurotransmitters [66], and reduces synaptic post-tetanic potentiation, and excitatory
synaptic transmission to stop the cortical abnormal current propagation [67]. Moreover, PT can bind to
and stabilize the inactive VGSCs [68]. VGSCs are highly conserved and responsible for the upstroke
of the action potentials in neurons involving the propagation of the electrical impulse in the CNS,
PNS, and cardiovascular and skeletal muscle tissue. After binding, PT prevents further generation of
action potentials, which initiate seizures [68]. These mechanisms may significantly prevent generalized
tonic-clonic seizures, complex partial seizures, and status epilepticus, but not absence seizures.

PT is well-absorbed orally, and up to 90% of PT is biotransformed to HPPH, 5-(41-hydroxyphenyl)-
5-phenylhydantoin and hydroxyphenytoin [69], which are inactive metabolites and are excreted
into urine after glucuronidation [70]. HPPH proceeds to form phenytoin-arene oxide (PAO), which
may be the reason why epileptic patients develop hepatotoxicity, hypersensitivity, TEN, SJS, and
idiosyncratic toxicity after taking PT [71]. PAO is metabolized to phenytoin dihydrodiol (PDH)
via CYP1A2, CYP2C19, CYP2E1, CYP2A6, CYP2D6, CYP2C8, CYP2C9, CYP3A4, and epoxide
hydrolase (EPHX1) [69,72]. Phenytoin catechol (PC) is a downstream metabolite of PDH [69].
Hydroxyphenytoin is turned into PC through the actions of CYP2C19, CYP3A4, CYP3A5, CYP3A7, and
CYP2C9 [69,72,73]. PC is spontaneously and reversibly oxidized to form a phenytoin quinone
by NAD(P)H dehydrogenase, quinone 1 (NQO1). PC is converted to phenytoin methylcatechol
(PMC) through the action of Catechol-O-methyl transferase (COMT) [69]. Hydroxyphenytoin is
glucuronidated by UGT1A1, UGT1A4, UGT1A6, and UGT1A9 [74]. PT can induce CYP3A, CYP2C,
and UGTs [75] (Figure 3).

Fetal hydantoin syndrome is characterized by learning disabilities, low IQ scores, growth
retardation, microcephaly, and facial dysmorphologies [76], suggesting a significant influence on
bone growth. PT might induce a substantial number of fractures and consequential costs [42] in vivo
and in vitro [77,78]. PT may also induce the expression of CYP450, which increases the degradation of
bioavailable vitamin D, decreases absorption of calcium in the gut, decreases serum levels of calcium
and phosphate, and increases PTH. These effects may then lead to increased bone turnover, reduced
BMD, and increased susceptibility to fractures [79–81]. Among phenytoin’s metabolites, only HPPH
was found to affect bone in vitro [82]. Therefore, the bone condition of patients taking PT should be
monitored regularly (Table 1).
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1.4. Phenobarbital (PB)

PB (5-ethyl-5-phenyl-1,3-diazinane-2,4,6-trione) was the most commonly-used AED in the
world [83,84]. PB is available in oral and intravenous formulations. Its pharmacokinetics are linear and
protein binding is 55%. The bioavailability of oral PB is more than 95% and the peak blood level of PB
is 0.5–4 h. The t1/2 of PB is 2–7 days [85]. Discontinuing PB should be done with caution because a case
report showed an increase of seizure frequency in patients tapering the doses of PB while stabilized
on another AED [86]. Twenty-five percent of PB is cleared by renal excretion in unchanged form [87].
After administration, PB was detected in hepatic tissue and the portal vein, vena cava, and aorta [88],
suggesting that the liver is the main organ for the metabolism of PB. The metabolites of PB include
free PB and two inactive metabolites. p-hydroxy PB (6%–40% of the dose) is created by CYP2C9,
CYP2C19, and CYP2E1 through the process of aromatic hydroxylation and 9-D-glucopyranosyl-PB
by glucuronidation (25% of the dose). The enzymes involved in this N-glucosidation have not yet
been identified; however, UGT 2B has been proposed as the enzyme responsible for this process [89].
These processes are complicated and exhibit a large inter-individual variability [90]. Orphan nuclear
receptors, including pregnane X receptor (PXR) and constitutive androstane receptors (CAR), are
activated by PB to upregulate CYP 450 gene expression [91], causing increased clearance and decreased
serum concentrations of drugs, including AEDs (e.g., CBZ, PT, VPA, LTG, TPM), and lipid-soluble
drugs (e.g., oral contraceptives, warfarin, corticosteroids, sex hormones, vitamin D) [92]. VPA may
change serum levels or prolong the t1/2 of PB by affecting the metabolism of PB [92,93], leading to
variable dose requirements for PB. Therefore, therapeutic drug monitoring of PB levels is needed when
PB is used in combination with other drugs.

PB enhances GABA and GABAA receptor-associated inhibition [94] and facilitates Cl´

conductance by extending the time of channel opening [95]. These effects lead to an increased
Cl´ influx to hyperpolarize the postsynaptic neurons and block the propagation of aberrant epileptic
currency. PB may directly activate the GABAA receptor [96]. The actions of PB through these effects
may reduce anxiety, promote sleep, induce general anesthesia, and act as an effective control of
generalized and partial tonic–clonic seizures [97,98]. PB was the World Health Organization’s first-line
AED in developing countries because of its low cost and effectiveness in the treatment of seizures.
However, the use of PB has decreased even though there is no obvious connection between the use of
PB and the development of behavioral problems [99].
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Side effects, such as sedation, hypnosis, dizziness, nystagmus, ataxia, excitement, confusion,
and paradoxical hyperactivity may occur. Contraindications for PB use include acute intermittent
porphyria, hypersensitivity to PB, a prior history of dependence on PB, and hyperkinesia in
children [62]. In vivo studies showed that long-term use of PB might diminish the t1/2 of the
plasma vitamin D3 and enhance excretion in the bile [100]. Long-term use of PB may increase
the risks of fracture [42] and bone loss [19]. Liver microsomes dissected from animals with PB
treatment enabled vitamin D3, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol to turn
into inactive products [100], causing rickets, osteomalacia, and hypocalcemia. Therefore, vitamin D
supplementation should be considered for patients receiving long-term PB therapy. p-hydroxy PB and
9-D-glucopyranosyl-PB have not been reported to be associated with bone diseases (Table 1).

1.5. Valproic Acid (VPA)

Valproic acid (VPA, 2-propylpentanoic acid), a branched-chain fatty acid, is originally extracted
from Valeriana officinalis. VPA is commonly used in people with epilepsy because it is effective and
can be administered orally, intravenously, or rectally. The oral bioavailability of VPA is more than
80%. Clinically, it is puzzling that the doses of VPA in the treatment of patients with epilepsy are
variable and the toxicities of the drug are poorly correlated with VPA serum concentrations [101].
Studies showed that VPA has a very high protein binding (ě90%) in the plasma and few unchanged
VPA (<3%) appears in the urine [102], suggesting a very complicated biotransformation of VPA in
humans (Figure 4). First, 30%–50% of VPA may be metabolized via glucuronization by UGTs, including
UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15. End products
are mostly excreted in the bile and urine. However, VPA can directly inhibit the activity of UGT1A4,
and UGT2B7 [103,104].
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acyl-CoA synthase; 2-ene-VPA-CoA: 2-propyl-valproyl-CoA; 2MBCAD: 2-methyl-branched chain
acyl-CoA dehydrogenase; IVD: Isovaleryl-CoA dehydrogenase; 3-OH-VPA-CoA: 3-hydroxyl- valproyl-
VPA; EH: 2-enoyl-CoA hydratase; 3-oxo-VPA-CoA: 3-keto-valproyl-CoA; HADH: hydroxyacyl-CoA
dehydrogenase; MHBD: 2-methyl-3-hydroxybutyryl-CoA dehydrogenase; C3-CoA: propionyl-CoA;
and C5-CoA: pentanoyl-CoA.
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Second, 30% of VPA metabolism occurs via β-oxidation in the mitochondria. VPA as
a medium chain fatty acid is able to enter the mitochondrial matrix and is turned into
valproyl-CoA (VPA-CoA) by medium-chain acyl-CoA synthase (EC 6.2.1.2) [105]. VPA-CoA
is converted into VPA-dephospho-CoA and 2-propyl-valproyl-CoA (2-ene-VPA-CoA) by the
phosphatase 2-methyl-branched chain acyl-CoA dehydrogenase (2MBCAD) and Isovaleryl-CoA
dehydrogenase (IVD), respectively [106,107]. 3-hydroxyl-valproyl-VPA (3-OH-VPA-CoA) is generated
from 2-ene-VPA-CoA through 2-enoyl-CoA hydratase (EH). 3-OH-VPA-CoA is converted into
3-keto-valproyl-CoA (3-oxo-VPA-CoA) or propionyl-CoA (C3-CoA) and pentanoyl-CoA (C5-CoA) by
the action of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) [108,109] or hydroxyacyl-CoA
dehydrogenase (HADH) [105,108]. 3-oxo-VPA CoA is metabolized by the glutathione (GSH) into
thiols [110]. 4-ene-VPA CoA, which is generated by the metabolism of VPA through 4-ene-VPA-CoA
ester, is converted into 2,4-diene-VPA-CoA ester through 2MBCAD [110,111]. 2,4-diene-VPA-CoA and
4-ene-VPA-CoA are turned into thiols by GSH [110].

Third, 10% of VPA is biotransformed through CYP450-mediated oxidation. CYP2A6 is partially
connected to the generation of 3-OH-VPA [112]. CYP2A6, CYP2C9, and CYP2B6 are involved in the
VPA metabolism to generate 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA [113]. Interestingly, VPA can
inhibit CYP2C9, CYP2C19, and CYP3A4, but not CYP1A2, CYP2D6, or CYP2E1 [103,104]. VPA may
undergo β-oxidation or glucuronidation when the doses are below or in therapeutic range [114]. This
may explain why different doses of VPA cause distinct responses.

VPA affects the GABAergic system, inhibits α-ketoglutarate dehydrogenase (αKGD), GABA
transaminase (GABA-T), and succinate semialdehyde dehydrogenase (SSD), and enhances glutamate
decarboxylase (GAD) to elevate GABA levels in plasma and in several brain regions. Consequently,
VPA may affect cerebral metabolism, activate GABA receptors to block sodium channels, and modulate
calcium and potassium conductance and dopaminergic and serotoninergic transmission [115,116].
These mechanisms make VPA a multi-functional medication for absence, partial, and tonic-clonic
seizures, bipolar disorder, depression, migraine, personality disorders or mental retardation, dementia
and cognitive problems, and a potential chemotherapeutic agent [116]. Moreover, VPA can inhibit
histone deacetylase (HDAC), which is a crucial factor in the pathogenesis of cancer and transcriptional
regulation [117,118]. VPA is currently under investigation to be an adjunctive therapeutic option in
neurodegenerative diseases, HIV, and cancers. Nausea, vomiting, abdominal cramps, diarrhea, weight
gain, impaired coagulation, and neutropenia are the most common side effects of VPA. Hepatotoxicity,
pancreatitis, teratogenicity, and endocrine disturbance, such as menstrual abnormalities, increased total
testosterone levels, teratogenicity, obesity, and polycystic ovary syndrome (PCOS) may be associated
with VPA. Hepatotoxicity is one of the most serious complications in the use of VPA. Although
mitochondrial dysfunction and abnormal fatty acid metabolism have been proposed for the causes of
VPA associated hepatotoxicity [119], the exact mechanisms are still unknown.

Fetal valproate syndrome is characterized by orofacial clefts, congenital heart disease, neural tube
defects, limb defects, genitourinary defects, and craniosynostosis. VPA may affect limb and organ
morphogenesis, suggesting a significant effect on bone growth and metabolism [120]. Long-term use
of VPA may increase the risks of bone loss [19]. In vitro studies, our study [121] and others [122–125]
showed that VPA may directly affect bone growth. VPA may have neuroprotective and anti-tumor
activities through the modulation of epigenetic mechanisms [126–128]. VPA within therapeutic
concentrations effectively inhibits histone deacetylases (HDACs). HDACs are enzymes crucial for the
control of histone acetylation status and for the epigenetic regulation of gene activation involved in the
modulation of cell growth, differentiation, and apoptosis [129,130]. VPA may cause short stature by
directly inhibiting cell growth and proliferation through activation of apoptosis by hyperacetylation of
histone tails and chromatin. In addition, serious side effects, teratogenesis, liver toxicity, and associated
bone diseases have prompted the search for a newer generation of AEDs to provide better efficacy and
fewer side effects (Table 1).
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2. New Generation AEDs

2.1. Levetiracetam (LEV)

LEV ((S)-α-ethyl-2-oxo-1-pyrrolidine acetamide) was discovered through screening for effective
AEDs in audiogenic seizure mice [131]. The chemical structure of LEV is the α-ethyl analog of piracetam
and is unrelated to other AEDs [132]. LEV is a safe and well-tolerated new AED and no significant drug
interactions were noted between LEV and concomitant medications because of lower protein binding
and no involvement of hepatic CYP isozymes [131,132]. LEV is rapidly absorbed in the digestive tract
and mainly excreted in urine. Approximately 1/3 of an administered dose of LEV was metabolized and
2/3 was excreted in urine in unchanged form [133]. The major pathway involves hydrolysis through
the type B esterases primarily in the liver and blood [134] to generate (2S)-2-(2-oxopyrrolidin-1-y
butanoic acid and two minor metabolites without significant pharmacological activities [135].

Pharmacologically, LEV effectively reduces partial seizures, intractable partial seizures, and
patients with other medical conditions by several proposed mechanisms, including: (1) targeting
synaptic vesicle protein 2A (SV2A), which is associated with vesicle neurotransmitter exocytosis;
(2) negative modulation of neuron-associated GABA- and glycine-gated currents; (3) inhibiting
voltage-gated calcium channels or reducing voltage-operated potassium currents [136–139]. Low-dose
LEV was found to impair longitudinal skeletal growth and increase the risk of fractures in immature
rats [140]. LEV was found to affect serum estradiol levels, suggesting that young and female individuals
might be at risk of fractures with long-term use of LEV [141]. However, other reports [142,143] did not
observe this effect. No reports are available regarding hydrolytic metabolites of LEV on bone diseases
(Table 1).

2.2. Oxcarbazepine (OXC)

OXC (10,11-dihydro-10-oxo-5H-dibenz(b,f)azepine-5-carboxamide) has been designed via
structural variation of CBZ [144]. After oral administration, metabolites of OXC in urine included MHD
and two diastereoisomeric O-glucuronides (79%), unchanged OXC, OXC’s sulfate and glucuronide
conjugates (13%), the cis- and trans-isomers of 10,11-dihydro-10,11-dihydroxy-carbamazepine
(approximately 4%), and a phenolic derivative of MHD (less than 1%) [145]. Orally-administered OXC
is rapidly metabolized to form the 10,11-dihydro-10-hydroxy-carbazepine (monohydroxy derivative,
MHD) through cytosolic arylketone reductases. MHD is dissolved in water and a biologically
active metabolite [144]. Therefore, MHD is as potent an anti-epileptic drug as OXC. MHD has
two enantiomers: S enantiomers of MHD [(S)-MHD] (accounts for 80%) and R enantiomers of MHD
[(R)-MHD] (accounts for 20%) [146]. The antiepileptic efficacy and tolerability of (R)-MHD and
(S)-MHD is similar [147].

OXC, like CBZ, specifically inhibits voltage-dependent sodium [148], potassium [149], and calcium
channels [150]. Although the efficacy of these two medications is similar, the safety of OXC is superior.
Therefore, the FDA approved OXC as adjunctive therapy or monotherapy for children and adults with
partial seizures. Hyponatremia is the main adverse effect of OXC [151]. Decreased BMD, altered levels
of 25OHD [152,153], and bone turnover biomarkers such as PTH and bALP [152] were reported in
patients with long-term OXC use [153,154]. However, our previous study [121] and others [155] did
not discover any significant hypocalcemia or growth retardation in pediatric patients receiving OXC,
and OXC did not significantly impair the proliferation of growth plate chondrocytes in an in vitro
experiment [121]. Our recent study showed when patients with epilepsy took OXC and/or VPA for
one year, their growth velocity was significantly decreased through affected bone resorption [156]. The
use of VPA and/or OXC therapy affecting bone metabolism deserves further investigation (Table 1).

2.3. Lamotrigine (LTG)

LTG (6-(2,3-dichlorophenyl)-1,2,4-triazine-3,5-diamine) is rapidly and completely absorbed after
oral administration. The oral bioavailability of LTG is 98%. The blood level of LTG is 1.4 to 4.8 h [157].
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Metabolite identification studies demonstrate that N-2 glucuronide, N-5 glucuronide, N-2 methyl,
and N-2 oxide are the main metabolites of LTG [158]. Most of these metabolites are non-active. LTG
is eliminated via glucuronidation—mainly through UGT1A4, UGT2B7, and UGT1A1 [159]. LTG
generally does not interfere with drug metabolizing enzymes. More frequent dosing and higher doses
may be needed when co-administered with AEDs, such as PB, PT, CBZ, and OXC because these AEDs
may enhance LTG clearance and decrease its plasma concentration by activating the glucuronidation
pathway. On the contrary, co-administration of VPA may raise LTG plasma concentration as much
as two-fold by inhibiting LTG clearance. Therefore, the recommended maintenance dose of LTG
should be two-fold lower if LTG is co-administered with VPA. However, newer AEDs rarely affect
LTG clearance [103].

LTG acts on pre-synaptical voltage-sensitive sodium channels. LTG blocks N- and P/Q/R-type
calcium channels. These blocking effects and others may stabilize neuronal membrane potential [160].
LTG can abolish the repetitive firing in mouse spinal cord neurons in vitro. For these mechanisms,
LTG is effective as a monotherapy or polytherapy for primary or secondarily generalized clonic-tonic
seizures and simple or complex partial seizures. Additionally, LTG can be used as an adjuvant therapy
in typical or atypical absence seizures, infantile spasms, juvenile myoclonic epilepsy, Lennox-Gastaut
syndrome (LGS), and myoclonic seizures [161]. The antiepileptic effect of LTG is similar to that of
PT and CBZ, but LTG are multi-functional when compared with these two drugs. LTG may inhibit
the release of glutamate in the ventral part of the striatum and limbic areas, leading to the mood
stabilization effect [161]. Headache, dizziness, sedation, nausea, insomnia, diplopia, and ataxia are
common problems in patients taking this medication. The incidence of rash in the use of LTG is
approximately 0.1% in all cases. The rash can vary from transient mild rash to fatal SJS. Children
generally tend to have skin rashes more than adults. Adverse effects of LTG on bone, including bone
loss [19], disturbed growth in children, impaired BMD, and elevated bone turnover markers have been
reported [162] while our [121] and other [163–165] results were contradictory (Table 1).

2.4. Topiramate (TPM)

TPM (2,3:4,5-Bis-O-(1-methylethylidene)-β-D-fructopyranose sulfamate) is a derivative of
monosaccharide d-fructose. TPM is rapidly and completely absorbed after oral administration and
concomitant food intake does not affect the metabolism of TPM. The peak blood level of TPM is
1.4–4.3 h [166]. The protein binding of TPM in humans range 3%–4% [166]. An estimated 85% of an
administered dose of TPM was predominantly excreted in urine as unchanged form [167]. The t1/2
of TPM is 19–25 h and is decreased by co-administration of EIAEDs such as CBZ and PT [166–168].
The remainder (15%) is metabolized through hydrolysis, hydroxylation, and glucuronidation. Six
metabolites of TPM were detected in human urine without significant clinical activity [168]. TPM can
partially inhibit CYP2C19 [169].

Pharmacologically, TPM affects GABAergic activity, inhibits voltage-sensitive sodium channels,
calcium channels, and kainite/α-amino-3-hydroxy-5-methyllisoxazole-4-proprionic acid (AMPA)-type
glutamate receptors, and blocks kinases to activate these channels [170]. All of these mechanisms not
only make TPM approved as adjunctive therapy for adults and pediatric patients ages 2–16 years
with primary generalized clonic-tonic seizures, partial seizures or LGS [171], but also contribute to
a wide spectrum, including prophylaxis of migraines, alleviation of neuropathic pain, alcoholism,
obesity, depression, bipolar disorder, and post-traumatic stress disorder [172]. Somnolence, nystagmus,
hypo- or anhydrosis, paresthesia, poor concentration and word finding, weight loss, and decreased
appetite, were the common complaints when using TPM. TPM may cause metabolic acidosis and
nephrolithiasis through the inhibition of the carbonic anhydrase. The acid-base imbalance may
accelerate osteopathy [173,174]. PTH secretion may be reduced after exposure to TPM, disrupting the
balance between calcium resorption, the synthesis of 1,25(OH)2D, and the activities of osteoclasts [175].
In addition, TPM is a carbonic anhydrase inhibitor that may inhibit PTH-induced bone resorption,
resulting in hypocalcemia. However, patients receiving TPM in our study did not show significant
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hypocalcemia or growth retardation [121]. More human studies may clarify these conflicting results
(Table 1).

2.5. Gabapentin (GP)

GP (1-(aminomethyl) cyclohexane acetic acid), structurally-related to GABA, was originally
developed to treat spasticity [176]. GP is absorbed in the gastrointestinal tract. The GP concentrations
in CSF and brain are 20% and 80% of the concentrations in plasma, respectively [177,178]. GB can bind
to voltage-dependent calcium channels containing the α2δ subunit to attenuate their activities [179,180].
GB does not bind to GABAA or GABAB receptors, nor does it disturb GABA uptake or metabolism,
but can increase the concentration of GABA to reduce firing inputs [181] and enhance GABA responses
in neuronal tissues [182]. For its high lipid solubility and structural uniqueness, GP can freely cross
the blood-brain barrier, promptly elevate brain GABA, and presumably offer partial protection against
further seizures within hours of the first dose [183]. GB inhibits neuronal calcium influx to reduce the
release of mono-amine neurotransmitters, including glutamate, noradrenaline, and serotonin [184],
causing decreased AMPA receptor activation in the brain. GB can bind to presynaptic NMDA receptors
with inhibitory effects [185]. Due to these mechanisms that neither induce nor suppress hepatic
microsomal enzymes [186], low level of protein binding [187], and renal excretion with an unchanged
GB form in urine [178], GB is less likely to interact with other AEDs and is approved in persons over
three years of age as an adjunctive AED for partial seizures with or without secondary generalization.
In addition, GB can inhibit the descending noradrenergic system, leading to anti-hyperalgesic and
anti-allodynic effects [188]. GB is effective in the treatment of a variety of pains including headaches,
inflammatory pain, central pain, diabetic neuropathy, post-herpetic neuralgia, HIV-related neuropathy,
trigeminal neuralgia, malignant pain, and postoperative pain management [176].

Sexual dysfunction, weight gain, dizziness, somnolene, and fatigue, but no serious idiosyncratic
reactions or toxicities, have been reported [189,190]. Long-term GP therapy may increase the risks of
fracture [42] and bone loss [19], suggesting that GP may have adverse effects on bone health (Table 1).

2.6. Vigabatrin (VB)

VB (4-amino-5-hexenoic acid) is a GABA-aminotransferase inhibitor to antagonize the GABA
degradation in synapses [191]. VB is rapidly absorbed in small intestines and widely distributed
throughout the body [192]. However, hepatic dysfunction has no impact on VB dosing because VB
is predominantly excreted unchanged in the urine [192]. Lower doses are necessary in patients with
renal dysfunction (creatinine clearance less than 80 mL/min). Younger subjects may demand a higher
dose because their clearance is higher [104]. VB mainly relies on renal elimination and it does not
need binding plasma proteins [192] or metabolism [193]. When patients with epilepsy were co-treated
VB with other AEDs, VB might cause a significant increase in plasma clearance of CBZ [194] and
decrease in the serum PT concentration [195]. VB is effective in the treatment of pediatric patients
with infantile spasms, infantile spasms secondary to tuberous sclerosis, refractory complex partial
seizures, and adult patients with LGS [196]. Patients treated with VB frequently complain of headache,
ataxia, dizziness, tremors, fatigue, hyperactivity, and weight gain. Patients with myoclonic seizures
should not use VB as it may aggravate this sort of seizure. Patients receiving VB should routinely
undergo ophthalmological examinations because VB may damage the visual field. There was a study
that enrolled patients with epilepsy receiving AEDs [197] and the study could not make a conclusion
regarding the negative effects of VB on human bone metabolism because of limited subjects; however,
immature rats treated with VB were found to have decreased body mass gain and inhibited compact
bone growth [198]. Therefore, VB should be used cautiously in children, and the bone condition of
pediatric patients should be closely monitored (Table 1).
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3. Conclusions

AEDs are widely used for seizure treatment. However, abnormalities in bone and mineral
metabolism have been frequently reported in individuals receiving EIAEDs because EIAEDs may
cause hypocalcemia through triggering the catabolism of vitamin D. In vitro studies demonstrated that
PB induces cultured human hepatocytes to increase the mRNA of CYP2C9, CYP2C19 [197], CYP2B6,
and 3A4 [199]. Another in vitro study showed that CYP1A2, CYP2B6, and CYP3A4 were significantly
induced by OXC and CBZ in HepaRG cells and human hepatocytes [200]. However, a systemic review
analyzed 13 observational studies representing 68,973 patients with epilepsy. In all EIAED users, five
studies illustrated decreased BMD; five studies demonstrated irrelevance to BMD; two studies reported
increased incidence of fracture, and one study showed nothing to do with the incidence of fracture [201].
This finding led to no conclusion regarding the relationship between EIAEDs and bone metabolism.
Additionally, it was reported that vitamin D deficiency was parallel to the low BMD in epilepsy
patients on AEDs [19]. Numerous studies have shown that serum 25-hydroxyvitamin D levels are not
significantly different between groups of subjects treated with either EIAEDs or NEIAEDs [60,202].
Moreover, calcium and vitamin D supplementation did not influence the prevalence of fractures in a
retrospective study enrolling over 3000 patients with AEDs [203]. Taken together, these results raise
public concerns on the bone growth or other medical conditions of children with epilepsy taking AEDs.
So far, several newer-generation AEDs, including fosphenytoin, zonisamide, lacosamide, perampanel,
eslicarbazepine, felbamate, ezogabine/retigabine, stiripentol, tiagabine, and rufinamide, have been
designed and marketed [204]. Most of them have broader spectrums, fewer drug interactions, better
tolerance, and minimal side effects, including bone diseases [205]. Timely withdrawal of AEDs and
proper use of a new medication may avoid serious disabilities in users. In addition, supplementation
of calcium and vitamin D are still recommended to epileptic patients on AEDs even though the effects
of supplementation on AED-related osteopathy are controversial [206].
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