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A B S T R A C T

Freezing is widely used in food preservation, but if not carried out properly, ice crystals can multiply (nucleation)
or grow (recrystallization) rapidly. This also affects thawing, causing structural damage and affecting overall
quality. The objective of this review is to comprehensively study the cryoprotective effect of antifreeze proteins
(AFPs), highlighting their role in the freeze-thaw process of food. The properties of AFPs are based on their
thermal hysteresis capacity (THC), on the modification of crystal morphology and on the inhibition of ice
recrystallization. The mechanism of action of AFPs is based on the adsorption-inhibition theory, but the specific
role of hydrogen and hydrophobic bonds/residues and structural characteristics is also detailed. Because of the
properties of AFPs, they have been successfully used to preserve the quality of a wide variety of refrigerated and
frozen foods. Among the limitations of the use of AFPs, the high cost of production stands out, but currently there
are solutions such as the use the production of recombinant proteins, cloning and chemical synthesis. Although in
vitro, in vivo and human studies have shown that AFPs are non-toxic, their safety remains a matter of debate.
Further studies are recommended to expand knowledge about AFPs, to reduce costs in their large-scale produc-
tion, to understand their interaction with other food compounds and their possible effects on the consumer.
1. Introduction

Freezing is one of the most widely used processes in food preserva-
tion. Despite the advantages of this technique, it can generate large ice
crystals due to poor operating conditions (Chen et al., 2021a). This
causes changes in food texture, induces lipid oxidation, protein dena-
turation and enzyme activation (Nian et al., 2020). It also causes cell wall
rupture, structural damage and, finally, cell lysis (Dalvi-Isfahan et al.,
2019). Zhang et al. (2022) evaluated the effect of different freezing
conditions (�6 to �30 �C for 10–30 days) on the quality of wheat gluten
protein in unfermented doughs. As the temperature and storage time
increased, the solubility, foamability and water holding capacity of the
protein decreased. Damage to the gluten structure was proportional to
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the number and size of ice crystals; this affected sensory, physical and
nutritional characteristics of the products during thawing (Song et al.,
2019; Zhang et al., 2020). During storage of star fruit at �20 �C for 90
days, Provesi et al. (2019) noted that there was considerable drip loss due
to the fact that during thawing, some of the water in the food escaped to
the outside. Freeze-thaw (F-T) cycles resulted in severe cooking losses,
centrifugal losses, reduced amino acid composition, and structural
damage in fish Trachurus murphyi. The impact was proportional to the
size of the ice crystals formed (Hu and Xie, 2021).

To solve this problem, it is necessary to know the F-T process and to
investigate the application of cryoprotective additives (Chen et al.,
2021a). The most commonly used are glycerol, salt, sorbitol, trehalose
and sucrose (Eskandari et al., 2020). However, the sweetness of sugars is
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undesirable for many foods and for people who are intolerant or have
diabetes. In addition, these cryoprotectants are used in high concentra-
tions (Rosa et al., 2019). The need arises to use a viable agent such as
antifreeze proteins (AFPs), which are healthier, provide a better cryo-
protective effect and in lower concentrations (Provesi et al., 2019). AFPs
have been studied in the medical, pharmaceutical, biotechnological and,
mainly, food industries (Eskandari et al., 2020; Ustun and Turhan, 2020).
Specifically, AFPs are widely used to protect the integrity of frozen foods
by slowing the development of ice crystals at sub-zero temperatures (Gün
et al., 2020). The use of AFPs also encompasses refrigerated foods (Tian
et al., 2020).

It is still a challenge to establish a technique to control the size and
shape of crystals produced during freezing and their stabilization during
thawing. The existing literature on AFPs is scarce and there are many
gaps on their application in food products. In this regard, this study will
highlight the most significant applications of AFPs in frozen and refrig-
erated foods. First, the F-T process will be described and the funda-
mentals/characteristics of the AFPs will be detailed in order to better
understand the subject. To fill another knowledge gap, emphasis will be
placed on the different mechanisms of action. The specific damages of the
F-T process in different foods will also be described. Finally, some limi-
tations of the technique, alternative solutions and recommendations for
future work will be mentioned.

2. Freeze-thaw process: water as a key element

Water, as the main compound of food, directly influences its quality
depending on the processes to which it is exposed. In this context, water
plays a fundamental role in the F-T process and if not properly managed,
it could be lethal for the food (Białkowska et al., 2020).

Knowing the interaction of water (activity, mobility and distribution)
in refrigerated and frozen foods is relevant to understand the basis of
their quality and stability (Kontogiorgos et al., 2008; Ding et al., 2015).
During freezing, water is mobilized, molecules are organized and form
more crystals (nucleation) (Chen et al., 2021a). This produces the in-
ternal expansion of the food, causing the rupture of its membranes and
cell walls (Provesi and Amante, 2015). In addition to nucleation,
recrystallization of ice can also occur; it consists of increasing the amount
of free water and inducing larger crystals by melting the smaller crystals
(because they are thermodynamically unstable). This causes changes in
the morphology, shape, orientation and distribution of the crystals (Kong
et al., 2016; Eskandari et al., 2020). Recrystallization occurs due to
temperature variation, and its speed increases at temperatures below the
freezing point (FP) (Chen et al., 2021b).

Fennema et al. (1973) classified recrystallization according to the
mechanisms that induce it: accretion, migration, surface isomass, irrup-
tion and pressure induction. Regarding frozen foods, the authors mention
that the first three mechanisms are those that induce recrystallization.
According to Zhu et al. (2019), accretion is the melting of small crystals
in adjacent zones; in migration, due to temperature fluctuation, the liquid
generated by the melted crystals flows into the large crystals; isomass
refers to the fact that, in order to be thermodynamically stable, the crystal
surface becomes sharper and smoother.

To avoid the formation of large crystals and the impact on thawing,
where undesirable physical, chemical and microbiological changes also
occur, the process should be carried out at very low temperatures (<�20
�C) (Calderara et al., 2016). Throughout the food chain, conditions such
as relative humidity and temperature must be controlled. In addition, the
use of safe and effective cryoprotectants is recommended.

Another factor related to recrystallization is the glass transition
temperature (Tg); temperature at which the thermodynamic pseudo-
transition occurs irreversibly. It is suggested that, during storage, the
temperature should be lower than the Tg of the water because at a higher
2

temperature, water has greater mobility, acquiring greater speed in
increasing the number and size of crystals (Ustun and Turhan, 2020).

3. Fundamentals of antifreeze proteins

3.1. Origin and history

Antifreeze activity (AFA), later determined to be a product of AFPs,
was first observed in Antarctic fish by Scholander et al., in 1957, and in
the hemolymph from Tenebrio molitor in 1964 by Ramsay (Ramløv and
Johnsen, 2014). Since then, AFPs have also been discovered (but struc-
turally different in most cases) in nematodes, amphibians, algae
(Eskandari et al., 2020), plants, insects, spiders (Kristiansen, 2020),
bacteria, fungi, ciliates, diatoms (Baskaran et al., 2021), and lichens
(Crevel et al., 2007). These organisms are usually exposed to cold envi-
ronments and therefore, they acquired the necessary tolerance for their
survival, avoiding the usual damages that occur in sub-zero environments
(Xiang et al., 2020). Among other sources of AFPs, promising cases of
recombinant AFPs expressed in Escherichia coli, Lactococcus Lactis and
Pichia pastoris were also reported (Liu et al., 2018a).

AFPs are also known as ice structuring proteins (ISPs), ice-binding
proteins (IBPs) or thermal hysteresis proteins (THPs) (Liu et al., 2018b;
Ding et al., 2020; Eskandari et al., 2020). They are peculiar compounds
that adhere to ice, specifically at the water-ice interface (Chen et al.,
2021a). In this way, AFPs interfere with the speed of crystal growth,
shape and orientation, decreasing the damage to the structure of the
organism.

3.2. Types of antifreeze proteins

From the structural point of view and according to their composition,
there are AFPs of type I, II, III and IV, antifreeze glycoproteins (AFGPs)
and hyperactive AFPs (Boonsupthip and Lee, 2003; Tejo et al., 2020). The
first five types are referred to as moderately active AFPs (Cao et al.,
2021). These have an AFA or difference between the melting point (MP)
and the hysteresis freezing point (HFP) of 1–2 �C in fish (Ramløv and
Johnsen, 2014; Damodaran and Wang, 2017), 0.2–0.4 �C in plants (Ding
et al., 2020), 0.2–0.5 �C in insects (Ustun and Turhan, 2020), and
0.1–0.35 �C in bacteria (Griffith and Ewart, 1995). Hyperactive AFPs
present in insects have different AFA values, from 8 �C (Ramløv and
Johnsen, 2014),�6 �C at low concentrations (Cao et al., 2021), 10 to 100
times more AFA than active AFPs (Gün et al., 2020). AFPs from insects
have the greatest potential as an antifreeze agent; plants have low AFA,
but have higher ice recrystallization inhibition (IRI) activity (Gruneberg
et al., 2021). The IRI activity of the plants is so high that a 100 to 500
times lower concentration is required to exert the effect, compared to the
concentration required for AFA (Ding et al., 2020). It was reported that a
solution with AFPs from fish could cause negative impacts when added to
food because the crystals take the form of needles or spicules, which is
sensorily undesirable. In contrast, crystals generated in a solution with
AFPs from insects have a more rounded and pleasing shape (Ramløv and
Johnsen, 2014). This morphological irregularity is due to the fact that
AFPs from fish are used in high concentrations due to their low AFA
potential (Griffith and Ewart, 1995).

Another difference between moderately active and hyperactive AFPs
is with respect to growth of ice crystals. First, to understand the
morphology of ice crystals, they have three symmetrical a-axis and a
perpendicular c-axis, called prismatic and basal plane, respectively
(Provesi and Amante, 2015). With respect to moderate AFPs, crystal
growth is parallel to the c-axis. They do not cover the basal planes,
morphologically achieving a crystal with the shape of a hexagonal
bipyramid (Kong et al., 2016). In contrast, hyperactive AFPs also cover
the basal planes, providing complete protection (Cao et al., 2016). A



Figure 1. Difference between the effect of the integration of moderate and hyperactive AFPs on the morphological modification of ice crystals.
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graphical representation is shown in Figure 1. Khan et al. (2021) char-
acterized AFPs with different activity from the fungus Typhula ishikar-
iensis. When evaluating the crystal structure, all AFPs presented a
bound-water network on the surface of the ice-binding site. However,
the water network of moderately active AFPs was not as wide, which
prevented their expansion in all planes of the ice crystal, unlike hyper-
active AFPs.
3.3. Properties

AFPs have mainly THC, IRI and morphological modification of ice
crystals, and they form the biological antifreeze mechanism (Liu et al.,
2018b; Białkowska et al., 2020; Ustun and Turhan, 2020). The action as a
whole is detailed later, but to clarify the terms, TH is the difference be-
tween MP and FP and is used to measure the activity of the AFPs (Tian
et al., 2020). HFP is the point at which ice growth begins spontaneously;
the difference between HFP and MP is known as hysteresis activity (Zhan
et al., 2018).

AFPs kinetically depress the growth temperature of ice crystals,
reducing the freezing temperature, but not the melting temperature
(Nian et al., 2020). This state is known as the supercooling phase, in
which water maintains its liquid state in a specific temperature range
(Calderara et al., 2016). The decrease in PF is due to the saturation of the
Figure 2. Nucleation and recrystallization in a) absence of AFP
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non-colligative activity of AFPs which is 300–500 times higher than
compounds with colligative property such as ethylene glycol (Das et al.,
2018) and without the need to increase the concentration.
3.4. Mechanisms of action

All AFPs share the same adsorption-inhibition mechanism, whose
freezing point suppression is explained by the Kelvin effect (Meister
et al., 2019). Thus, as AFPs adsorb on the crystal, the curvature of the
crystal surface and vapor pressure increase, while the droplet radius
decreases until equilibrium is reached at the water-ice interface (Kon-
togiorgos et al., 2008). There is evidence that AFPs also provide addi-
tional protection to membranes by preventing thermotropic phase
changes and preventing leakage by blocking ion channels (Chatto-
padhyay, 2007).

In general, in the absence of AFPs (Figure 2a), nucleation and/or
recrystallization is inevitable at 0 �C. In the presence of AFPs (Figure 2b),
their interaction with ice crystals occurs as follows: a) adhesion of the
AFPs on the crystals; b) decrease of FP; c) prevention of the nucleation
and recrystallization (even at sub-zero temperatures). This mechanism of
action is considered as the adsorption-inhibition theory (Tian et al.,
2020). However, this process is not permanent since, even if AFPs are
present in the solution (or matrix), if the temperature decreases to a
s, at T ¼ 0 �C and, b) presence of AFPs, even at T < 0 �C.
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certain point, crystal growth will inevitably and violently occur (Ramløv
and Johnsen, 2014).

Specifically, different mechanisms of action of AFPs have been pro-
posed. Lately, the influence of hydrophobic residues and hydrogen
bonding groups has been hypothesized. Precisely, according to Tian et al.
(2020), the ice-binding surface of AFPs possesses TxT repeat domains,
whose methyl (hydrophobic) and hydroxyl groups play a key role in ice
binding. This paradox is called affinity-specificity (Kumari et al., 2020). It
was reported that, the binding between AFPs-I and the ice surface is due
to hydrogen bonding (Kumari et al., 2020). This hypothesis was ruled out
in the study by Zhang and Laursen (1998), who, despite substituting
serine (capable of forming hydrogen bonds) by threonine residues of
AFP-I from winter flounder, AFA decreased. On the other hand, the
substitution of threonine residues by valine did not modify the AFA of
AFP-I from winter flounder by retaining the methyl (hydrophobic)
groups (Chao et al., 1997). Similarly, replacing larger hydrophobic
groups with smaller hydrophobic groups decreased the AFA of recom-
binant AFP-III (Baardsnes and Davies, 2002). This is still under investi-
gation. Hudait et al. (2019) carried out molecular simulations to
elucidate the role of hydrophilic and hydrophobic AFPs groups of Tene-
brio molitor. The methyl group hardens the ice binding site, slows the
water mobility and stabilizes the clathrate-like water in the anchored
clathrate motif that binds AFPs to ice. Hydrogen bonds act on the anchor
the clathrate-like water, slowing down water dynamics. Mochizuki and
Molinero (2018) evaluated the binding mechanism between AFPs and
ice. By molecular simulation, it was determined that the key role in ice
binding and inhibition is played by the segregation of hydrophobic and
hydrophilic groups of the PPII helix of AFPs. The methyl groups and
disaccharides of the AFPs also act in the aforementioned mechanism, but
to a lesser extent.

In a simulation study, Kumari et al. (2020) evaluated the mechanism
of AFA of AFP-III expressed in Zoarces americanus. AFPs bound at the
water-ice interface due to hydrophobic hydration caused by the forma-
tion of clathrate structures of water molecules near the ice-binding sur-
face. After adsorption, it was determined that, any surface of AFPs can
bind to ice by hydrogen bonds. Similar results were shown experimen-
tally and by simulation in the study by Gandini et al. (2020). They
determined that the affinity between AFPs and the ice surface was mainly
for hydrophobic residues.

Although hydrophobic interaction significantly influences the
adsorption of AFPs at the water-ice interface, hydrogen bonding in-
teractions are also necessary. Lee (2019) simulated ice binding of AFPs-I
from Tenebrio molitor rich in threonine, which showed affinity only to the
primary plane. Threonine was replaced by alanine, achieving binding to
the secondary plane. The more hydrophobic residues there were, the
higher the binding affinity to ice. However, to some extent, the more the
threonine (hydrogen bond former) was substituted, the affinity
decreased. These findings indicated that hydrophobic residues play the
main role in AFP-ice binding, but hydrophilic residues are also necessary.

The role of other factors in the antifreeze mechanism of AFPs has also
been evaluated. Surís-Valls and Voets (2019) elucidated the influence of
structural characteristics on AFPs activity. The following were
mentioned: a) α-helical AFPs (expressed in several fish species); b)
β-strand AFPs (insects, bacteria and plants); c) AFGPs (blood serum of
Antarctic notothenioids and northern cod); d) polyproline II containing
AFPs (insect AFPs without α/β-helices, such as snow flea AFPs).
4. Antifreeze proteins as cryoprotective agents for foods

The proper management of crystal formation and growth conditions
in different different frozen foods is a challenge that persists to this day. If
the F-T process has been optimal, food spoilage can also occur in storage,
due to biochemical reactions such as lipid oxidation, denaturation,
oxidation and aggregation of proteins, degradation of vitamins and pig-
ments (Nian et al., 2020; Chen et al., 2021a; Zhu et al., 2021b). This
4

affect the acceptance of the food in the market (Tan et al., 2018; Cheng
et al., 2019); causing significant economic losses.

AFPs are a natural, safe and effective alternative as a food additive
(Kashyap et al., 2020). Their use in preservation during refrigeration,
freezing, storage, transport and thawing of the product is emphasized
(Tejo et al., 2020). By delaying recrystallization, AFPs help to avoid loss
of texture (more noticeable in products consumed raw) and loss of vol-
atile components (Kashyap et al., 2020). They prevent or reduce protein
deterioration, cell damage, dripping (on thawing), and water holding
capacity (Cai et al., 2020). AFPs also maintain organoleptic characteris-
tics (Xiang et al., 2020), demonstrating a high potential for extending the
shelf life of refrigerated and frozen products.

It is worth mentioning that the integration of AFPs into food matrices
can be by direct physical processes or by genetic transfer (Ustun and
Turhan, 2020). If AFPs are transmitted genetically, the offspring of the
organism will also be resistant to low temperatures (Chen et al., 2021b).
This would be promising; however, for the success of the process, a
number of hurdles must be overcome.

AFPs are used in concentrations below approximately 100 μg/L
(Provesi and Amante, 2015). Their application in food provides benefits
in physical and chemical characteristics and also presents antimicrobial
properties (Griffith and Ewart, 1995; Lee et al., 2015). Promising results
were obtained for fruits and vegetables (Crevel et al., 2007), frozen
dough, meats, fish (Nian et al., 2020), cereals (Tian et al., 2020),
powdered sugar, milk (Ustun and Turhan, 2020), ice cream, yogurt (Zhan
et al., 2018), sorbets, frozen custard, fruit purees (Das et al., 2018),
gelatin, noodles, boiled eggs, and tofu (Eskandari et al., 2020).

AFPs (2%) were added to quick-frozen pork patties to evaluate their
effect on myofibrillar proteins. Surface roughness decreased by 9.7% at
180 days of freezing, carbonyl content decreased and free amino acids
increased by 32 and 14.99%, respectively. In addition, the authors
indicated that the structural stability of the myofibrillar proteins in the
patties wasmaintained (Li et al., 2021). Similarly, the carbonyl content in
mirror carp subjected to F-T was 16.5% lower with the addition of AFPs
(2 g/L). After five F-T cycles, the structural deterioration was �13.64%
lower (Du et al., 2021). AFPs (0.015, 0.2 and 0.3%) from cold-acclimated
wheatgrass juice were added to solutions of pure water, sugar, salt, lipids
and commercial Italian pasta sauces. The freezing time of all samples was
reduced by 20%, showing the same effect on thawing, especially in the
tomato sauce (Calderara et al., 2016). Class IV chitinase as an AFPs (0.1
mg/mL in 9% (w/v) saline solution) from Hippophae rhamnoides were
applied to green beans. Reduced electrolytic leakage and drip loss, aiding
in structural cryopreservation of green beans, as well as maintaining their
volatile components after thawing (Kashyap et al., 2020). Kashyap and
Kumar (2022) immersed fresh green peas in a 9% (w/v) saline solution
with 0.1 mg/mL of extract of Hordeum vulgare rich in AFPs. Treated peas
had 5% less drip loss after thawing; loss of vitamin B6 was reduced from
32 to 30%, loss of vitamin B2 from 20 to 10% and loss of vitamin C from
16 to 5%. Impregnation of Patinopecten yessoensis adductor muscles in
AFPs solution showed higher moisture retention, lower loss by centri-
fugation and by cooking during F-T cycles. Improved springiness,
chewiness, hardness and shear force were also observed. When the
morphology of the ice crystals was evaluated, they were more rounded in
the experimental group (Shi et al., 2022).

AFPs have also been used in confectionery. AFPs-III were applied to
truffles, which after thawing maintained their consistency by inhibiting
recrystallization (Derossi et al., 2015). The products with the highest
application of AFPs in the last decade are dough, fruits and vegetables
(Table 1), and to a lesser extent, meat, and fish.
4.1. Meat and fish

The F-T cycle causes severe damage to refrigerated and frozen meat
and fish due to large ice crystals affecting their tissues and cell walls
(Kong et al., 2016). Ice crystals can cause water loss and/or leakage of



Table 1. Some studies on the use of AFPs to maintain the quality of various refrigerated and frozen foods.

References Food Source of AFPs (type) Concentration Key findings

Fruits and vegetables

(Mu~noz et al.,
2017)

Zucchini and cucumber Pseudomonas, Plantibacter and Sphingomonas (N.S.) 0.1 mg/mL of each AFPs Increased cell wall integrity in thawed
vegetables.

Increased cell viability.

(Provesi et al.,
2019)

Star fruit Drimys angustifolia (AFPs-I) 0.1 mg/mL Reduced drip loss during storage.

Increased firmness.

(Rosa et al.,
2019)

Strawberry Fish (AFPs-I) 0.02 g/L in ultrapure water
solution

Less drip loss during thawing.

Preservation of intracellular components.

Cell structure similar to strawberries in natura.

(Song et al.,
2019)

Cucumber, onion,
carrot and zucchini

Tenebrio molitor (N.S.) 1 mg/mL Protection of cell structure.

Texture retention during storage.

(Velickova
et al., 2013)

Strawberries Cold acclimatized wheatgrass (N.S.) 0.2 g extract (12 g AFPs/
100 g)

Reduced drip loss.

Texture preservation.

Increased cell viability.

Dough and related products

(Chen et al.,
2017)

Dough Pigskin collagen (N.S.) 0.66% Improved fermentation properties.

Reduced hardness, gumminess and chewiness.

Improved water distribution and mobility.

(Cui et al.,
2021)

Dough Músculo de Hypophthalmichthys molitrix (N.S.) 100 g de soluci�on (4 g de
músculo hidrolizado)

Increased yeast survival and fermentative
capacity in the 6 F-T cycles.

Increased specific volume of bread.

Reduced hardness, adhesiveness and chewiness
of the bread.

Lower freezable water content.

Preservation of gluten structure.

(Ding et al.,
2014)

Frozen salted white
noodles

Daucus carota (N.S.) 1.29 mg/mL Decrease in freezing temperature, freezable
water content and enthalpy of melting.

Increased Tg.

Protection of the gluten network.

Texture preservation.

Improved cooking properties (higher heat
absorption and lower dry matter loss).

(Ding et al.,
2020)

Dough and bread Hordeum vulgare L. (AFPs-I) 0.5% Avoided decrease in the value of loss modulus
and storage modulus during the F-T cycle.

Inhibition of recrystallization during freezing of
dough.

Improved production capacity and gas retention
in the dough.

Protection of the gluten network and yeast cells
in the dough during the F-T cycle.

Reduced hardness in bread crumbs.

Reduced deterioration of bread pores.

(Jia et al., 2012) Bread dough Ligustrum vulgare (N.S.) 0.5% Preservation of the microstructure.

Improved fermentation and baking properties.

Increased residual gluten fibrils.

Decrease in exposed starch granules.

Increased gas production and retention.

Increased specific volume.

Decreased crumb hardness.

(Liu et al.,
2018a)

Hydrated gluten Pichia pastoris GS115 (N.S. recombinant) 0.5% Decreased depolymerization of the glutenin
macropolymer.

Reduced damage to disulfide bonds, secondary
structure and microstructure.

Improved rheological properties.

(Liu et al.,
2018b)

Hydrated gluten,
glutenin and glianidin

Epinephelus coioides (AFPs-II), D. carota (N.S.) and T.
molitor (N.S.), recombinants of P. pastoris GS115

0.5% Increased TH.

Modification of ice crystals.

Reduction of freezing temperature.

Less damage to gluten, glutenin and glianidin
networks.

Improved water distribution and mobility.

(Zhang et al.,
2015)

Dough and steamed
bread

Avena sativa L. (N.S.) 0.1% Lower freezable water content of the dough.

Improved fermentation.

Protection of the gluten network.

Improved textural properties

(continued on next page)
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Table 1 (continued )

References Food Source of AFPs (type) Concentration Key findings

(Zhang et al.,
2020)

Hydrated gluten Avena sativa L. (N.S.) 0.5% Increased Tg.

Decrease in enthalpy of fusion.

Lower freezable water content.

Improved melting performance.

Improved rheological characteristics.

Protection of the gluten network.

Note: In the case of doughs and related products, the percentage of AFPs is with respect to the overall formulation of the product and not on the basis of the amount of
flour, which is usually considered. N.S.: Not specified.
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reactive species; causing protein oxidation, degradation and aggregation,
and lipid oxidation resulting in texture alteration, undesirable changes in
taste, color and odor, and loss of nutrients (Egelandsdal et al., 2019; Zhu
et al., 2021b). Lan et al. (2020) subjected Litopenaeus vannamei to eight
F-T cycles and evaluated textural properties and sensory acceptability.
From cycle 0 to cycle 8 of F-T, hardness/g decreased from 625.13 to
303.27, springiness decreased from 0.861 to 0.623, chewiness decreased
from 265.32 to 84.93, and the sensory score was drastically reduced from
30.00 to 9.92. In addition, abrupt temperature fluctuations and the
resulting structural damage to muscle cells affect the taste and odor of
meat and fish. This is due to the formation of malondialdehyde, carbonyl
compounds and the release of pro-oxidative factors (Wang et al., 2021a).
For example, due to the F-T process subjected to pork, Wu et al. (2021)
indicate that heterocyclic aromatic amines and malonaldehyde were
produced.

The property of inhibiting recrystallization by AFPs in products in-
fluences the post-mortem stage during refrigeration, freezing, thawing or
storage (Ding et al., 2015) and also the pre-mortem stage (Feeney and
Yeh, 1998). Wang et al. (2021a) incorporated AFPs (0.2%) from winter
wheat into frozen pork patties. After five F-T cycles, the treated patties
had 3.84% more hardness and 10.61% more springiness than the un-
treated samples. Structural damage and moisture migration were
significantly lower, resulting in a 43.64% reduction in thawing loss.
Regarding oxidation, the treated patties had 25% less thiobarbituric acid
reactive substance (TBARS) and 32% less carbonyl concentration. Ac-
cording to Tan et al. (2021), large ice crystals cause discoloration of meat
and fish. In the study by Jiang et al. (2019), as the number of F-T cycles
increased, greater discoloration was observed in salted tuna meat.

In the first reported study on the application of AFPs in meat and/or
fish, AFGPs (0.1 mg/mL) from Dissostichus mawsoniwere added to chilled
and frozen bovine muscle for 3 days. There was a significant reduction in
crystal size in all samples, but only under refrigerated conditions (Payne
et al., 1994). The same source and proportion of AFPs were used in lambs
24 h before slaughter. Muscles were extracted, frozen and stored. During
thawing, crystal size and drip loss were reduced (Payne and Young,
1995). A reduction in drip loss after thawing and an increase in the
sensory evaluation score with respect to the level of juiciness in frozen
meat was achieved after applying a 0.045 g/mL of recombinant AFPs-I
produced by Lactobacillus Lactis (Yeh et al., 2009). Lee et al. (2015)
focused on other evaluations of Korean beef with the application of re-
combinant AFPs (5 ng/mL) from Glaciozyma sp. The results indicated that
there was a delay in lipid peroxidation and microbial growth rate during
storage prior to freezing. In addition, it increased glutathione activity and
the activity of glutathione S-transferase, glutathione peroxidase, catalase
and superoxide dismutase.

Regarding the use in fish, the addition of AFPs (0.1%) from Clupea
harengus in sea bream improved viscoelasticity of the myofibrillar protein
and the stability of its structure. Protein denaturation and F-T cycle
damage were also reduced (Cai et al., 2020). Micropterus salmoides was
immersed in a saline solution of sodium chloride (9% w/v), trehalose
(0.1 M) and AFPs-II (0.1%) from Clupea harengus. By preventing recrys-
tallization, mechanical damage and oxidation are avoided (Nian et al.,
2020). The effect of AFPs (0.2%) on Cyprinus carpio during F-T cycles was
also evaluated. After three F-T cycles, by preventing moisture migration,
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weight loss by centrifugation, thawing and cooking was reduced by
43.3%, 57.3% and 27.6%, respectively. In addition, oxidative damage
was reduced by reducing the carbonyl content by 16.7% and the TBARS
concentration by 21.5% (Du et al., 2020). In Cyprinus carpio, AFPs (0.2%)
decreased 17.5% of the ice crystal diameter in the third F-T cycle and
16.5% of the carbonyl in the fifth cycle. The content of free amines was
also reduced, preventing oxidative deterioration and keeping the struc-
ture of the fish (Du et al., 2021).

The application of AFPs-III (50 g/L) in the actomyosin gel of tilapia
hybrids helped preserve Ca2þ ATPase activity during freezing, remaining
after 3 days of storage (Boonsupthip and Lee, 2003). Similar results were
shown when AFPs from collagen were applied to frozen surimi (Chen
et al., 2021b).

4.2. Fruits and vegetables

Refrigeration and freezing are widely used to preserve the quality
of perishable foods such as fruits and vegetables, such as strawberries,
cherries (Kong et al., 2017), raspberries, blueberries, cucumbers and
zucchini (Tian et al., 2020); however, these foods are sensitive. The
formation of intracellular and/or extracellular ice crystals (depending
on their location, number, size and morphology) can cause a me-
chanical rupture of the protoplasmic structure in fruits and vegetables,
generating drip losses and consequent cellular dehydration; preventing
them from returning to their natural state. It can also increase salt
concentration and decrease water activity, in addition to leakage of
intracellular compounds, cell contraction, stretching, and tissue
deformation (Liu et al., 2020). After thawing, accelerated oxidation
reactions and increased enzyme activity occur (Arai et al., 2021). This
damage causes the loss of nutrients, in addition to the alteration of the
sensory characteristics of fruits and vegetables. It was reported that
after the F-T cycle, fruits and vegetables experience undesirable
dehydration and damage to their overall quality (Chen et al., 2021b).
Zhu et al. (2021a) determined the effect of the F-T process on the
quality of blueberry juice. Antioxidant activity, total anthocyanin
content and the concentration of volatile compounds decreased. The
original flavor of the fruit was also lost due to the increase in ethanol
concentration.

At extremely low temperatures (�196 to �60 �C) and at high speed,
the formation of large crystals can be avoided, but this requires high
energy levels (Ustun and Turhan, 2020). Even if the operating conditions
are relatively correct, deterioration will still occur, so treatment with
AFPs is ideal. Efficacy of adding AFPs-I (0.01 mg/mL) from winter
flounder on Nasturtium officinale was demonstrated. A more defined cell
wall, smaller and rounder crystals, higher mechanical strength and
turgidity were obtained. In addition, the thawed samples showed higher
turgidity and a more uniform green color (Cruz et al., 2009). In a peculiar
experiment, frozen carrots were immersed in a saline solution (0.9%,
w/v) with 0.1 mg/mL of DCR26 and DCR39 peptide analogues designed
from AFPs from Dendroides canadensis, and AFPs replicated from AFPs-I
from winter flounder. The shape of the ice crystals was positively
modified and the drip loss on thawing was reduced, preserving the
structure, texture, color and volatile compounds of the carrots (Kong
et al., 2016).
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4.3. Frozen dough

Since the 1960s, the dough has been frozen to solve the problem with
its short shelf life (Gün et al., 2020), increasing its demand ever since
(Ding et al., 2015). However, due to the formation of large crystals, and
their interaction with the water and gluten proteins in the dough,
freezing generates disadvantages in the product. Freezing can damage
the structure of gluten network. The yeast can suffer damage to its cell
membrane, which would cause its dehydration and subsequent death
and/or reduced viability. During thawing, yeast cells can undergo
oxidative stress, decreasing the CO2 production capacity. This affects
fermentation time, CO2 retention capacity, specific volume, firmness,
color, flavor and causing loss of nutrients in the bread (or other related
product) (Panadero et al., 2005; Luo et al., 2018; Chen et al., 2021b). To
avoid all this, hydrocolloids (Zhang et al., 2015), wheat flour or
low-temperature tolerant yeasts are used, but these increase costs and
modify product characteristics (Ustun and Turhan, 2020). Moreover,
they are not as efficient as AFPs, which, due to their IRI and TH prop-
erties, prevent Ostwald ripening and other negative effects during and
after freezing.

In one of the first experiments, recombinant AFPs-I from Myox-
ocephalus aenaeus were used in a wild laboratory strain and in the com-
mercial yeast Saccharomyces cerevisiae. Yeasts showed higher viability
during freezing and thawing (at different times). There was also less loss
in gas production when inoculated in a liquid mass model (Panadero
et al., 2005). 0.35% carrot concentrated protein (18.3% AFPs) was added
to frozen dough. Retention capacity was increased and yeast mortality
was reduced. In addition, the bread made with the carrot concentrated
protein had the same sensory quality as the control sample (Zhang et al.,
2007). Adding the same protein (but with 15.4% AFPs) in the crumb and
bread dough improved texture (less hardness) during frozen storage and
improved aroma due to reduced loss of volatile compounds (Zhang et al.,
2008). The addition of muscle hydrolysate (14%) from Hypo-
phthalmichthys molitrix rich in AFPs was evaluated in Saccharomyces cer-
evisiae. Yeast survival rate increased by 82–91% after 1 to 2 F-T cycles
(Wang et al., 2021b).

By using AFPs (0.3 and 0.6%) from winter wheat, it was possible to
increase the water holding capacity, the specific volume of the bread and
reduce the leavening time during the F-T cycles, unlike the frozen dough
without AFPs (Xu et al., 2009). Regarding recombinant AFPs, the
incorporation of a solution of AFPs-I (0.045 g/mL) from frozen Lacto-
bacillus lactis in frozen dough improved its fermentation, without
affecting consumer acceptability when evaluating breads made with the
dough after a F-T cycle (Yeh et al., 2009). AFPs-I (0.5%) of barley
increased the apparent specific heat of fresh dough, FP and Tg, in addi-
tion to decreasing the enthalpy of fusion and freezable water content.
AFPs also influenced gelation property, melting performance, and water
mobility and distribution in the frozen dough after F-T cycles (Ding et al.,
2015). AFPs from carrot expressed in Pichia Pastoris reduced the freezable
water content of frozen dough during F-T cycles; in addition to main-
taining the fermentation capacity and microstructure of the bread,
improving its texture and specific volumen (Liu et al., 2018c).

In particular, the use of AFPs (0.1%) from cold-acclimated Triticum
aestivum in a mixture of flour and water (37% w/w), caused the
embedding of starch granules in the gluten network after F-T cycle due to
the increase in water mobility and consequent recrystallization. The
product had a total deterioration of mechanical properties during 30 days
of storage under fixed freezing conditions and fluctuating temperatures
under refrigeration (Kontogiorgos et al., 2008). In this case, according to
electron microscopy analysis, the presence of AFPs did not influence ice
formation and recrystallization.

4.4. Current challenges and recommendations for future work

Regardless of the use of AFPs, the main challenge is their high cost
due to their low yield after extraction, isolation and purification (Yeh
7

et al., 2009). For example, 1 g of AFGPs from winter flounder costs $500
and 1 mg of AFPs-III from teleost fish costs approximately $10,
depending on their purity (Ustun and Turhan, 2020). To meet demand,
microorganisms are a more cost-effective source of AFPs than plants,
insects and fish. However, microbes produce many types of proteins and
purification of AFPs remains a challenge (Han et al., 2020). The
expression of AFPs in microbial hosts is presented as a promising alter-
native. The production of recombinant AFPs with yields up to 300 mg/L
has been reported, with potential for large-scale application (Tab et al.,
2017). Tab et al. (2017) carried out a batch fermentation to express re-
combinant AFPs-I from Glaciozyma antarctica in Pichia pastoris, obtaining
a high yield of 39.5 mg/L and at a pH value of 5. Liu et al. (2018c)
expressed AFPs from carrot in P. pastoris GS115 with a yield of 379.47
mg/L and TH of 1.96 �C.

Other sources of AFPs should be exploited, such as chemical synthesis
and the production of analogues. These alternatives are very profitable
and offer the opportunity to improve the characteristics of the AFPs
through a correct design. Kun andMastai (2007) synthesized short AFPs-I
from winter flounder with three times less amino acids, significantly
reducing the cost of production. Han et al. (2020) expressed AFPs-II from
Clupea harangues and AFPs-III from Anarhichas minor in E. coli. The
preparation of longer peptides improved the ability to inhibit hydrate
crystals with ice-like clathrate structure. In another study, hyperactive
AFPs from Rhagium inquisitor with shorter motifs showed the highest IRI
activity (Kong et al., 2019). Synthetic AFPs of intermediate length
showed better antifreeze capacity than those of short and long length
(Rojas et al., 2022). It is recommended to optimize the peptide length to
achieve an adequate cost/efficiency ratio. On the other hand, Liu et al.
(2021b) suggest the use of BL21 (DE3), a cell with high efficiency in
protein expression. The authors used BL21 (DE3) to express the AFPs
gene fromMarinomonas primoryensis; producing high purity proteins with
high IRI activity and at low cost.

It is also possible to take advantage of advances in biotechnological
advances to clone AFPs. AFPs were successfully cloned from Solanum
dulcamara (Huang and Duman, 2002), Dendroctonus armandi (Fu et al.,
2022), Brassica rapa (Liu et al., 2019; Dong et al., 2020), Zoarces ameri-
canus (type III, Hobbs et al., 2020), Gadus macrocephalus (type IV, Mao
et al., 2018), Hypogastrura harveyi (Chen et al., 2022), Lycodichthys
dearborni (type III, Huang et al., 2019), Cottoidea (type I, Yamazaki et al.,
2019), Apis cerana cerana (Xu et al., 2018), Ammopiptanthus nanus (Zhang
et al., 2021), Larimichthys Crocea (Qian, 2021), Glaciozyma antarctica
(Firdaus-raih et al., 2018), Chloromonas sp. KNF0032 (type II, Cho et al.,
2019), Brachypodium distachyon (Bredow et al., 2018).

Another limitation is that purification of the plant-derived AFPs
extract is mandatory because if applied directly, the endogenous enzymes
can cause undesirable reactions in the treated food, causing substantial
damage to its quality. One solution is to treat the extract by heat treat-
ment, but this would result in denaturation of the AFPs and reduction of
their AFA (Ustun and Turhan, 2020). The use of non-thermal methods
such as ultrasound, cold plasma, high hydrostatic pressures and pulsed
electric field can be evaluated (Tirado-Kulieva et al., 2021).

One food safety issue that has been raised is the potential allergic
reaction and toxicity that AFPsmay induce in consumers (Panadero et al.,
2005). There is still no evidence of toxicity on the use of AFPs in frozen
foods; however, there is general information that may be of interest. It
was reported that 0.63 and 2 mg/mL of AFPs present toxicity to em-
bryonic kidney cells and human embryonic liver, respectively (Liu et al.,
2021a). At 72 h, AFPs (500 mg/L) from Tenebrio molitor and Dendroides
canadensis showed no toxicity in MA-10 and RAW264.7 cell lines, but
decreased the viability of C18-4 and HUH7 cell lines by 20 and 40%,
respectively. At 1000 mg/L, AFPs from both sources induced inflamma-
tory reactions in the RAW264.7 cell line (Tran-Guzman et al., 2022). This
is a matter of debate because other authors indicate that AFPs are safe
because they contain common dietary compounds such as amino acids
(Kong et al., 2016; Song et al., 2019). Their (relatively) safe use as a food
additive has also been proven by several studies. Healthy people
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consumed AFPs-III for 2 months and after an analysis of 5 days per week,
it was shown that there was no impact in terms of allergenicity (Crevel
et al., 2007). The null cytotoxicity in human cells was also demonstrated
by an in vitro assay in HUVEC (human umbilical vein endothelial cells),
HDFA (human dermal fibroblasts) and HEK-293 (human embryonic
kidney cells) (Kong et al., 2017). Recombinant AFPs-III from Saccharo-
myces cerevisiae showed no genotoxicity in bacteria, mammalian cells or
mouse bone marrow. In addition, administration in rats for 3 months did
not cause subchronic toxicity (Hall-Manning et al., 2004). Despite
promising results, techniques are needed to reduce this potential risk.
Chen et al. (2021a) suggest preparing AFPs by microbial fermentation;
they are converted into peptides with equal or higher activity, easily
absorbable during human digestion and with lower allergenic risk. The
authors indicate that the AFPs have a better flavor than if they are treated
with other methods such as enzymatic hydrolysis. Another option to
avoid toxicity is the use of artificially synthesized AFPs or the combina-
tion of AFPs with other cryoprotectants. Promising results have been
obtained; the quality of frozen Pagrosomus major was maintained after
thawing by immersing in a solution of AFPs (0.1%) from herring plus
chitosan magnetic nanoparticles (CMN, 0.01%) (Cai et al., 2019) or
carboxymethyl CMN (0.01%) (Cai et al., 2020).

To evaluate the properties of AFPs and their possible negative effects,
further research is needed. In silico studies (in addition to in vitro and in
vivo studies) are recommended to perform experiments quickly, with a
significant reduction in costs and time, in addition to being able to
perform modeling and predictions. Eslami et al. (2018) used a compu-
tational method based on machine learning to rapidly identify AFPs in a
sample with more than 400 AFPs and 9000 non-AFPs. Zhu et al. (2022)
determined in silico that two AFPs from shrimp by-products have high
potential. AFPs (0.1–3%) preserved shrimp muscle quality after up to 6
F-T cycles. This is useful for, predicting the possible toxicity of AFPs and
even the chemical reactions that may occur due to their interaction with
other compounds in the food. Li et al. (2018) also suggest to investigate
in depth the damage caused by the F-T cycle due to its complexity and,
mainly, due to the complex composition of different food products.

5. Conclusions

AFPs are an ideal additive whose popularity has increased in recent
years due to their potential to preserve the quality of refrigerated and
frozen foods, and during their thawing. Currently, it is essential to take
advantage of the particularities of AFPs, since limitations such as cost,
performance and stability are being solved thanks to advances in
biotechnology. Furthermore, although the mechanism of action is rela-
tively clear and possible toxic effects of AFPs have been ruled out, further
research is needed. In silico studies are suggested to rapidly evaluate
them and predict their possible negative effects on food and, conse-
quently, on the consumer. This will help to better understand the tech-
nique and to be able to classify it as safe and promising in the food sector.
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