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Abstract

Background and objective

Efficiently capturing the severity of positive valence symptoms could aid in risk stratification

for adverse outcomes among patients with psychiatric disorders and identify optimal treat-

ment strategies for patient subgroups. Motivated by the success of convolutional neural net-

works (CNNs) in classification tasks, we studied the application of various CNN

architectures and their performance in predicting the severity of positive valence symptoms

in patients with psychiatric disorders based on initial psychiatric evaluation records.

Methods

Psychiatric evaluation records contain unstructured text and semi-structured data such as

question–answer pairs. For a given record, we tokenise and normalise the semi-structured

content. Pre-processed tokenised words are represented as one-hot encoded word vectors.

We then apply different configurations of convolutional and max pooling layers to automati-

cally learn important features from various word representations. We conducted a series of

experiments to explore the effect of different CNN architectures on the classification of psy-

chiatric records.

Results

Our best CNN model achieved a mean absolute error (MAE) of 0.539 and a normalized

MAE of 0.785 on the test dataset, which is comparable to the other well-known text classifi-

cation algorithms studied in this work. Our results also suggest that the normalisation step

has a great impact on the performance of the developed models.

Conclusions

We demonstrate that normalisation of the semi-structured contents can improve the MAE

among all CNN configurations. Without advanced feature engineering, CNN-based
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approaches can provide a comparable solution for classifying positive valence symptom

severity in initial psychiatric evaluation records. Although word embedding is well known for

its ability to capture relatively low-dimensional similarity between words, our experimental

results show that pre-trained embeddings do not improve the classification performance.

This phenomenon may be due to the inability of word embeddings to capture problem spe-

cific contextual semantic information implying the quality of the employing embedding is crit-

ical for obtaining an accurate CNN model.

1 Introduction

Approximately 18% of adults have been identified as meeting the criteria of at least one com-

mon mental disorder [1]. In addition, psychiatric disorders can lead to a two-fold higher mor-

tality rate compared to the mentally healthy population and contribute to around 14.3% of

deaths worldwide. The median potential life lost due to psychiatric disorders has been esti-

mated to be 10 years [2].

Although pharmacological treatments for mental illness have developed rapidly in recent

decades, the response rate is still unsatisfactory and unpredictable. One major concern is that

diagnoses of psychiatric disorders are based on behavioural symptoms and signs, which may

be insufficiently precise and objective. To improve the precision of psychiatric diagnoses, the

National Institute of Mental Health (NIMH) initiated the Research Domain Criteria (RDoC)

project to develop a new approach to classifying psychiatric disorders according to diverse

neurobiological measures—including biomarkers, genetics, and neuroimaging—in addition to

clinical symptoms [3, 4]. The RDoC framework introduces an RDoC matrix consisting of the

following five psychiatric research domains. The objective of this framework is to facilitate bet-

ter understanding of the basic dimensions of functionality that underlie changes in human

behaviours.

i. Positive valence systems are primarily responsible for responses to positive motivational sit-

uations or contexts, such as reward seeking.

ii. Negative valence systems are primarily responsible for responses to aversive situations or

context, such as anxiety and loss.

iii. Cognitive systems are responsible for various cognitive processes.

iv. Social processing systems mediate responses to interpersonal settings of various types,

including the perception and interpretation of others’ actions.

v. Arousal/regulatory systems are responsible for generating appropriate activation and

homeostatic regulation of neural systems.

Each of these domains is characterised using available data (i.e. genomic, molecular, cellu-

lar, circuital, physiological, behavioural, self-reported, and paradigmatic) to examine patients’

health and psychiatric illnesses from cross-diagnostic perspectives. For example, initial psychi-

atric records are more likely to contain references of behaviours or self-reports compared to

those of genes or molecules.

The positive valence domain pertains to events, objects, or situations which are attractive to

the patients to the point at which they are willing to be actively engaged. Psychiatric disorders

resulting from abnormalities of positive valence systems include mania, substance abuse and
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dependence, obsessive-compulsive disorder, and depression. The ability to efficiently capture

this domain should facilitate efforts to stratify the risk of adverse outcomes among patients

with psychiatric disorders, as well as to identify optimal treatment strategies for patient sub-

groups [5].

Severity classification is essential, as it may help in determining whether a patient requires

special medical attention or hospitalisation. In this work, we develop classification models for

categorizing the severity of positive valence symptoms based on a dataset of initial psychiatric

evaluation records. We employ deep convolutional neural networks (CNN), which have

achieved great success in image classification challenges [6] and are at the core of most current

computer vision systems. Several recent studies have applied CNNs to problems in natural lan-

guage processing [7–10] with intriguing results. Specifically, Tran and Kavuluru [11] demon-

strated that CNN models can predict a few mental conditions based on the short history of

present illness segments in psychiatric notes. Gkotsis, Oellrich [12] and Orabi, Buddhitha [13]

developed methods to analyze and classify posts from social media platforms that are related

to mental illness and depression respectively, and observed that CNN models achieved the best

performance. The success in the text classification task suggests that CNNs may serve as drop-

in replacements for baseline models. Therefore, we decide to investigate the potential of adapt-

ing the conventional CNN architectures to the problem of severity classification of psychiatric

notes. Unlike previous severity classification works which tried to optimize the classification

performance by conducting feature engineering [14, 15] or ensemble learning [14, 16, 17], we

studied the performance of CNN-based text classification architecture and its variants to the

severity classification problem in comparison to that of well-established baseline models such

as C4.5, Support Vector Machine, and Naïve Bayes Multinomial. In this study we also aimed

to investigate the ability of CNN-based models in ingesting the free text of psychiatric records

without pre-processing them by extracting semi-structured/template parts as additional fea-

tures in our CNN-based models.

2 Methods

2.1 Dataset

The Center of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and

RDoC Individualized Domains (N-GRID) dataset was used in this study [18]. The dataset con-

tains de-identified initial psychiatric evaluation records collected from Partners Healthcare

and the N-GRID project of Harvard Medical School on a per-patient basis [5]. A total of 649

records were annotated manually with the following classes by psychiatric experts with several

years of clinical experience:

• ABSENT: no symptoms presented

• MILD: some symptoms presented without a focus of treatment

• MODERATE: symptoms presented with a focus of treatment but do not require

hospitalisation

• SEVERE: symptoms presented requiring hospitalisation or emergency room visit, or will

otherwise result in major clinical consequences

The annotated data were split into training and test sets containing 433 and 216 records,

respectively. Table 1 summarises the details of the dataset. This dataset has been used to predict

the mental health condition of a patient [19]. In an another study, this dataset is used to analyse

associations between clinical/social parameters and violent behaviour in patients with
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psychiatric disorders [20]. Please refer to S1 and S2 Figs and the work represented by Uzuner,

Stubbs [5] for the demographic information and details on the manual annotations of the

dataset.

Records of psychiatric evaluations in the released dataset contained a variety of text formats.

For example, most of the records contain a set of pre-defined questions which are described as

question–answer pairs, whose answers may either be short (e.g., ‘Yes’ or ‘No’), or more verbose

natural language descriptions from the patient as written by psychiatrists. Such descriptions

may contain further comment from psychiatrists that may be crucial to the evaluation of the

patient’s mental state. In summary, three formats can be observed in a single record: 1) Narra-

tive text that includes section headings and unstructured text; 2) semi-structured text, such as

attribute–value pairs, which often occur in lists; and 3) text templates that consist of a heading

followed by a variety of question–answer pairs to assess the patient.

2.2 Pre-processing

The dataset was pre-processed to generate tokens and reduce the effect of noise, including mis-

spellings. First, Hunspell downloaded from http://hunspell.github.io/ was used to correct fre-

quently misspelled words found in a given record. The clinical natural language processing

library developed in our previous work [21] was then used to split the text into sentences and

tokens. After manually checking the pre-processed results, we observed that the dataset con-

tains words which were merged together. For instance, the words ‘PsychiatryChief’ and ‘..

JMH.PatientDose..’ should be ‘Psychiatry Chief’ and ‘..JMH. Patient dose..’, respectively.

Therefore, we developed rules that were executed after the tokenisation step to refine the toke-

nisation results. For example, a token matching patterns like ‘[a-z][A-Z]’ and ‘\d[A-z]’ is sepa-

rated into two tokens. Finally, semi-structured text and templates such as attribute–value and

question–answer pairs were extracted using regular expression patterns. For each pair, the

question was normalised into a short form in order of appearance.

2.3 Convolutional neural network model

Although the corpus used was annotated with a single value indicating the severity of positive

valence symptoms, the supporting textual evidence upon which these judgements were made

was not annotated. Therefore, we formulated the problem as a document classification prob-

lem to which we adapted a CNN.

A CNN is a feed-forward neural network with convolution layers interleaved with pooling

layers. Fig 1 shows a typical CNN used for document classification [7, 8, 22]. In image classifi-

cation tasks, the CNN input are image pixel data; analogous to pixels in an image, each word

in a psychiatric evaluation record can be considered as a pixel. In our implementation, the

input words were supplied in the same order as observed in the original psychiatric records

because we believe that preserving the order is important for neural networks to capture the

semantic meaning embedded in the record. All existing words in a record are then represented

as a word matrix, in which each row is a vector corresponding to one word appearing in the

record in one-hot form, and the dimension of the vector is equal to the vocabulary size. These

vectors are mapped to low-dimensional representations through a matrix product. Let wi 2 Rd

Table 1. Record distribution of the CEGS N-GRID 2016 dataset.

Type Absent Mild Moderate Severe

Training Set 61 (14.08%) 166 (38.33%) 110 (25.4%) 96 (22.17%)

Test Set 31 (14.35%) 86 (39.81%) 46 (21.3%) 53 (24.54%)

https://doi.org/10.1371/journal.pone.0204493.t001
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be the d-dimensional word embedding vector corresponding to the ith word of the input

sequence. The input text w of length n can be represented as Eq 1.

w1:n ¼ w1

M
w2

M
. . .
M

wn ð1Þ

The embedding layer then goes through the convolution layer, which applies convolutions

over the embedded input to compute its output. In image processing, convolution refers to the

process of adding the value of each element of an image to its local neighbouring elements’ val-

ues weighted by a kernel that is also known as a filter or convolution matrix. Depending on the

kernel, convolutions can cause a wide range of effects in image processing, such as blurring,

sharpening, or edge detection. To employ this concept in our document classification problem,

a convolution can be considered to execute a sliding window function over full rows of the

word matrix. This sliding window serves a similar function of the kernel during image process-

ing, working as a feature extractor that can capture implicit linguistic properties buried in the

word matrix.

Fig 1. A basic deep convolutional neural network based severity classification model.

https://doi.org/10.1371/journal.pone.0204493.g001
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In Fig 1, the filter height of a filter (denoted as h), commonly called the region size of the fil-

ter [7], is set to three, and the width is equal to that of the word matrix. The filter function as

defined in Eq 2 multiplies its values element-wise with the original word matrix and sums

them, and then slides over the whole matrix to obtain the convolution result.

ci ¼ f ðw � xi:iþh� 1 þ bÞ ð2Þ

Eq 2 shows the feature ci generated from a window of words xi:i+h-1. Here b is a bias value

and f is a non-linear function. This function is applied to each possible window in the input

sequence {x1:h, x2:h+1, . . ., xn-h+1:n} by multiplying its values element-wise with the words in the

window and sums them up. It then slides over the whole matrix to obtain the convolution

result, which is referred to as a feature map c as defined in Eq 3.

c ¼ ½c1; c2; . . . ; cn� hþ1� ð3Þ

The convolution step indicated in Fig 1 connects each region, composed of three-word vec-

tors of the input matrix, to one output neuron. As shown in Fig 1, we applied the most popular

activation function for deep neural networks, the rectified linear unit (ReLU) [23], to each out-

put of the convolutional layer.

The max-pooling layer following the convolutional layer subsamples the feature map (the

output from the convolution step) to output the maximum activation value by Eq 4.

ĉ ¼ maxðcÞ ð4Þ

For each feature map, the layer outputs the maximum activation values based on window

size to produce a fixed-length vector composed of the most important features. The layer can

also mitigate overfitting during training by determining the dimensions of the outputs from

filters and selecting the most prominent information from the convolutional layer. Fig 1 dem-

onstrates a 1-max pooling strategy commonly used in sentence classification to generate the

largest number from six feature maps.

Finally, similar to regular neural networks, all outputs from the max-pooling layer are

concatenated to form a fixed-length feature vector, which is then fully connected to a softmax

layer output a probability distribution for the four possible classes.

2.4 Variations of CNN models

The basic CNN document model displayed in Fig 1 can have a variety of different architectures.

First, the word embedding layer can either be initialised with word vectors obtained from an

unsupervised neural language model trained by a given unlabelled dataset, or it can be randomly

initialised and then modified during training. One can also combine both word vectors into two

channels, with one kept static throughout training and the other fine-tuned via backpropagation.

In Fig 1, we showed multiple filters for the same region size (h = 3) to learn complementary

features from the same regions. By contrast, a parallel CNN [10] utilises multiple filters with

different region sizes, as illustrated in Fig 2. The outputs of all max-pooling layers are stacked

together as the input to the final layer.

The model can be further extended by segmenting the feature maps into several chunks,

and then performing max pooling over each chunk to generate the top n features. As illustrated

in Fig 3, the first feature map outputs c1 is divided into three chunks c11, c12, c13. Output of the

chunk-pooling can be expressed as Eq 5, where i indicates the max-pool results of the ith fea-

ture map and l is the number of chunk.

ĉi ¼ maxðci1Þ
M

maxðci2Þ
M
� � �
M

maxðcilÞ ð5Þ
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Through the chunk-max pooling layer, we obtain the ĉi for each feature map. Then, we con-

catenate all max-pooled chunks to form the vector for fully connected layer. We refer to this

architecture as a chunk-max pooling CNN [24].

2.5 Evaluation and performance measures

We assessed the performance of several variations of CNN models using a stratified five-fold

cross-validation (CV) on the training set. Additionally, the performance of CNN models was

assessed independently using the test set. The mean absolute error (MAE) metric, defined as

Eq 6, was used to evaluate the model performance for each class. MAE was chosen instead of

Fig 2. A parallel CNN model with two filters for two region sizes (h = 2 and 3) and 1-max pooling.

https://doi.org/10.1371/journal.pone.0204493.g002
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the other metrics because we would like to quantify the distance between the predicted and the

gold standard classes. We further used the macro-averaged MAE (Eq 7) to report the overall

cross-class performance to avoid a class-imbalance bias as shown in Table 1.

MAE Dj

� �
¼

1

jDjj

P
xi2Dj
jpðxiÞ � yij ð6Þ

MMAE C;Dð Þ ¼
1

jCj
PjCj

j¼1
MAEðDjÞ ð7Þ

where C is the set of classes {ABSENT, MILD, MODERATE, SEVERE}. The score correspond-

ing to each class is the same as its index (i.e. the scores for ‘absent’ and ‘severe’ are 0 and 3,

respectively). Dj is the set of records with the jth class, and xi is a record from Dj. p(xi) repre-

sents the predicted score of xi, which can be inferred by checking the index of the predicted

Fig 3. A CNN model with chunk-max pooling.

https://doi.org/10.1371/journal.pone.0204493.g003
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class in C. yi indicates the score of the manual annotation done by annotators corresponding

to xi.

3 Results

3.1 Baseline performance and the effect of pre-processing

We first evaluated the performance of well-known text classification algorithms with bag-of-

word features on the training set with stratified five-fold CV. C4.5 [25], support vector

machine (SVM) [26], and naïve Bayes multinomial (NBM) [27] algorithms were used in this

experiment. For each baseline algorithm, we measured the information gain of each feature

with respect to the four classes by Eq. A.1 and filtered out lower-ranking features. The detail of

the employed feature selection algorithm can be found in the Appendix A in S1 File. The basic

CNN model used for comparison was configured with 100 filters with a region size of 1. The

learning rate and epoch were set to 0.001 and 150, respectively. The dimension of the word

embedding layer of the CNN model was set to 200 with values initialised from a uniform

distribution.

The same pre-processing steps described in the previous section were applied for all algo-

rithms to generate two pre-processed datasets: one with only typo correction and tokenisation,

and the normalised dataset in which all existing questions in the pre-processed text were nor-

malised into short forms. Tables 2 and 3 summarise the performance of all algorithms on the

pre-processed and normalised datasets, respectively.

All methods performed better using the normalised dataset. For both datasets, NBM out-

performed the others for the MILD and SEVERE classes, while SVM handles the ABSENT

class rather well and acquires the best overall score on the normalised dataset. The results dem-

onstrate that SVM can handle the imbalance issue shown in Table 1 better than others. On the

other hand, the basic CNN model ranked third in both datasets, and performs better than the

other algorithms in identifying the MODERATE class.

3.2 Effect of different input representations

As described in the Methods section, the model illustrated in Fig 1 has the flexibility to swap

the distributed representations of input words with different word representation vectors,

including pre-trained word vectors. We replaced the randomly initialised word vectors used in

the baseline configuration with different vectors such as one-hot encoded vectors, 300-dimen-

sional randomly initialised vectors from Glorot uniform distribution [28], 200-dimensional

pre-trained vectors from the entire CEGS N-GRID 2016 dataset (the full dataset contains 1,000

psychiatric evaluation records, including labelled and unlabelled records), and publicly avail-

able 300-dimensional embedding vectors (with a vocabulary size of three million words)

induced from 100 billion words from Google News (GN). Both the GN and our pre-trained

Table 2. A Comparison of the classification performance of popular text classification algorithms and a basic

CNN model on the pre-processed training set. The Best Score of Each Category is Highlighted in Bold.

Category Algorithms

C4.5 SVM NBM CNN

ABSENT 0.967 0.672 0.967 1.066

MILD 0.428 0.337 0.175 0.446

MODERATE 0.709 0.836 0.773 0.509

SEVERE 0.885 1.052 0.802 0.916

Overall 0.747 0.724 0.679 0.734

https://doi.org/10.1371/journal.pone.0204493.t002
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vectors were trained using word2vec [29]. For words absent in the pre-trained vectors, vectors

with randomly initialised values were assigned. For models with pre-trained embedding layers,

we applied two configurations: a static configuration in which all words, including unknown

ones, were kept static, and only the other parameters of the model were learned; and a dynamic

configuration in which the pre-trained vectors were fine-tuned with backpropagation. In addi-

tion, we varied the region size from 1 to 5. A comparison of the overall MAE according to the

vectors and region sizes on the normalized training set is depicted in Fig 4.

The results show that configurations with fine-tuned pre-trained vectors have stable MAEs,

which are generally better than those of static configurations. Previous research has revealed

that the corpus domain for generating the word embedding is more important than the size of

the training corpus [30]. Nevertheless, experiment results indicated that the models with GN-

based embedding layers performed better than those with embedding layers trained from the

CEGS N-GRID 2016 dataset, perhaps because the CEGS N-GRID 2016 dataset is too small to

infer reliable representations of words.

Regarding the dimensionality of the embedding vectors, the model with the randomly initi-

alised 200-dimensional vectors outperformed the one with 300-dimensional vectors. Further-

more, we noticed that the configurations with pre-trained vectors did not outperform those

with randomly initialised vectors. In fact, the configuration with one-hot fixed vectors

achieved the best overall MAE for all studied region sizes. Thus, we focus on models with one-

hot-fixed embedding layers in the following experiments.

3.3 Effects of the numbers of feature maps and parallel CNN architectures

We first explored the effects of the number of feature maps using CV in Fig 5. The model with

a region size of 2 was selected as the baseline model, which achieved a MAE of 0.648 on the

training set using CV. The number of feature maps was changed from 50 to 500 for each

region size relative to the baseline model to understand the impact. All other parameters were

held constant.

To study the influence of parallel CNN architectures, we combined the baseline model with

different filter region sizes in the convolution layers, and fixed the number of feature maps for

each region size at 100 (Table 4). Since we are only interested in the overall trend for change in

MAE, instead of the absolute performance of each architecture, both Fig 5 and Table 4 displays

the change in MAE in comparison to the baseline model. In Table 4, we use the notation {n} to

indicate the architecture of the parallel CNN. For example, {2} is the baseline model. {2, 5} is a

parallel CNN composing of two filters with region sizes 2 and 5. {1, 2, 5} is a parallel CNN

composing of three filters with region sizes 1, 2 and 5.

We can observed from the above results that the optimal number of feature maps for the

baseline CNN model with a region size of two was 100. Increasing the number of maps beyond

100 decreased performance and lengthy training times. This was consistently observed even

Table 3. A comparison of the classification performance of popular text classification algorithms and a basic

CNN model on the normalised training set. The Best Score for Each Category is Highlighted in Bold.

Category Algorithms

C4.5 SVM NBM CNN

ABSENT 0.803 0.656 0.934 1.016

MILD 0.428 0.331 0.229 0.440

MODERATE 0.736 0.764 0.736 0.509

SEVERE 0.896 0.823 0.740 0.813

Overall 0.716 0.643 0.660 0.694

https://doi.org/10.1371/journal.pone.0204493.t003
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after employing the dropout technique to avoid overfitting on the training set [31]. For parallel

architectures, the MAE of the baseline model was reduced by 0.004 when combined with

region 1 and 5. The best parallel architecture model ({1, 2, 5}) with an MAE of 0.644 outper-

formed that of NBM (0.660) and C4.5 (0.716).

Fig 4. Effect of different input representations with different filter region sizes.

https://doi.org/10.1371/journal.pone.0204493.g004

Fig 5. Effect of the number of feature maps measured using change in MAE.

https://doi.org/10.1371/journal.pone.0204493.g005
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3.4 Performance comparison of different region sizes and feature map

numbers

We extended the model used in the previous section to investigate the impact of different

region sizes. The model used 100 feature maps with a learning rate of 0.001. We performed a

coarse grid search of region sizes ranging from 1 to 10 relative to the baseline individually,

with other parameters held as constants. CV Results on the normalised training set are shown

in Fig 6, suggesting that a reasonable range for the task may be from 1 to 5. The optimal single

region size for the CNN model was 5, with which the model achieved an overall MAE of 0.642

and outperformed the best baseline model (the SVM).

3.5 Effect of chunk-max pooling CNNs

Further experiments were performed to examine the effect of a chunk-max pooling architec-

ture. A model with a filter region size of 5 and 100 feature maps was selected as the baseline, as

it had performed best in the previous experiment. We replaced the max pooling layer of the

baseline model with chunk-max pooling layers, and the learning rate for all chunk-max pool-

ing CNNs was set to 0.1. We inspected chunk sizes of 10, 20, 30, 40, 50, 75, 100, 150, 200, and

300, and held all other configurations constant.

In Fig 7, the chunk-max pooling architectures outperformed the baseline model when the

chunk size was small. The best MAE (0.624) was achieved by the model with a chunk size of

10. This improvement may result from the ability of the architecture to retain the order in

which features occur.

3.6 Performance on the test set

Finally, we present the performance of the proposed CNN models and the other three text clas-

sification algorithms on the CEGS N-GRID 2016 test dataset in Table 5. The two CNN models

with the best performance were selected for this comparison: the max-pooling CNN model

with a region size of 5 and 100 feature maps (denoted as m-CNN) and the chunk-max pooling

CNN model with a chunk size of 10 (denoted as c-m CNN). The NBM and SVM performed

best on the MILD and ABSENT classes, respectively. However, the two CNN models per-

formed better in the SEVERE class and achieved greater overall MAEs on the test set.

Table 5 also includes the performance of the two CNN models (denoted as m-CNN’ and c-

m CNN’, respectively) after applying a dropout rate of 0.1 to the output of the max-pool layers

as a means of regularisation. Both the m-CNN and c-m CNN benefitted from utilizing the

dropout, and m-CNN’ achieved the best MAE, of 0.539. A possible explanation for this

improvement is that the dropout technique can help our one-hot encoding to avoid

overfitting.

Table 4. Effect of parallel CNN models measured using change in MAE.

Parallel CNN Configuration (filter regions) Change in MAE metric

{2,2} 0.024

{2,5} 0.003

{5,5} 0.012

{1,2,5} -0.004

{2,2,2} 0.002

{5,5,5} 0.017

https://doi.org/10.1371/journal.pone.0204493.t004
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Fig 6. Performance comparison of CNN models with different region sizes and other baseline models.

https://doi.org/10.1371/journal.pone.0204493.g006

Fig 7. Changes in MAEs for different chunk-max pooling architectures.

https://doi.org/10.1371/journal.pone.0204493.g007

Applying different convolutional neural network architectures for positive valence symptoms classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0204493 October 16, 2018 13 / 22

https://doi.org/10.1371/journal.pone.0204493.g006
https://doi.org/10.1371/journal.pone.0204493.g007
https://doi.org/10.1371/journal.pone.0204493


4 Discussion

4.1 Comparison of the predicted severity levels of the CNN models and the

baseline models

From Eq 7, we know that MAE measures the average magnitude of the predicted errors

among the four classes considered in the study (absent, mild, moderate and severe). Therefore,

in our evaluation a MAE of one point indicates that the classifier’s prediction is different from

the gold annotation with one scale. For instance, if the gold annotation for a record is moder-

ate, the classifier with MAE of one may have predicted the record as either mild or severe.

From the perspective of psychiatrists, in order to guarantee patient and personal safety, mis-

classification of a severe case as mild or even absent is not allowed since it may lead to a delay

in hospital admissions. By contrast, classifying absent cases as moderate ones is somewhat

acceptable.

From the results of MAE on both the CV of the training set and the test set, we have

observed that the CNN-based models generally had a better performance, in particular on the

categories of the moderate and severe classes as indicated by the lower MAE values. Although

decision tree models like C4.5 used in this study can yield a better outcome representation for

human understanding, their poor discriminability for the absent and severe classes explains

why the CNN models should be considered as an alternative even if they were criticized for

their difficult interpretation.

Inspired by the error analysis conducted by Duda, Kosmicki [32] and Moreau and Vogel

[33], we compared the predicted scores with the gold scores assigned by psychiatric experts by

combing the assigned scores for each record in Fig 8. We sorted the records in the test set

according to their assigned gold scores in an ascending order, which were depicted as the dot-

ted line in Fig 8. In the combined bar and line chart, the scores predicted by baseline algo-

rithms were highlighted with different colours in the bar chart, and the predictions of the best

CNN model shown in Table 5 were displayed as the red solid line. This figure enables us to

Table 5. Results on the CEGS N-GRID 2016 test set. The CNN Models with Dropout are Denoted with an Apostrophe.

Classification C4.5 SVM NBM m-CNN c-m CNN m-CNN’ c-m CNN’

ABSENT 0.968 0.645 0.645 0.871 0.742 0.677 0.677

MILD 0.430 0.360 0.244 0.384 0.407 0.337 0.419

MODERATE 0.630 0.761 0.652 0.413 0.522 0.5 0.478

SEVERE 0.925 0.698 0.792 0.642 0.660 0.642 0.623

Overall 0.738 0.616 0.583 0.577 0.583 0.539 0.549

https://doi.org/10.1371/journal.pone.0204493.t005

Fig 8. Bar-line combination chart of the gold scores (actual) and the predicted scores of each record on the test set. The horizontal axis is the records sorted

according to their scores in an ascending order, and the vertical axis is the assigned scores ranging from 1 to 4.

https://doi.org/10.1371/journal.pone.0204493.g008
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understand the false positive/negative rates of the studied algorithms and the distance scale for

each article.

For records assigned with the absent score, we can observe from the colourful bars in Fig 8

that SVM has the least average score distance while C4.5 has the largest distance. We also

noticed that both the NBM and CNN models never misclassify the absent records as the severe

class. For the mild class, NBM apparently outperforms the others since only a few records are

associated with the bar in purple. Additionally, we found that some records were misclassified

as moderate or severe classes by all of the models. As for the moderate and severe classes, the

CNN model had less score ranges. When a wrong prediction was made, it tends to assign the

adjacent class with the nearest distance (i.e., mild or severe for moderate, and moderate for

severe). Moreover, the moderate and severe classes were never misclassified as absent by the

CNN model. As a whole, we believe that the CNN model should be preferred over the others

for classification in terms of patient and personal safety.

4.2 Error analysis

4.2.1 Analysis of the models’ outputs. As demonstrated in Fig 8, there are some records

in each class that cannot be correctly classified by all of the developed models. The mild class

constituted 9.3% of the misclassified records, which is the least among all classes probably

because it is the class with the most training cases. Nevertheless, we still noticed a significant

peak in the region of the mild class in Fig 8. We examined the record and found that the

patient expressed his concern over the bipolar disorder of his son (refer to the example of the

MILD class in Table 6.), and also mentioned usage of multiple addictive substances such as

marijuana. However, the clinician diagnosis did not recommend further substance abuse treat-

ment. This example demonstrates that the medical history information may not be helpful

without describing the frequency of substance usage and whether the mentioned event is the

main focus of a treatment. Unfortunately, the competence of all developed models is affected

by this issue which may be owing to the insufficient training examples.

The absent and moderate classes were much more difficult to identify, as 32% and 36.9% of

the absent and moderate examples were misclassified, respectively. After scrutinizing these

records, we discovered that 91% of the patients in the absent records presented high severity

for symptoms or disorders related to anxiety or depression, which belong to the negative

valence domain. The subtle distinction between the positive and negative valence domains

make their classification extremely challenging. For example, a depressed patient should be

Table 6. Examples of vague descriptions across different classes.

Class Example Context

ABSENT The patient has a history of depression and anxiety that started approx 20 years ago, and has been

effectively controlled with psychiatric medication.

The patient reports that he started to see therapist for his depression at age 16 when he tried to

commit suicide. . . . His interest include a weekly game night with friends that he attends, even when

depressed.

MILD Has also noted that his own mood has been low in periods where he is more worried about his son

(described him as manic-depressive, "lives like a pig," . . .

MODERATE Pt currently meets criteria for PTSD and likely TBI. He reports several re-experience, avoidance, and

hyperarousal symptoms that cause significant distress and impairment (see below). In addition he

has experienced numerous head injuries that likely contribute to his reports of poor concentration,

low distress tolerance, headaches, and memory difficulties. Pt reports recen history of etoh abuse . . .

The pt is interested in indivdiual therapy and/or couples therapy focused on parenting conerns.

SEVERE He has no prior periods of either depression or mania, but per family last year when he used

cannabis for the first time, it made him feel really high for several days. . .

https://doi.org/10.1371/journal.pone.0204493.t006

Applying different convolutional neural network architectures for positive valence symptoms classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0204493 October 16, 2018 15 / 22

https://doi.org/10.1371/journal.pone.0204493.t006
https://doi.org/10.1371/journal.pone.0204493


scored absent, but a patient who is depressed with a loss of interest in activities that needs to be

treated should be scores at least moderate (e.g. people who need an intervention to get out of

bed). At times, records may contain references to previous events which increase the vagueness

of the decision. In addition, discriminating between the moderate and severe classes is also dif-

ficult as it requires the recognition of several contributing factors such as the patient’s history

of illness, social history, habits. . .etc. Some records of patients with extremely complex condi-

tions document various relevant medical information like syndromes reflected in multiple

domains result in noisy information (refer to the example in Table 6) and require extensive

understanding of the content for interpretation. To conduct such profound understanding of

texts, different representation techniques to capture natural language syntax and semantics

plays an important role in this task [34, 35]. Finally, we noticed that some records contain only

question-answer pairs without additional narratives, which also hinder the analysis of their

content.

For records in the severe class, 18.9% of the records were misclassified by all models. Some

of these records contain very limited positive valence signals with many negative valence sig-

nals, and the characteristics of these records may confuse the developed models in either the

training or the predicting phase. Furthermore, in some records patients may refer to another

person’s positive symptoms, describe previous positive symptoms, or express several negations

regarding symptoms and substances. Content as such can also mislead the models’ judge-

ments. Incorporation of section recognition techniques [36] and negation detection methods

[37, 38] is likely to lead to an improvement in system performance. Table 6 lists some example

descriptions related to the issues from different classes that were studied.

4.2.2 Analysis of the effectiveness of word representations. In Fig 4, we observed that,

for severity classification of positive valence symptoms in psychiatric evaluation records, a

CNN model with one-hot encoding vectors obtained the best overall MAE compared to other

word representation methods. To better comprehend the rationale underlying this result, we

conducted two additional experiments.

First, we noted that GN models did not perform well on the training set, which we pre-

sumed was due to the learning rate α we selected. The best learning rate for a model may

depend on several factors, such as the architecture and purpose of the model being optimised.

A larger value of α could help a model locate a global optimum, whereas a smaller value of α
may guide the model to a local optimum. To retrieve the optimal α for our GN models, we

progressively reduced the learning rate from 0.1 to 0.0001, the results of which are displayed in

Fig 9. Of the learning rates employed, both static and dynamic GN configurations with the

lowest value of α (0.0001) achieved the best MAEs.

Subsequently, we examined the word representation used in our models. One of the main

advantages of word embedding is that after representing words as vectors, similar words tend

to have similar vectors, so that the similarity between words could correlate with the cosine

similarity between the vectors of these words [39]. As shown in Tables 2 and 3, all algorithms

performed better on the normalised dataset. Question normalisation seems to be an essential

step, since questions in initial psychiatric evaluations tends to be long.

We extracted the words used for questions and responses and checked their similarity after

representing them as vectors with GN and our pre-trained embedding. We found that the

word ‘Yes’ was listed as the twelfth-most similar word to ‘No’, with a cosine distance of 0.491.

This similarity is even higher than that between the words ‘none’ and ‘No’ in GN embedding.

We further observed that when looking for words similar ‘Q2’, GN returned ‘Q3’ (0.973), ‘Q1’

(0.965), and ‘Q4’ (0.926) as the top three words. As described in the pre-processing section, we

normalised questions into these short forms, which seems to have resulted in several questions

being mapped to nearby points. We believe that this issue led to inefficiency in applying pre-
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trained word vectors in our task. Consequently, we conducted an additional experiment to

explore possible improvements in performance after breaking the similarity among these

Fig 9. Effects of different learning rates and region sizes on the GN-based models.

https://doi.org/10.1371/journal.pone.0204493.g009

Fig 10. Performance comparison of dynamic GN with different embedding representations.

https://doi.org/10.1371/journal.pone.0204493.g010
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words. A list of words was created to include words that were frequently used in all questions,

as well as responses such as ‘Yes’, ‘No’, ‘None’, and ‘Uncertain’. The listed words were consid-

ered to be out-of-vocabulary words, and were assigned with randomly initialised vectors

instead of using the corresponding pre-trained vectors. The results of the experiment are dis-

played in Fig 10.

As indicated in Fig 10, the performance of dynamic GN models could be improved with

different word representations. The results concur with the point given by Severyn and

Moschitti [40] in which they stated that the initialization of model parameters is very impor-

tant for training an accurate CNN model. Feeding CNN with a high quality embedding is criti-

cal because it makes the training starting from a good point. However, hyper-parameter

optimisation is a main research problem when using CNNs, since there are no definite, explicit

ways to select optimal parameters. For example, the current activation function used in our

model is ReLU, but there are several alternatives, such as leaky ReLU [41], parametric ReLU

[42], maxout [43], and tanh. We will consider exploiting these alternatives in future work.

4.3 Comparison with the CEGS N-GRID shared task results

The CEGS N-GRID shared task in 2016 had 24 teams submitting 65 runs. In addition to the

regular MAEs, the CEGS N-GRID shared task proposed to use a new normalized macro-aver-

age MAE (NMAE) metric to report the overall performance across the four classes [18].

NMAE is a customized MAE by normalizing the deviations, and macro-averaging the errors

across the classes according to Eq 8

NMAE ¼ 1 �
1

jCj
PjCj

j¼1

1

jDjj

P
xi2Dj

jpðxiÞ � yij
maxðyi � 1; jCj � yiÞ

ð8Þ

In the CEGS N-GRID shared task, the average NMAE among all the submissions was 0.771

with a median of 0.776. The best performing run scored 0.863, whereas the lowest one scored

0.525. Our two best performed CNN architectures illustrated in Table 5 achieve NMAE scores

of 0.780 and 0.785, respectively.

All the top performed teams in the shared task used ensemble strategies along with feature

engineering to boost the performance of their systems. For example, Kagan, Subrahmanian

[14] employed association rule mining method to develop binary features and create 22

machine learning-based classifiers for ensemble learning. Their system achieved the best

NMAE of 0.863 in the shared task. For each psychiatric evaluation record, Goodwin, Maldo-

nado [44] extracted 568 features and proposed a hybrid model combining ridge regression

and random forest models. The NMAE of the hybrid model is 0.841, which was ranked in the

second. Rios and Kavuluru [17] proposed a new CNN architecture with an ordinal loss func-

tion and created an ensemble of that and linear models including SVMs, logistic regression,

ridge regression, and logistic ordinal regression. Furthermore, they encoded auxiliary features

such as histories of suicidal/violent behaviour, and prior inpatient/outpatient treatments, in

the max-pooled vectors to incorporate the psychopathology related information in their CNN

model. Their approach was ranked third in the shared task with an NMAE of 0.839. Hsieh,

Chang [16] also employed an ensemble of NBM, CNN and log-likelihood ratio-based logistic

regression classifier. Their system achieved an NMAE of 0.757. Clark, Wellner [45] formulated

the task as a text classification problem and employed a neural network architecture based on

multi-layered perceptron with selected features such as unigrams, DSM codes and their fre-

quency, and the frequency of “Yes” responses in questions. The NMAE of their best model is

0.779.
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Compared to other similar studies, the key contribution of our study is that we investigated

several classic CNN architectures and their variances and explored various possible configura-

tions. Exploring and tuning the possible configurations to optimize the performance is an

extremely expensive task. We empirically identified the settings for hyper-parameters/archi-

tectures and possible issues, such as the use of word embedding, which should be considered

while adapting classical CNN architectures for similar document classification task. Further-

more, unlike the top-ranked teams in the CEGS N-GRID shared task which made great

attempt to separate semi-structured data (e.g. question-answer pairs) from unstructured text,

we studied the ability of the CNN-based models in ingesting the entire psychiatric records for

severity classification, which made our results reflect the true discriminability if we applied

such models to records with different semi-structured format.

5 Conclusion

This work studied the document classification problem of positive valence symptom severity

in initial psychiatric evaluation records containing not only narrative descriptions, but also

semi-structured text, such as attribute–value or question–answer pairs. We demonstrated that

normalising the semi-structured component of the records can improve the MAE of each clas-

sification algorithm we examined. Without advanced feature engineering or feature selection,

our results indicate that CNN-based approaches provide a comparable solution for classifying

positive valence symptom severity in initial psychiatric evaluation records. Although word

embedding is well known for its ability to capture similarity between words at relatively low

dimensions, directly including a pre-trained embedding layer in our CNN model did not

improve classification performance. This may result from the inability of our word embedding

to capture antonyms leading to a low quality representation. Our results suggest that if one

would like to apply CNN-based models in classifying data involved question-answer pairs

without sophisticated pre-processing, one-hot encoded vectors or advanced word embedding

technologies other than word2vec are a better choice for representing words.

In a nutshell, despite the advantages of employing CNN models, the challenge of parameter

optimisation and obtaining high quality embeddings remains. For instance, slight changes in

network architecture may require different hyper-parameters, which makes the models hard

to tune. The selection of learning rates and activation functions, and the problem of overfit-

ting, are also critical factors that affect the performance of the models we developed. The

results of our error analysis also demonstrate the importance for more profound understand-

ing of the content which may require some expert knowledge in the domain. We would like to

address these research questions in the future and explore better representation technologies

to capture the syntax and semantics of the content in a more appropriate manner.
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