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Summary

Background & aims—Maternal hyperglycemia during pregnancy is an important risk factor 

for childhood adiposity. Maternal dietary glycemic index during pregnancy directly influences 

maternal and fetal glucose concentrations. We examined the associations of maternal early-

pregnancy dietary glycemic index with offspring general, abdominal and ectopic fat accumulation 

among normal weight and overweight or obese pregnant women and their offspring.

Methods—In a population-based cohort study among 2488 Dutch pregnant women and their 

children, we assessed maternal dietary glycemic index by food frequency questionnaire at median 

13.4 (95% range 10.7; 21.1) weeks gestation. Dietary glycemic index was used continuously and 

categorized into low (≤55), normal (56–69) and high (≥70) glycemic index diet. We measured 

offspring BMI, total fat mass and android/gynoid fat mass ratio by DXA, and visceral fat mass and 

liver fat fraction by MRI at 10 years.

Results—No associations of maternal early-pregnancy dietary glycemic index with offspring 

adiposity were present among normal weight women and their children. Among overweight and 

obese women and their children, 1-Standard Deviation Score (SDS) increase in maternal early-

pregnancy dietary glycemic index was associated with higher childhood BMI (0.10 SDS, 95% 

Confidence Interval (CI) 0.01; 0.19), total fat mass index (0.13 SDS, 95% CI 0.05; 0.22), visceral 

fat mass index (0.19 SDS, 95% CI 0.07; 0.32) and tended to be associated with a higher android/

gynoid fat mass ratio (0.09 SDS, 95% CI −0.01; 0.19) and higher risk of childhood overweight 

(Odds Ratio (OR) 1.20, 95% CI 0.97; 1.48). Overweight and obese women consuming an early-

pregnancy low-glycemic index diet, as compared to an early-pregnancy normal-glycemic index 

diet, had children with lower BMI, total fat mass index, visceral fat mass index and android/gynoid 
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fat mass ratio at 10 years (p-values<0.05). No women consumed a high-glycemic index diet. No 

associations were explained by maternal socio-economic, lifestyle and dietary characteristics, birth 

or childhood characteristics. No associations with liver fat fraction were present.

Conclusions—In overweight or obese women and their children, a higher maternal early-

pregnancy dietary glycemic index is associated with childhood general, abdominal and visceral 

fat accumulation, but not with liver fat. Intervention studies among overweight and obese pregnant 

women may need to target the dietary glycemic index to prevent childhood adiposity.
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1 Introduction

Childhood overweight and obesity are major public health problems and associated 

with cardio-metabolic morbidity and premature mortality [1,2]. Childhood BMI is most 

commonly used as a measure to assess the risk of adverse cardio-metabolic health outcomes. 

However, ectopic fat accumulation, especially visceral fat and liver fat accumulation, are 

even more closely related to the development of an impaired glucose metabolism, low-grade 

systemic inflammation and dyslipidemia and subsequent cardio-metabolic diseases [3,4].

Accumulating evidence suggests that fetal life is a critical period for establishing the risk 

of obesity and ectopic fat accumulation in later life [5,6]. Maternal nutrition is an important 

factor for fetal development as it directly influences fetal nutrient supply [7]. The maternal 

dietary glycemic index and load influence maternal postprandial glucose concentrations, 

which is a main nutritional determinant of fetal growth, adipocyte development and 

metabolism [5,6,8]. A maternal diet with a high glycemic index and load may increase 

glucose transfer to the fetus, adversely affecting fetal growth and body composition [9,10] 

These effects may be even stronger among overweight or obese pregnant women, who are 

more likely to have an unhealthy diet and a suboptimal glucose metabolism [5]. Animal 

studies have already shown that a maternal low-glycemic index diet during pregnancy 

reduces offspring weight and visceral and liver fat accumulation, but associations among 

humans are not known [11,12]. An observational study among 906 pregnant women and 

their offspring showed that a higher maternal dietary glycemic index during early-pregnancy, 

but not during late-pregnancy, was associated with a higher childhood total body fat mass 

[13].

We hypothesized that a higher maternal early-pregnancy dietary glycemic index and load, 

especially among overweight or obese women, may be modifiable risk factors for the 

development of obesity and ectopic fat accumulation in the offspring. Therefore, in a 

population-based prospective cohort study among 2488 pregnant women and their children, 

we examined the associations of maternal early-pregnancy dietary glycemic index and load 

with childhood BMI, total fat mass, android/gynoid fat mass ratio, visceral fat mass, liver 

fat and the risk of overweight at 10 years. We examined these associations among normal 

weight and overweight or obese women and their offspring separately.

Wahab et al. Page 2

Clin Nutr. Author manuscript; available in PMC 2022 October 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2 Methods

2.1 Study design and study sample

This study was embedded in the Generation R study, a population based prospective birth 

cohort study in Rotterdam, the Netherlands [14]. Written informed consent was obtained 

from all women. The study was approved by the local Medical Ethical Committee (MEC 

198.782/2001/31). In total, 4096 Dutch women were enrolled during pregnancy of which 

3558 women had information on dietary intake available. We excluded women with 

pregestational diabetes (n = 7) and non-singleton live births (n = 80). Of the remaining 

3471 women and their offspring, 2488 participated in follow up measurements at 10 years 

(Fig. S1). Due to later implementation of MRI scans within follow-up visits, we only 

had measurements of visceral fat or liver fat fraction available within a subgroup of 1397 

children.

2.2 Maternal dietary glycemic index and load

We obtained information on maternal dietary intake during early-pregnancy at a median of 

13.4 weeks gestation (95% range 9.9; 22.6) by a semi-quantitative 293-item Food Frequency 

Questionnaire (FFQ) [14]. The FFQ was validated against three 24-h dietary recalls and 

biomarkers from blood samples in 80 pregnant women with Dutch ethnicity living in 

Rotterdam, the Netherlands, which is directly comparable to our study population. Energy-

adjusted intra-class correlation coefficients for macronutrient intakes ranged from 0.41 to 

0.88 and was 0.60 for carbohydrate intake [15]. The average energy intake and carbohydrate 

intake was calculated using the Dutch Food Composition Table 2006 [16]. To calculate 

maternal early-pregnancy dietary glycemic index and load, we assigned glycemic index 

values to each individual food item in the FFQ. We obtained glycemic index values from 

the glycemic index database on the Dutch diet published by the Medical Research Council 

Human Nutrition Research (MRC HNR), Cambridge, United Kingdom, using glucose as 

reference (glycemic index for glucose equal to 100). We calculated the mean glycemic index 

and load per day [17]. We considered the dietary glycemic index as our main exposure, as 

the dietary glycemic index provides information on the quality of the glycemic response 

to a carbohydrate containing food product and is more often used in intervention studies 

and clinical settings [9,18]. We included dietary glycemic load as a secondary exposure, as 

this measure takes the amount of carbohydrate intake into account and therefore provides 

additional information on maternal postprandial glucose concentrations, but this measure 

may be more prone to measurement error [19–21]. We constructed standard deviation scores 

to analyze maternal early-pregnancy dietary glycemic index and glycemic load across the 

full range.

In line with previous intervention studies, we also categorized the mean maternal early-

pregnancy dietary glycemic index per day into a low-, normal-, and high-glycemic index 

diet, using similar cut-offs as used for individual food products (low-glycemic index diet 

(≤55), a normal-glycemic index diet (56–69) and a high-glycemic index diet (≥70)) [22,23].
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2.3 Childhood general, abdominal and ectopic fat

At the age of 10 years, we measured height and weight without shoes and heavy clothing 

and calculated Body Mass Index (BMI) (kg/m2). Childhood BMI sex-and-age-adjusted 

standard (SDS) were constructed based on Dutch reference growth charts (Growth Analyzer 

4.0, Dutch Growth Research Foundation) [24]. We defined childhood overweight or obesity 

by categorizing childhood weight status according to the International Obesity Task Force 

cut-offs [25]. Overweight and obesity were combined into one category and under- and 

normal weight were combined into one category.

We measured total, android and gynoid body fat mass by Dual-Energy X-ray absorptiometry 

(DXA) (iDXA; General Electrics–Lunar, 2008, Madison, WI) and calculated android/gynoid 

fat mass ratio [26]. Visceral fat and liver fat fraction were obtained from MRI scans as 

described previously [27]. Childhood body fat mass is strongly influenced by height of the 

child [28]. To enable assessment of the associations of maternal early-pregnancy dietary 

glycemic index and load with childhood adiposity outcomes independent of childhood size, 

we estimated the optimal adjustment for childhood height using log–log regressions (details 

in Supplementary Methods 1) [28,29]. We calculated total fat mass index (total fat mass/

height4) and visceral fat mass index (visceral fat mass/height3).

2.4 Covariates

Information on maternal age, educational level, parity, folic acid supplement use, 

prepregnancy weight and diagnosis of pre-gestational diabetes were obtained through 

questionnaire at enrolment. Information on smoking, alcohol consumption, vomiting 

and maximum weight during pregnancy was obtained through questionnaires throughout 

pregnancy. Information on maternal dietary energy, fiber, fat and protein intake during 

pregnancy was obtained with the FFQ. As a proxy measurement of maternal overall diet 

quality, the Dietary Approaches to Stop Hypertension (DASH) diet score was derived from 

the FFQ [30–32]. The score is composed of 8 food components, based mainly on the Fung 

method with a scoring system based on quintile rankings and included the intake of total 

grains, vegetables, fruits, non-full-fat dairy products, and nuts/seeds/legumes and the intake 

of red and processed meats, sugar-sweetened beverages/sweets/added sugars and sodium. 

A lower maternal DASH diet score characterizes a lower overall dietary quality [32]. We 

measured maternal height at enrolment and calculated prepregnancy body mass index (BMI) 

[14]. Information on gestational diabetes, child’s gestational age and weight at birth and 

sex were obtained from medical records. Information on breastfeeding and the timing of 

introduction to solid foods was assessed by questionnaires during infancy, and the average 

time watching television was assessed by a questionnaire at 10 years of age [14].

2.5 Statistical analyses

First, we performed a non-response analysis to compare characteristics of women with and 

without offspring follow-up measurements available. Second, we examined the associations 

of maternal early-pregnancy dietary glycemic index SDS and maternal dietary glycemic 

index categories with childhood BMI, total fat mass index, android/gynoid fat mass ratio, 

visceral fat mass index, liver fat fraction and the risk of obesity using linear and logistic 

regression models. We constructed five different models, based on a Directed Acyclic 
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Graph (DAG) analysis to identify which factors may act as confounders or potential 

mediators in these associations (Supplementary Methods S2): 1) the basic model, adjusted 

for gestational age at intake, fetal sex and child’s age at follow up visit; 2) the confounder 

model (main model), the basic model additionally adjusted for potential confounders. We 

only included maternal age, parity, educational level, prepregnancy BMI, smoking during 

pregnancy, vomiting during pregnancy, and daily total energy intake during pregnancy to 

the confounder model based on their association with the exposure and outcome of interest 

and a >10% change of the effect estimate after adding these covariates to the basic model 

[33–35]. Based on these criteria, alcohol consumption and folic acid supplementation were 

not selected for inclusion in the confounder model.; 3) the birth model, the confounder 

model additionally adjusted for gestational-age-and-sex-adjusted birth weight; 4) the child 

model, the birth model additionally adjusted for infant breastfeeding, solid food introduction 

and television watching at 10 years; 5) the maternal diet model, the confounder model 

additionally adjusted for gestational weight gain and maternal fiber, protein and fat intake 

during pregnancy to assess the effects of other important maternal dietary factors strongly 

related to the glycemic index and overall diet quality on the observed associations. 

Based on our hypothesis that effects may be stronger among overweight and obese 

women, we performed all analyses in the total population and stratified for mothers 

with a prepregnancy BMI<25 kg/m2 and BMI≥25 kg/m2. We also formally tested for 

interactions of maternal prepregnancy BMI continuously with maternal early-pregnancy 

dietary glycemic index continuously for all childhood outcomes. We added the interaction 

term of maternal prepregnancy BMI with maternal early-pregnancy dietary glycemic index 

to linear regression models including maternal prepregnancy BMI, early-pregnancy dietary 

glycemic index and gestational age at intake, fetal sex, and child’s age at follow up 

visit. Significant interactions of maternal prepregnancy BMI with maternal early-pregnancy 

dietary glycemic index were present for childhood total fat mas index (p = 0.00) and 

childhood visceral fat mass index (p = 0.02), but not for childhood BMI (p = 0.20), 

childhood android/gynoid fat mass ratio (p = 0.17) and childhood liver fat (p = 0.86). 

We performed four sensitivity analyses to assess the robustness of our findings: 1) we 

repeated the analyses using maternal early-pregnancy dietary glycemic index in quartiles to 

further explore whether associations were stronger for women consuming a higher dietary 

glycemic index within our study population; 2) we repeated the analyses using maternal 

early-pregnancy dietary glycemic load as an exposure to assess the potential additional 

effect of quantity of maternal dietary carbohydrate intake; 3) we repeated the analyses 

additionally adjusting for the maternal DASH diet score to assess the potential effect of 

overall maternal diet quality on the associations; 4) we repeated the analyses excluding 

mothers with gestational diabetes, as we were interested in the effects of maternal early-

pregnancy dietary glycemic index among a non-diabetic population. To reduce selection bias 

due to missing data, multiple imputations of covariates (pooled results of 5 imputed datasets) 

were performed [36]. The analyses were performed using the Statistical Package of Social 

Sciences version 24.0 for Windows (SPSS Inc., Chicago, IL, USA).
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3 Results

3.1 Subject characteristics

Table 1 shows that the overall mean maternal early-pregnancy dietary glycemic index was 

57.6 (SD 3.3) and was comparable for normal weight and overweight or obese women. 

20.9% women within our population consumed a low-glycemic index diet, 79.1% women 

consumed a normal-glycemic index diet and no women consumed a high-glycemic index 

diet based on comparison to individual food products classifications. Non-response analyses 

showed that women with and without offspring participating in follow-up measurements had 

a similar early-pregnancy dietary glycemic index and prepregnancy BMI (Supplementary 

Table S1).

3.2 Maternal early-pregnancy dietary glycemic index and childhood general, abdominal 
and ectopic fat accumulation

Table 2 shows that among the total population and among normal weight women and 

their children, maternal early-pregnancy dietary glycemic index was not associated with 

childhood BMI, total body fat or ectopic fat accumulation. Among overweight or obese 

women and their children, a higher maternal early-pregnancy dietary glycemic index was 

associated with a higher childhood BMI, total fat mass index and visceral fat mass index 

and tended to be associated with a higher childhood android/gynoid fat mass ratio in 

the confounder model (differences: 0.10 SDS (95% confidence interval (CI) 0.01; 0.18), 

0.13 SDS (95% CI 0.05; 0.22), 0.19 SDS (95% CI 0.07; 0.32) and 0.09 SDS (95% CI 

−0.01; 0.19) per SDS increase in maternal dietary glycemic index, respectively). Additional 

adjustment for gestational-age-and-sex-adjusted birth weight, child characteristics and 

additional maternal dietary characteristics did not explain these associations. No associations 

with liver fat fraction were present. Among overweight or obese women, a higher maternal 

early-pregnancy dietary glycemic index also tended to be associated with a higher risk of 

childhood overweight, but the association was not significant (Odds Ratio (OR) 1.20, 95% 

CI 0.97; 1.48 per SDS increase in maternal dietary glycemic index) (Table 3). Maternal 

early-pregnancy dietary glycemic index was not associated with the risk of childhood 

overweight in the total population or among normal weight women.

Figure 1 shows the associations of maternal dietary glycemic index categorized into low 

and normal-glycemic index diet according to individual food products classification with 

childhood general, abdominal and ectopic fat. Among the total population and among 

normal weighted women and their children, a maternal low-glycemic index diet, as 

compared to a normal-glycemic index diet, was not associated with childhood BMI, total 

body fat or ectopic fat. Among overweight or obese women and their children, a maternal 

low-glycemic index diet during pregnancy, as compared to a maternal normal-glycemic 

index diet, was associated with a lower childhood BMI (−0.35 SDS, 95% CI −0.58; −0.13), 

total fat mass index (−0.35 SDS, 95% CI 0.58; 0.13), android/gynoid fat mass ratio (−0.26 

SDS, 95% CI −0.52; 0.00), visceral fat mass index (−0.50 SDS, 95% CI −0.84; −0.17) and 

tended to be associated with a lower risk of childhood overweight (OR 0.57, 95% CI 0.31; 

1,05). No associations with liver fat fraction were present.
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3.3 Sensitivity analyses

When repeating analyses using the maternal early-pregnancy dietary glycemic index in 

quartiles, associations of the highest quartile with childhood general, abdominal and ectopic 

fat accumulation as compared to the lowest quartile, were similar as for the analyses 

using the maternal early-pregnancy dietary glycemic continuously (Supplementary Table 

S2). Among the total population, a higher maternal early-pregnancy glycemic load was 

associated with a higher child total fat mass, whereas among normal weight women and 

their children no associations were present. Among overweight and obese women, a higher 

maternal early-pregnancy dietary glycemic load was associated with a higher childhood 

BMI, total fat mass index, visceral fat mass index, and higher risk of childhood overweight 

in the confounder models (Supplementary Tables S3 and S4). After adjustment for the 

maternal DASH diet score, effects estimates were similar to those observed after adjustment 

for maternal dietary characteristics (Supplementary Table S5). Excluding women with 

gestational diabetes from the analyses did not change our findings (Supplementary Table 

S6).

4 Discussion

Among overweight or obese women and their children, a higher maternal early-pregnancy 

dietary glycemic index was associated with higher childhood BMI, total body fat, 

abdominal fat and visceral fat accumulation, but not with liver fat accumulation. These 

associations were not explained by maternal socio-demographic, lifestyle and other dietary 

characteristics, birth or child characteristics. In normal weight women, no associations of 

maternal early-pregnancy dietary glycemic index with childhood general, abdominal or 

ectopic fat accumulation were present.

4.1 Interpretation of main findings

The maternal dietary glycemic index during pregnancy is receiving increasing interest as 

a potential modifiable target to improve birth outcomes and reduce the risk of offspring 

obesity [37]. The dietary glycemic index during pregnancy directly influences maternal 

postprandial glucose concentrations. Post-prandial peaks in maternal glucose concentrations 

and subsequent peak increases in fetal glucose and insulin concentrations could irreversibly 

affect offspring adiposity development by altering fetal growth, development of adipocytes 

and metabolism [6,8]. Intervention studies have already shown that stimulating a low-

glycemic index diet during pregnancy in women at increased risk of an impaired glucose 

metabolism may reduce the risk of macro-somia and adiposity in infant offspring [38,39]. 

The long-term effects of a higher maternal dietary glycemic index during pregnancy on 

offspring adiposity and ectopic fat accumulation are not well-known. A study among 

842 Irish mother–child pairs observed no association of maternal dietary glycemic index 

assessed between 12 and 16 weeks gestation with offspring BMI or waist circumference at 

5 years after adjustment for maternal prepregnancy BMI [40]. The mean dietary glycemic 

index was 58.9 within this study population. Contrarily, a study among 906 mother–child 

pairs in the United Kingdom reported that a higher maternal dietary glycemic index and 

load in early-pregnancy, but not late-pregnancy, were associated with a higher offspring 

total body fat measured by DXA at 4 and 6 years of age after adjustment for maternal 
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prepregnancy BMI. This study reported a mean dietary glycemic index of 59.6 in early-

pregnancy and 58.9 in late-pregnancy. No differences in associations among normal weight 

and overweight or obese women and their offspring were present [13]. Animal studies 

showed that a maternal high-glycemic index diet during pregnancy was associated with 

higher offspring visceral fat mass and a transient higher liver fat, which normalized in 

adolescence [11,41].

Partly in line with these previous studies, we observed that among overweight and obese 

women and their children, a higher maternal early-pregnancy dietary glycemic index across 

the full range was associated with a higher childhood BMI and total body fat. In addition, 

we showed that a higher maternal early-pregnancy dietary glycemic index was associated 

with higher childhood abdominal and visceral fat accumulation. In line with previous human 

studies, we observed that women within our study consumed a diet with a relatively low 

mean dietary glycemic index of 57.7. Associations for maternal dietary glycemic load 

were in similar direction, which suggests that the observed associations of maternal early-

pregnancy dietary glycemic index with childhood adiposity are not fully explained by the 

amount of carbohydrate intake. The associations for maternal dietary glycemic load were 

slightly weaker, possibly due to more measurement error and confounding in assessment 

of the dietary glycemic load than dietary glycemic index or a small effect of the amount 

of carbohydrate intake [42]. As compared to a maternal normal-glycemic index diet, a 

maternal low-glycemic index diet was associated with lower childhood BMI, total fat 

mass, android/gynoid fat mass and visceral fat accumulation. We observed no associations 

with childhood liver fat accumulation, what could be explained by our relatively healthy 

population, but also, as suggested by an animal study, the effects on liver fat fraction 

may be more pronounced in infancy [11]. Associations were only present among women 

with pre-pregnancy overweight or obesity and their children. Additional adjustment for 

prepregnancy BMI did not affect the observed associations within this group of women and 

their offspring. This is in line with intervention studies mainly reporting beneficial effects 

of a low-glycemic index diet during pregnancy on pregnancy outcomes among women at 

risk of an impaired glucose metabolism [22]. Overall, our findings suggest that among 

women with prepregnancy overweight or obesity and their children, a higher maternal 

early-pregnancy dietary glycemic index is associated with higher childhood higher general, 

abdominal and visceral fat accumulation at 10 years, but not with liver fat accumulation. No 

associations are present among normal weight women and their offspring.

The mechanisms underlying the observed associations are not well known. Our findings 

were not explained by maternal socio-economic, lifestyle, birth or childhood characteristics. 

Additional adjustment for other maternal macronutrients did not explain the associations, 

nor did additional adjustment for overall dietary quality by additionally adjusting for the 

maternal DASH diet score [43]. This suggests that observed associations are less likely to 

only reflect effects of an overall unhealthy lifestyle and diet among overweight or obese 

women, but that a higher maternal early-pregnancy dietary glycemic index may have a 

direct effect on offspring adipose tissue development. A maternal diet during pregnancy 

with a higher glycemic index and subsequent peaks in postprandial glucose concentrations 

increase glucose transfer to the developing embryo or fetus. Overweight or obese women 

have a more pronounced insulin resistance during pregnancy, causing larger fluctuations in 
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postprandial glucose concentrations and higher glucose transfer to the developing embryo 

or fetus [5,6,44]. Higher embryonic and fetal glucose concentrations accelerate embryonic 

and fetal growth and may alter development of adipocytes, pancreatic endocrine and 

hepatic metabolic function [6,8,45]. These alterations may not only directly increase fetal 

adipose tissue accumulation, but could also cause fat accumulation in postnatal life due 

to irreversible changes in fatty acid oxidation, lipogenesis, and lipoprotein export [46,47]. 

Experimental studies need to identify mechanisms underlying the associations of maternal 

early-pregnancy dietary glycemic index on offspring adiposity development.

The observed associations of maternal early-pregnancy dietary glycemic index with 

childhood adiposity outcomes among overweight and obese women and their children 

were relatively small, but important from a public health perspective. It is well-known that 

childhood adiposity tracks into adulthood [48–52]. We observed the strongest effect of the 

maternal early-pregnancy dietary glycemic index with childhood visceral fat accumulation. 

Visceral fat accumulation is known to cause systemic inflammation and is strongly linked 

to an impaired glucose metabolism and an adverse lipid profile [48]. In adulthood, visceral 

fat accumulation strongly increases the risk of type 2 diabetes, cardiovascular disease and 

premature mortality, even irrespective of general fat mass [3,52]. Maternal prepregnancy 

overweight and obesity are associated with increased offspring risks of obesity and 

ectopic fat accumulation [3,4,6]. Especially in this high risk group, insight into modifiable 

lifestyle factors from preconception onwards is needed to develop interventions to improve 

offspring adiposity outcomes and related cardio-metabolic health. Intervention studies 

among overweight and obese women should reveal whether stimulating a low-glycemic 

index diet already from preconception or early-pregnancy reduces the risk of childhood 

obesity and increased general, abdominal and visceral fat in the offspring.

5 Methodological considerations

Strengths of this study are the prospective design, large sample size, and the use of detailed 

measures of childhood adiposity obtained with DXA and MRI. 72% of children from Dutch 

mothers with early-pregnancy dietary glycemic index available participated in follow-up 

measurements. As we observed no differences in early-pregnancy dietary glycemic index 

and prepregnancy BMI between mothers with and without offspring participating in follow 

up measurements, we consider bias due to loss the follow-up unlikely. The selection towards 

a relatively healthy Dutch population with a relatively low mean dietary glycemic index 

may affect the generalizability of our findings. Further studies are needed to replicate our 

findings among multi-ethnic populations with a more diverse dietary intake. Even though 

the FFQ is a validated questionnaire widely used for dietary assessment in observational 

studies, measurement of food intake by a FFQ may be affected by over- or underreporting 

of dietary intake during pregnancy. Although the mean dietary glycemic index is in line 

with previous studies, this limitation of the FFQ may explain the relatively low mean 

dietary glycemic index within our study population and lead to an underestimation of results 

[13,40]. However, a study performed within a study population directly comparable to our 

study population validate the FFQ using three 24-h dietary recalls and biomarkers from 

blood samples and showed only a slight underestimation of carbohydrate intake. Calculation 

of the dietary glycemic index from the FFQ may further be affected by uncertainty induced 
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by preparation of foods, mixed dishes, variations of food products over time or unavailability 

of specific food products [17]. Further studies using different methods to assess the dietary 

glycemic index in low and high-risk pregnant populations are needed to replicate our results. 

We adjusted our analyses for multiple confounding factors, but residual confounding may 

still be present.

6 Conclusions

Among overweight and obese women and their children, a higher maternal early-pregnancy 

dietary glycemic index was associated with a higher childhood BMI, general and abdominal 

fat accumulation and visceral fat accumulation, but not with liver fat accumulation. 

Intervention studies among overweight and obese pregnant women may need to target the 

dietary glycemic index to prevent childhood adiposity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Associations of maternal early-pregnancy low-glycemic index diet as compared to 
maternal early-pregnancy normal-glycemic index diet with childhood adiposity outcomes.
Cut offs for a low-, and normal-glycemic index diet are based on comparison to individual 

food products classifications (≤55 and 56–69 for a low-, and normal-glycemic index diet, 

respectively). No women within our population consumed a high-glycemic index diet (≥70). 

Ncases represents the number of women who consumed a low-glycemic index diet within 

the specified group. Values represent regression coefficients and odds ratios (ORs) (95% 

Confidence Intervals) from linear and logistic regression models respectively, that reflect 

differences in standard deviation scores for childhood adiposity outcomes and differences 

Wahab et al. Page 14

Clin Nutr. Author manuscript; available in PMC 2022 October 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



in risk for childhood overweight for a maternal low-glycemic index diet as compared 

to a normal-glycemic index diet. Associations were adjusted for maternal age, maternal 

educational level, maternal prepregnancy BMI, smoking during pregnancy, vomiting during 

early-pregnancy and daily total energy intake.
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Table 1
Population characteristics according to maternal prepregnancy BMI.

Total group (n = 2488) Women with BMI<25 
kg/m2 (n = 1681)

Women with BMI≥25 
kg/m2 (n = 480)

Maternal characteristics

Maternal age at enrolment, mean (SD), years 31.8 (4.1) 31.9 (4.2) 31.5 (4.0)

Gestational age at enrolment, median (95% range), 
weeks

13.4 (9.9; 22.6) 13.4 (9.9; 22.5) 13.3 (10.1; 23.2)

Parity, n nulliparous (%) 1549 (62.3) 1071 (63.8) 288 (60.0)

Pre-pregnancy BMI, median (95% range) 22.3 (18.4; 33.3) 21.6 (18.1; 24.7) 27.5 (25.1; 38.1)

Gestational weight gain, mean (SD), kg/week 0.35 (0.14) 0.36 (0.13) 0.33 (0.18)

Education, n high (%) 1566 (62.9) 1128 (67.9) 234 (49.0)

Dietary glycemic index, mean (SD) 57.7 (3.5) 57.6 (3.3) 57.9 (3.1)

First quartile, mean (SD) 53.7 (1.4) 53.7 (1.4) 53.8 (1.3)

Second quartile, mean (SD) 56.4 (0.6) 56.4 (0.6) 56.4 (0.6)

Third quartile, mean (SD) 58.5 (0.7) 58.5 (0.7) 58.5 (0.7)

Fourth quartile, mean (SD) 62.0 (1.9) 62.0 (1.8) 61.9 (1.9)

Dietary glycemic load, mean (SD) 154.0 (46.1) 154.7 (45.7) 151.1 (47.6)

Low glycemic index diet, n yes (%) 522 (20.9) 376 (22.4) 80 (16.5)

Carbohydrate intake, mean (SD), g/d 266 (74) 268 (73) 260 (76)

Protein intake, mean (SD), g/d 79 (19) 80 (19) 78 (18)

Fat intake, mean (SD), g/d 87 (24) 87 (24) 84 (23)

Fiber intake, mean (SD), g/d 24 (7) 24 (7) 22 (6)

Total energy intake, mean (SD), kcal/d 2145 (500) 2160 (499) 2090 (498)

Dietary Approaches to Stop Hypertension Diet Score, 
mean (SD)

25 (4) 25 (5) 24 (4)

Folic acid supplement use, n yes (%) 1865 (75.0) 1319 (91.7) 372 (90.1)

Alcohol use during pregnancy, n yes (%) 1577 (63.4) 1141 (71.4) 277 (60.1)

Smoking during pregnancy, n yes (%) 510 (20.5) 366 (22.8) 96 (20.9)

Vomiting during early-pregnancy, n yes (%) 93 (3.7) 55 (3.5) 27 (5.9)

Gestational diabetes, n yes (%) 20 (0.8) 9 (0.6) 10 (2.2)

Birth/infant characteristics

Sex, n female (%) 1255 (50.4) 838 (49.9) 252 (52.5)

Gestational age at birth, median (95% range), weeks 40.3 (36.0; 42.4) 40.3 (36.3; 42.4) 40.3 (35.7; 42.4)

Birthweight, mean (SD), g 3498 (537) 3490 (528) 3560 (535)

Ever breastfed, n yes (%) 2006 (80.6) 1390 (93.3) 352 (87.8)

Introduction of solid foods before 6 months, n yes (%) 1633 (65.6) 1098 (86.7) 302 (90.7)

Child characteristics at 10 years

Age, median (95% range), years 9.7 (9.4; 10.2) 9.7 (9.3; 10.4) 9.7 (9.3; 10.7)

Average television watching time >2 h/day, n yes (%) 511 (20.5) 308 (18.3) 137 (28.3)

BMI, median (95% range), kg/m2 16.6 (14.3; 21.3) 16.4 (14.3; 20.3) 17.5914.6; (23.8)

Total fat mass, median (95% range), g 8038 (4463; 18,644) 7718 (4421; 17,191) 9710 (4792; 22,408)

Android/gynoid fat mass ratio, median (95% range) 0.23 (0.15; 0.45) 0.23 (0.15; 0.40) 0.26 (0.16; 0.50)
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Total group (n = 2488) Women with BMI<25 
kg/m2 (n = 1681)

Women with BMI≥25 
kg/m2 (n = 480)

Visceral fat mass, median (95% range), g 372 (166; 928) 353 (157; 820) 457 (197; 1198)

Liver fat fraction, median (95% range), % 2.0 (1.2; 4.6) 1.9 (1.3; 3.5) 2.2 (1.4; 4.8)

Overweight or obese, n yes (%) 285 (11.4) 129 (7.7) 120 (25.0)
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Table 2
Associations of maternal early-pregnancy dietary glycemic index with childhood general, 
abdominal and ectopic fat accumulation.

  Effect estimates for childhood outcome per SDS increase in maternal early-pregnancy glycemic index

Total group Women with BMI<25 kg/m2 Women with BMI≥25 kg/m2

Difference in BMI SDS (95% CI)

n=2483 n=1920 n=563

Basic model
a 0.05 (0.01; 0.09)** 0.02 (−0.02; 0.06) 0.10 (0.01; 0.19)*

Confounder model
b 0.02 (−0.01; 0.06) 0.00 (−0.04; 0.04) 0.10 (0.01; 0.18)*

Birth model
c 0.02 (−0.02; 0.06) 0.00 (−0.04; 0.04) 0.10 (0.01; 0.18)*

Child model
d 0.02 (−0.02; 0.05) -0.01 (−0.05; 0.03) 0.11 (0.02; 0.19)*

Maternal diet model
e 0.01 (−0.03; 0.05) -0.03 (−0.07; 0.02) 0.11 (0.02; 0.21)*

Difference in total fat mass index SDS (95% CI)

n=2455 n=l898 n=557

Basic model
a 0.07 (0.03; 0.11)** 0.03 (−0.01; 0.07) 0.15 (0.06; 0.24)**

Confounder model
b 0.04 (0.00; 0.07) 0.01 (−0.03; 0.05) 0.13 (0.05; 0.22)**

Birth model
c 0.04 (0.00; 0.07) 0.01 (−0.03; 0.05) 0.13 (0.05; 0.22)**

Child model
d 0.03 (−0.01; 0.07) 0.00 (−0.04; 0.04) 0.14 (0.05; 0.22)**

Maternal diet model
e 0.01 (−0.03; 0.05) -0.03 (−0.07; 0.02) 0.13 (0.03; 0.23)*

Difference in android/gynoid ratio SDS (95% CI)

n=2458 n=1901 n=557

Basic model
a 0.04 (0.00; 0.08)* 0.01 (−0.03; 0.05) 0.11 (0.00; 0.21)

Confounder model
b 0.01 (−0.03; 0.05) -0.01 (−0.06; 0.03) 0.09 (−0.01; 0.19)

Birth model
c 0.01 (−0.03; 0.05) -0.01 (−0.06; 0.03) 0.09 (−0.01; 0.19)

Child model
d 0.01 (−0.04; 0.04) -0.02 (−0.07; 0.02) 0.09 (−0.01; 0.19)

Maternal diet model
e -0.02 (−0.07; 0.02) -0.06 (−0.11; −0.01) 0.09 (−0.03; 0.20)

Difference visceral fat mass index SDS (95% CI)

n=1246 n=956 n=290

Basic model
a 0.08 (0.02; 0.13)** 0.02 (−0.05; 0.08) 0.23 (0.10; 0.36)**

Confounder model
b 0.04 (−0.01; 0.10) 0.00 (−0.07; 0.06) 0.19 (0.07; 0.32)**

Birth model
c 0.04 (−0.01; 0.10) 0.00 (−0.07; 0.06) 0.19 (0.07; 0.32)**

Child model
d 0.04 (−0.02; 0.09) -0.01 (−0.07; 0.05) 0.19 (0.07; 0.32)**

Maternal diet model
e 0.02 (−0.04; 0.08) -0.02 (−0.10; 0.05) 0.17 (0.03; 0.31)**

Difference in liver fat fraction SDS (95% CI)

n=1395 n=1074 n=32l
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  Effect estimates for childhood outcome per SDS increase in maternal early-pregnancy glycemic index

Total group Women with BMI<25 kg/m2 Women with BMI≥25 kg/m2

Basic model
a 0.00 (−0.05; 0.06) 0.00 (−0.06; 0.05) 0.00 (−0.14; 0.13)

Confounder model
b -0.03 (−0.08; 0.03) -0.01 (−0.07; 0.05) -0.05 (−0.18; 0.08)

Birth model
c -0.02 (−0.08; 0.03) -0.01 (−0.07; 0.05) -0.05 (−0.18; 0.08)

Child model
d -0.03 (−0.08; 0.03) -0.02 (−0.08; 0.04) -0.05 (−0.19; 0.08)

Maternal diet model
e -0.06 (−0.12; 0.00) -0.05 (−0.12; 0.02) -0.07 (−0.22; 0.08)

*P < 0.05 **P < 0.01. SDS: standard deviation scores.
Values represent regression coefficients (95% confidence interval) from linear regression models that reflect differences in standard deviation score 
of childhood adiposity outcomes per SDS increase in maternal early-pregnancy dietary glycemic index. One SDS maternal early-pregnancy dietary 
glycemic index corresponds to an increase of glycemic index of 3.5. P-values for interaction terms maternal prepregnancy BMI*maternal dietary 
glycemic index for each individual childhood adiposity outcome were 0.11 for BMI, 0.00 for total fat mass index, 0.08 for android/gynoid fat mass 
ratio, 0.00 for visceral fat mass index and 0.89 for liver fat fraction.

a
Basic models were adjusted for gestational age at intake, fetal sex and child’s age at follow up.

b
Confounder models were the basic models additionally adjusted for maternal age, maternal educational level, maternal prepregnancy BMI, 

smoking during pregnancy, vomiting during early-pregnancy, daily total energy intake.

c
Birth models were the confounder models additionally adjusted for gestational-age-and-sex adjusted birth weight.

d
Child models were the birth models, additionally adjusted for infant breastfeeding, introduction of solid foods and average television watching 

time.

e
Maternal diet models were the confounder models additionally adjusted for gestational weight gain and maternal fiber, fat and protein intake.
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Table 3
Associations of maternal early-pregnancy dietary glycemic index with risk of childhood 
overweight.

  Odds Ratio for risk of childhood overweight per SDS increase in maternal early-pregnancy glycemic index

Total group Women with BMI<25 kg/m2 Women with BMI≥25 kg/m2

Basic model
a 1.12 (0.99; 1.26) 1.00 (0.85; 1.19) 1.21 (0.99; 1.48)

Confounder model
b 1.05 (0.92; 1.20) 0.94 (0.79; 1.12) 1.20 (0.97; 1.48)

Birth model
c 1.06 (0.92; 1.21) 0.94 (0.79; 1.12) 1.21 (0.98; 1.49)

Child model
d 1.04 (0.91; 1.20) 0.92 (0.76; 1.10) 1.24 (0.99; 1.54)

Maternal diet model
e 0.98 (0.85; 1.14) 0.84 (0.68; 1.03) 1.19 (0.94; 1.49)

SDS: standard deviation scores.
Values represent odds ratios (95% confidence interval) from logistic regression models that reflect differences in standard deviation score of risk 
of childhood overweight per SDS in maternal early-pregnancy dietary glycemic index. One SDS maternal early-pregnancy dietary glycemic index 
corresponds to an increase of glycemic index of 3.5. p-value for interaction term maternal prepregnancy weight status*maternal dietary glycemic 
index was 0.19.

a
Basic models were adjusted for gestational age at intake, fetal sex and child’s age at follow up.

b
Confounder models were the basic models additionally adjusted for maternal age, maternal educational level, maternal prepregnancy BMI, 

smoking during pregnancy, vomiting during early-pregnancy, daily total energy intake.

c
Birth models were the confounder models additionally adjusted for gestational-age-and-sex adjusted birth weight.

d
Child models were the birth models, additionally adjusted for infant breastfeeding, introduction of solid foods and average television watching 

time.

e
Maternal diet models were the confounder models additionally adjusted for gestational weight gain and maternal fiber, fat and protein intake.
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