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Publication of Euler (1736) is regarded as the first paper on graph theoretical analysis (GTA),
however, the term graph was introduced later by Sylvester (1878). Among the first applications
of GTA were papers of Percheron (1982) on natural binary arborescences and of Kohn and
Letzkus (1983) on metabolic regulation. GTA formalism assumes that a basic representation of
a network—a graph—consists of nodes (vertices) and connections between them (edges). The
application of GTA for quantification of connectivity structure in brain gained the impetus with
a work of Watts and Strogatz (1998), who popularized the so-called “small world” (SW) networks.
The basic parameters describing a network are clustering coefficient (CC) and path length (PL).
CC is a measure of the local interconnectedness of a graph—a fraction of the neighbors of a node
that are also neighbors of each other. PL is the shortest path between two vertices expressed as
the number of traversed vertices. Every node of the network should be connected with every other
node by at least one path. “Small-world” networks are characterized by a high CC and a short
PL. These parameters are normalized in respect of reference parameters obtained from equivalent
random networks. The network is considered to be “small world” if the ratio of the normalized CC
to PL is >1. The other parameters frequently used to characterize networks are the node degree
(the number of edges connected to a given vertex), the average number of edges for vertex and
the global efficiency. The further developments in GTA theory included scale-free networks, a class
of networks that as a whole had a power-law distribution of the number of links connecting to
a node (Barabási and Albert, 1999). Local properties of networks can be described as motifs—
recurrent and statistically significant sub-graphs or patterns (Shen-Orr et al., 2002). The network
has community structure if the nodes can be easily grouped into sets such that each set of nodes
is densely connected internally with a weaker connections between groups (Newman and Girvan,
2004). Network modularity reflects the concentration of edges within modules compared with a
random distribution of edges between all nodes (Newman, 2003).

GTA finds applications in many branches of science in particular in brain studies. Recently a
criticism of GTA and in particular of SW formalism application to quantify brain connectivity
patterns was raised. Herein we shall concentrate on the application of GTA to the quantification of
networks obtained by means of EEG/MEG and the pitfalls of this approach.

In the publications on GTA applications to brain signals, the “small world” topology was usually
searched and the CC and PL parameters were used to distinguish between the experimental
conditions or groups of subjects. However, results obtained for networks based on EEG/MEG
signals by different researchers quite often yielded divergent or contradictory results. Compare the
Alzheimer disease study with EEG and MEG techniques by the same group (Stam et al., 2007),
(Stam et al., 2009). In studies of schizophrenia, a divergence of SW parameters determined by
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different researchers was reported; in some cases, the small world
index did not distinguish between populations of healthy controls
and schizophrenics at all (Rutter et al., 2013).

Inspecting works based on bivariate measures and graph
theoretical analysis, it is difficult to find compatibility with
imaging and electrophysiological evidence. A good example is
the MEG finger movement experiment (Basset et al., 2006) in
which wavelet analysis and correlations were followed by GTA.
No statistically significant changes in GTA parameters depending
on frequency were found between rest and movement and no
lateralization was observed. It is a known fact that the movement
task is connected with drastic changes in the topographic and
spectral characteristics of brain activity (Pfurtscheller, 1999).
The multivariate method called Directed Transfer Function
(DTF) used in movement task yielded very distinct, frequency
dependent connectivity patterns (Ginter et al., 2001; Kuś et al.,
2006).

Also in the studies of sleep EEG in which connectivity was
estimated using SL and quantified by GTA, no significant changes
in the network parameters were found for different sleep stages
(Ferri et al., 2005; Leistedt et al., 2009). Already in 1997, in the
study in which the DTF multivariate method was used, very
distinct connectivity patterns (frequency dependent and different
for each sleep stage) were reported (Kaminski et al., 1997). The
slow wave sleep EEG connectivity patterns obtained using SL and
DTF are shown in Figures 1A,B respectively. In Figure 1A the
network looks unclear, and in Figure 1B a propagation from the
electrode overlying the corpus callosum (a structure which the
neural tracts diverge from) was observed. Indeed, in slow wave
sleep, the EEG activity is strongly synchronized, which can be
attributed to driving from a common source, located in a place
of divergence of nerves.

The accumulated criticism of GTA application in EEG/MEG
studies mainly concerns the assessment of the connectivity
structure. There are several factors which critically influence the
results: (1) connectivity estimation method, (2) sensor density,
(3) setting connection thresholds, (4) normalization method
against random networks.

The first step of the analysis, the recording of signals,
influences the network structure, particularly the number of
nodes since recording sensors usually constitute network nodes.
In the case of very dense distribution of sensors, they measure
highly correlated activity, which may lead to an increase in the
clustering coefficient.

The SW parameters are sensitive to thresholds used to
eliminate non-significant connections. The GTA formalism
requires that networks have no unconnected nodes. In order
to meet that assumption, connection thresholds are quite often
arbitrarily set to low values, (e.g., Stam et al., 2007; Van Heuvel
et al., 2008; Leistedt et al., 2009), which increases the number of
edges. Sometimes the threshold values were individually adapted
in such a way that all considered networks had the same average
number of edges per vertex (e.g., Leistedt et al., 2009). As the
authors themselves admit, the GTA parameters are quite sensitive
to the choice of thresholds (Stam et al., 2007). While for high
threshold values networks seem to be organized into modules
with large-world self-similar properties, the addition of a few

weak links can make a network small-world. However, when
the number of sensors is small, the overall network size is also
small, PL does not vary much and the value of σ, characterizing
“smallworldness” depends mainly on CC (Papo et al., 2016).

Another problem concerningGTA application is the reliability
of SW structure identification against random networks.
The random network construction procedure usually involves
random rewiring of a network, but typically the number of
nodes, links, and the degree distribution are not changed.
In this way, some features of the investigated network are
preserved in the reference random network. Hlinka et al. (2017)
demonstrated that the model process with randomly scrambled
interconnections reveals SW features similar to the ones of the
original time series.

However, the most serious pitfall of the SW approach is the
common drive effect. In particular, when bivariate methods of
connectivity estimation are used, many spurious connections
may be produced. The effect is illustrated in Figure 1C. If the
source activity (channel 1) is recorded by channels 2, 3, and
4, bivariate measures will not only show connections between
channel 1 and channels 2, 3, and 4 but also between all the
channels which record activity from channel 1 owing to common
driving. In effect, for N channels which record activity from
a given source, we will obtain N true and N(N−1)/2 false
connections (Blinowska and Kaminski, 2013). When the number
of sensors N measuring activity from given sources increases,
the number of true connections increases linearly with N and
the number of false connections increases as N2. This effect is
responsible for multiple connections obtained using bivariate
measures, e.g., Figure 1A. Setting the connection values above
a given threshold to the same value, which is common practice,
further blurs the connections pattern (Blinowska and Kaminski,
2013).

The common drive effect may be avoided by fitting all
the channels into one model e.g., multivariate autoregressive
model (MVAR)–Figure 1D. The methods derived from the
MVAR model, DTF (Kaminski and Blinowska, 1991) or PDC—
Partial Directed Coherence (Baccala and Sameshima, 2001),
are free from the common drive effect. These estimators can
be considered as extensions of the Granger causality concept
(Kaminski et al., 2001), so they yield causal, directed connectivity.

When spurious connections caused by the common drive
effect are eliminated, the connectivity patterns become very
sparse and show clear-cut connectivity patterns. The relevant
examples are: EEG sleep studies (Kaminski et al., 1997), finger
movement experiment (Ginter et al., 2001; Kuś et al., 2006),
Continuous Attention Test (Blinowska et al., 2010), and working
memory task (Blinowska et al., 2013), which were compatible
with the known imaging, electrophysiological and anatomical
evidence.

In a working memory experiment involving memorizing and
recollection of Greek letters by groups of less and better-educated
people, EEG analysis was performed by calculation of SL
followed by GTA (Micheloyannis et al., 2006). No characteristic
frequency or topographic features were identified in the obtained
connection patterns, except that for less educated people the
SW connection pattern was reported and for better-educated
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FIGURE 1 | Comparison of bivariate and multivariate connectivity measures. Top images: connectivity patterns for slow wave sleep (stage 3/4), (A) obtained using the

bivariate measure (SL), (B) obtained using the multivariate measure (DTF). Although in (A) undirected and in (B) directed connections are shown, however the main

difference between the pictures are: disorganized pattern of connections in (A) and clear-cut pattern of connections compatible with physiological evidence in (B).

Bottom images—propagation patterns for a simulation which assumes a propagation of activity from electrode 1 to electrodes 2, 3, 4, and 5; (C)—pattern obtained

for a bivariate measure (coherence) and (D)—for a multivariate measure (DTF). For the bivariate connectivity measure, false connections are created resulting from

common driving. (A) Reproduced from Leistedt et al. (2009). (B) Reproduced from Kaminski et al. (1997) (with permission).

people the connectivity structure was random. In a similar
working memory task with by Kitzbichler et al. (2011) in which
phase synchronization was considered, the dense connection
pattern did not indicate brain regions involved in information
processing.

A similar paradigm involving memorizing letters and
relationships between themwas applied in Blinowska et al. (2013)
where effective connectivity was determined using time-varying
DTF. A clear-cut picture of transmissions between the main
centers of propagation located in the frontal and parietal regions
was observed, which was in agreement with the imaging studies
(Brzezicka et al., 2011) and the neurophysiological hypotheses
concerning the mechanisms of WM (Acuna et al., 2002).

Neural networks obtained using multivariate methods are
too sparse (disconnected) to apply the SW formalism, however,
in order to assess the community structure of networks, more
advanced methods such as assortative mixing (Newman and
Girvan, 2004) may be applied. Using the above method, the
existence of a modular structure of brain networks with a
higher connection density within modules than between them
was demonstrated (Blinowska et al., 2013). Moreover, dynamical
analysis of information processing in the WM task showed

frequency specific information transfer occurring transiently
between distant neural populations.

The challenges to “smallworldness” were brought by recent
publications based on tract-tracing. Kohn and Letzkus (1983);
Bassett and Bullmore (2017) indicate that large-scale neuronal
networks of the brain are arranged as globally sparse hierarchical
modular networks.Bassett and Bullmore (2017) recommend an
application of weighted graphs, which retain more information
of biological relevance. They underline a role of strongly
coupled clusters which comprise functionally specialized areas
of cortex and importance of replicable, but weak connections
between them. The approach applied by us (Blinowska et al.,
2013) based on assortative mixing complies with the above-
mentioned information on brain organization. The assortative
mixing approach can be applied to sparse, weighted, and directed
networks and allows for identification of the topography-specific
modular structure of networks.

We can conjecture that the concept of “smallworldness” faced
with the contemporary evidence based on experimental facts and
methodological considerations is not adequate for quantification
of EEG/MEG based networks structure. On one hand, there are
several methodological pitfalls which may invalidate the results,
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on the other hand, SW concept based on dense connectivity
structure produced by bivariate methods is not able to grasp
the complicated nature of neural networks, in consequence, its
information content is too low.

For connectivity assessment of EEG/MEG data, we
recommend multivariate methods free from common feeding
effect and yielding weighted and directed networks. For
quantitative analysis of networks patterns, the assortative mixing
is a good choice, since this method allows for identification of
community network structure including topography specific
modules and strengths of coupling within and between them.
This kind of approach gives a rich topographical and functional
information on brain organization.
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