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Recent research has demonstrated that the
parahippocampal place area represents both the shape
and texture features of scenes, with the importance of
each feature varying according to perceived scene
category. Namely, shape features are predominately
more diagnostic to the processing of artificial
human–made scenes, while shape and texture are
equally diagnostic in natural scene processing. However,
to date little is known regarding the degree of
interactivity or independence observed in the
processing of these scene features. Furthermore,
manipulating the scope of visual attention (i.e., globally
vs. locally) when processing ensembles of multiple
objects—stimuli that share a functional
neuroanatomical link with scenes—has been shown to
affect their cognitive visual representation. It remains
unknown whether manipulating the scope of attention
impacts scene processing in a similar manner. Using the
well-established Garner speeded-classification
behavioral paradigm, we investigated the influence of
both feature diagnosticity and the scope of visual
attention on potential interactivity or independence in
the shape and texture processing of artificial
human–made scenes. The results revealed asymmetric
interference between scene shape and texture
processing, with the more diagnostic feature (i.e., shape)
interfering with the less diagnostic feature (i.e., texture),
but not vice versa. Furthermore, this interference was
attenuated and enhanced with more local and global
visual processing strategies, respectively. These findings
suggest that the scene shape and texture processing are
mediated by shared cognitive mechanisms and that,
although these representations are governed primarily

via feature diagnosticity, they can nevertheless be
influenced by the scope of visual attention.

Introduction

We frequently encounter a wide and complex
variety of visual stimuli daily, such as objects, faces,
animals, trees, and buildings. Each of these types of
visual stimuli has been thoroughly investigated in
both the behavioral psychophysical and neuroimaging
literature, thus contributing to our understanding of
their cognitive and neural representations, respectively.
Although these stimuli are typically studied in isolation,
one commonality that unites our experiences with these
stimuli is their ubiquitous presence within scenes, a
point that underscores the need to better understand
how entire scenes are represented. Critically, it is
essential to investigate the shared and independent
cognitive mechanisms responsible for representing
visual feature information within a scene. Using a
behavioral paradigm, we will be investigating the
functional interactivity and independence of scene
feature processing (specifically scene shape and scene
texture) and comparing our findings to what is
known about scene representation from the functional
magnetic resonance imaging (fMRI) literature.

Within the past 20 years, fMRI studies have
demonstrated that different regions of the brain
participate in different aspects of scene representation.
For example, the retrosplenial complex is involved in
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navigation using knowledge retrieved from memory
(Malcolm, Groen, & Baker, 2016; Silson, Steel, & Baker,
2016), the lateral occipital complex (LOC) in processing
local objects within scenes (MacEvoy & Epstein, 2011),
and the occipital place area in processing local features
of scenes (e.g., boundaries, navigational affordances)
for navigation through the immediate environment
(Bonner & Epstein, 2017; Julian, Ryan, Hamilton, &
Epstein, 2016; Kamps, Julian, Kubilius, Kanwisher, &
Dilks, 2016). Notably, the parahippocampal place area
(PPA) is involved in global scene perception (Epstein &
Kanwisher, 1998).

PPA represents and identifies scenes on the basis of
a wide range of global scene features. For example,
PPA is sensitive to processing the layout or geometry
of space (Epstein, Graham, & Downing, 2003), the
spatial boundary (open/closed) of a scene (Park,
Brady, Greene, & Oliva, 2011), the object content of a
scene (Harel, Kravitz, & Baker, 2013), the category a
scene belongs to (artificial/natural; Walther, Caddigan,
Fei-Fei, & Beck, 2009), the contour junction statistics
of scenes (Choo & Walther, 2016), and the spatial
frequency content of scenes (Berman, Golomb, &
Walther, 2017). One explanation for the finding that
PPA is sensitive to processing a wide variety of scene
features lies with the principle of feature diagnosticity:
visual features that are most important to perform the
task at hand are preferentially used, given the available
visual information (Oliva & Schyns, 1997). For instance,
colored surfaces within a scene are diagnostic to the
categorization of some types of scenes (e.g., forests
are green, oceans are blue) but not others (e.g., urban
landscapes) (Oliva & Schyns, 2000). Thus, although PPA
rapidly processes and represents multiple types of scene
features, the principle of feature diagnosticity suggests
that some features would receive preferential focus
depending on how useful the feature was to the task
at hand. This was precisely shown by Lowe, Gallivan,
Ferber, and Cant (2016) in a study that used multivoxel
pattern analysis to examine the potential diagnosticity
of different visual features (i.e., scene geometry vs. scene
texture) to the representation of different categories of
scenes (i.e., natural vs. manufactured) in PPA. Results
indicated that scene geometry was more diagnostic than
scene texture when classifying manufactured scenes
(e.g., city landscapes or indoor rooms, scene categories
that are typically dominated by horizontal and vertical
lines; see Oliva & Torralba, 2001). In contrast, when
classifying natural scenes—where textural surfaces
can play a larger role in scene identification (e.g. sand
in a desert, water in a lake; see Oliva & Torralba,
2001)—shape and texture were equally diagnostic.
These findings suggest that the expansive list of scene
features represented in PPA may be explained by the
principle of feature diagnosticity.

From the literature discussed above, it is clear that
both structural (i.e., shape/geometric information)

and surface-related (i.e., texture, color) visual cues are
diagnostic to scene perception. This comes from human
neuroimaging research demonstrating the importance
of spatial layout in scene processing (for review, see
Epstein & Baker, 2019), and the joint contribution
of both shape and texture to scene representation in
PPA (Lowe et al., 2016; Lowe, Rajsic, Gallivan, Ferber,
& Cant, 2017). Beyond neuroimaging research in
neurologically intact individuals, neuropsychological
research with patients 1, who has a profound visual
form agnosia and cannot accurately perceive structual
details of objects but can perceive their surface
properties (Humphrey, Goodale, Jakobson, & Servos,
1994), demonstrated that patients 1 exhibited higher
activation in PPA for appropriately colored scenes
compared with black-and-white versions of these
scenes (the latter of which can only be recognized
on the basis of structural cues; Steeves, Humphrey,
Culham, Menon, Milner, & Goodale, 2004). Moreover,
recent neuroimaging and neurophysiological research
has demonstrated the importance of both shape and
texture to scene-selective regions of the macaque brain,
with potentially greater representational weighting for
the latter (Kornblith, Cheng, Ohayon, & Tsao, 2013).
Importantly, these neuroimaging, neuropsychological,
and neurophysiological findings are consistent with
behavioral scene research. For many years, much of this
research focused on shape-related visual cues, owing in
part to the findings that both rats and human infants
reorient themselves in their environment solely on
the basis of geometric cues (Cheng, 1986; Hermer &
Spelke, 1994). However, subsequent research revealed
the additional role of surface-based visual cues (such as
color and texture) to scene perception and recognition.
For example, natural scenes are recognized more
quickly when presented in color, as opposed to in black-
and-white (Gegenfurtner & Rieger, 2000), a finding
that mirrors the neuropsychological research discussed
above (Steeves et al., 2004). Moreover, surface-based
cues can be used to categorize scenes (i.e., scene “gist”)
without the need to identify particular objects in those
scenes (Biederman, Mezzanotte, & Rabinowitz, 1982;
Møller & Hurlbert, 1996; Oliva & Schyns, 1997, 2000;
Oliva & Torralba, 2001; Schyns & Oliva, 1994, 1997;
Vailaya, Jain, & Zhang, 1998). Finally, models that use
textural information have successfully demonstrated
how the visual system represents scenes, particularly
beyond the fovea where visual information is degraded
(Balas, Nakano, & Rosenholtz, 2009; Rosenholtz,
2011). Taken together, the number of lines of evidence
discussed above demonstrate the importance of both
shape and surface-properties to scene representation,
but it remains unclear how the processing of these
features are represented in scene-selective cortex
(i.e., interactively or independently), and how their
representation relates to the processing of global scene
properties in PPA. Gaining a deeper understanding of
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these issues is important, because it will not only inform
future computational and neural-network models of
scene representation, but may also resolve ambiguities
in the neuropsychological literature relating to the
relative weighting of shape- versus surface-related cues
in everyday scene perception and recognition (e.g.,
Robin, Lowe, Pishdadian, Rivest, Cant, & Moscovitch,
2017).

Recently, studies have demonstrated that the
representation in PPA extends beyond the processing
of global scene properties, to global features of a
variety of stimuli. For instance, Cant and Goodale
(2007, 2011) demonstrated that attention to different
features of single objects presented in isolation (i.e.,
not within the context of a scene) activates different
regions of occipitotemporal cortex, with object shape
preferentially activating LOC, and object texture
preferentially activating a region of the collateral sulcus
overlapping PPA. These results suggest that engaging
global processing in PPAmay depend upon the stimulus
attended to (i.e., within a scene, object shape and
texture are processed more locally, whereas when
focusing on a single object, texture may be processed
more globally than shape). Moreover, Cant and Xu
(2012) found that in addition to processing texture, PPA
is sensitive to processing the shape and texture features
from ensembles of multiple objects (e.g., leaves on a
tree, grapes on a vine, etc.), likely because scene, texture,
and ensemble perception share similar underlying
computational processes (i.e., the extraction of global
statistical features from repeating and redundant visual
information). This again demonstrates that the degree
of global processing of a visual feature in PPA may
be stimulus dependent (e.g., shape is processed more
locally in single objects but more globally in object
ensembles). Furthermore, changes in the global ratio of
different objects comprising a heterogeneous ensemble
are encoded in PPA, whereas LOC encodes changes in
the spatial arrangement of objects within an ensemble,
a change that requires processing of the local visual
elements of the group (Cant & Xu, 2015). These
findings suggest that the representation in PPA is biased
more toward global feature processing of visual stimuli,
whereas the representation in LOC may be biased
more toward local feature processing of visual stimuli,
which is consistent with findings in the scene perception
literature (e.g., MacEvoy & Epstein, 2011). Overall,
these findings demonstrate that, in addition to feature
diagnosticity, another important factor governing the
cognitive representation in PPA (and LOC) is the scope
of visual attention, with the PPA involved in the global
processing of multiple types of stimuli.

Previous studies have focused on fMRI neuroimaging
to help disentangle the heterogeneous nature of visual
feature representation in PPA. Investigating potential
functional sub-divisions within PPA, Baldassano
and colleagues (2013) revealed a posterior/anterior

functional split within this scene-selective region, with
the posterior region being more involved in visual
perception, and the anterior being more involved in
memory. However, it remains unclear how this varied
functional sensitivity seen across different subdivisions
of PPA translates into everyday scene perception.
Moreover, we do not know whether various scene
features (e.g., texture, geometry, spatial frequency,
spatial boundary, etc.) are processed and subsequently
represented in a more independent or interactive man-
ner. Finally, it remains unclear whether any potential
feature independence or interactivity is influenced by a
feature’s diagnosticity to scene perception or the scope
of visual attention (i.e., local vs. global).

As an alternative approach to neuroimaging research,
Garner’s speeded-classification task (Garner, 1974)
is a sensitive behavioral paradigm that can be used
to investigate potential interactivity or independence
in visual feature processing. Participants attend and
classify different values of a relevant feature in baseline
trials, where only the relevant feature varies (e.g., scene
spatial geometry). This performance is then compared
against that in filtering trials, where participants still
classify variations in the relevant feature, but this time in
the presence of random variation in a second, irrelevant
feature (e.g., scene texture). Importantly, the type of
stimuli presented and the number of trials are the same
for baseline and filtering blocks. If participants can
easily ignore changes in the irrelevant feature (i.e., no
changes in response latency and classification accuracy
between baseline and filtering trials) when classifying
the relevant one, then these features are said to be
processed independently and are labeled as separable
dimensions. Examples of known separable dimensions
include the position of lines and their luminance
contrast (Shechter & Hochstein, 1992), the color and
texture of objects (Cant, Large, McCall, & Goodale,
2008), and the sex and emotion of bodies (Gandolfo
& Downing, 2020). If, however, participants have
worse performance in the filtering trials (i.e., increased
response latency or a greater number of classification
errors) compared with the baseline, then these features
are not processed independently and are said to be
integral feature dimensions, which demonstrate Garner
interference. Examples of known integral features that
interfere with each other are the length of lines and
their orientation (Dick & Hochstein, 1988) and the
length and width of objects (Cant & Goodale, 2009;
Cant et al., 2008; Dykes & Cooper, 1978; Felfoldy,
1974; Ganel & Goodale, 2003). Garner interference can
also be observed asymmetrically, where one feature
interferes with the processing of another feature, but
not vice versa. Examples of this include identity/sex
interfering with emotion processing in face perception
(Atkinson & Burt, 2005; Schweinberger, Burton, &
Kelly, 1999; Schweinberger, Soukup, & Konstanz,
1998), sex interfering with weight processing in body
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perception (Johnstone & Downing, 2017), and body
posture interfering with facial identity processing
(Reed, Bukach, Garber, & McIntosh, 2018). Thus
Garner’s task has the potential to elucidate similarities
or differences in cognitive representation for different
types of visual feature processing, including perceptual
processing of high-level stimulus classes (e.g., faces
and bodies), and this can inform novel predictions
about the underlying neural representation of these
features. Of course, this relationship is reciprocal, as
neuroimaging findings can lead to the testing of novel
hypotheses regarding cognitive processing in behavioral
paradigms.

Garner’s speeded-classification task has been used
extensively to link brain activity with behavior. As
mentioned previously, Cant and Goodale (2007,
2011) demonstrated that attending to object shape
selectively activates LOC whereas attending to
object texture selectively activates PPA. The fact that
different regions processed different object features,
combined with neuropsychological findings that
surface-property perception is preserved in cases of
extreme disruptions to shape perception (Humphreys,
Romani, Olson, Riddoch, & Duncan, 1994; Milner,
Perrett, Johnston, Benson, Jordan, Heeley, Bettucci
D, Mortara F, Mutani R, Terazzi E, Davidson,
1991), suggested that object shape and texture may be
processed independently of each other. Using Garner’s
speeded-classification task, Cant et al. (2008) confirmed
this prediction, demonstrating functional independence
in the processing of object shape and texture, which
underscored the utility of using neuroimaging results to
generate testable behavioral hypotheses.

Furthermore, Cant and colleagues used both
Garner’s behavioral task and a neuroimaging approach
to investigate global feature processing in object-
ensemble perception. Using Garner’s task, Cant, Sun,
and Xu (2015) demonstrated that, unlike single-object
perception, global processing of the shape and
texture of object ensembles interfere with each other,
suggesting that the two features may share a similar
underlying neural substrate. Using fMRI-adaptation,
Cant and Xu (2017) found that this was indeed the
case, because similar results were found within PPA
when participants selectively attended globally to either
the shape or texture of object ensembles. Interestingly,
Cant et al. (2015) also found that the scope of attention
influenced the presence of Garner interference
between ensemble shape and texture. Specifically,
a task requiring a global-processing strategy when
perceiving ensemble shape and texture—effectively
expanding the scope of visual attention—resulted in
interference, while implementing a local-processing
strategy resulted in independence. Taken together, these
studies demonstrate a link between neuroimaging and
behavioral data and, importantly, reveal that Garner’s
task has the potential to inform our understanding of

the cognitive representation of different visual features,
specifically within PPA.

In the current study, across 3 experiments (and 2
control experiments; See Supplementary Materials and
Figures), we used Garner’s speeded-classification task
with artificial human-made scene stimuli (i.e., indoor
rooms) to investigate the processing of scene shape
and texture, two features that are represented in PPA
(Lowe et al., 2016; Lowe et al., 2017). Specifically, we
investigated whether these scene features are processed
interactively or independently of each other (for a more
detailed treatment of this issue, see “Experiment 1”),
and whether feature diagnosticity and the scope of
attention can influence this relationship.

General methods

Participants

Thirty-one participants (eight males, 23 females; 28
right-handed, three left-handed; mean age 18.2 years;
age range, 17–23 years) participated in Experiment 1
of this study, 32 participants (12 males, 20 females; 28
right-handed, four left-handed; mean age 18.8 years;
age range, 17–25 years) participated in Experiment 2 of
this study, and 31 participants (10 males, 21 females; 30
right-handed, one left-handed; mean age, 19.9 years;
age range, 18–32 years) participated in Experiment 3
of this study. The Supplementary Materials include a
description of two additional experiments, S1 and S2,
which provide important controls to, and replications
of, the findings in Experiments 2 and 3, respectively.
The participants were chosen from undergraduate
students taking introductory psychology courses at
the University of Toronto Scarborough. Participants
had normal or corrected-to-normal vision and received
course credit for participation. All participants provided
informed consent, and the study was approved by the
University of Toronto Research Ethics Review Board.

Stimuli and apparatus

Stimuli were computer rendered using Adobe
Photoshop CC 2015 (Adobe Systems Incorporated, San
Jose, CA, USA) and Blender 2.77 software (Stichting
Blender Foundation, Entrepotdok, Amsterdam, the
Netherlands). The mean and standard deviation of
luminance across the two stimulus sets used within each
experiment (see below) was matched using the SHINE
toolbox within MATLAB software.

In each experiment, two types of stimuli were
presented to participants, and each type of stimulus
contained variations in both shape and texture. In
Experiment 1, participants viewed single isolated
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objects (i.e., not presented within the context of a scene),
rendered in one of two different shapes (square vs.
rectangular) and in one of two different textures (mesh
vs. spotted patterns), and artificial scenes (i.e., indoor
rooms) devoid of objects and containing variations
in both features (shape: triangular vs. pentagonal;
texture: mesh vs. spotted patterns; henceforth referred
to simply as “original scene stimuli”; see Figure 2).
In Experiments 2 and 3, only scenes were presented,
and the same variations in shape (i.e., triangular vs.
pentagonal) and texture (i.e., mesh vs. spotted) were
used in both experiments. However, additional textural
manipulations, distinct from those used in Experiment
1, were applied to the scenes used in Experiments 2
and 3. In Experiment 2, one set of scene stimuli was
constructed that contained bold line segments at the
junction of adjacent surfaces (henceforth referred to
as “bolded-edge” scene stimuli), and another set was
constructed that contained a mixture of both types
of textures (i.e., one texture was applied to the lateral
walls/surfaces, and the other texture was applied to the
center/background wall/surface; henceforth referred
to as “two-textured” scene stimuli; see Figure 3). The
scene stimuli used in Experiment 3 were identical to
those used in Experiment 2, with the exception that the
floors of the scene stimuli were textured with the same
texture as their lateral surfaces/walls (see Figure 4).

Participants were tested in a darkened room and
had their head mounted on a headrest, elevated 32
cm from the surface of the table and 40 cm from a
CRT monitor (1920 × 1080 pixels, screen refresh rate:
60 Hz). Object stimuli subtended 43.3° vertically and
43.3° horizontally, and scene stimuli subtended 95.7°
vertically and 65.6° horizontally. Participants made
classifications of shape or texture (for both objects and
scenes) by pressing the “1” or “3” button on the number
pad of the keyboard in front of them, with their right
index finger on the “1” key and their right middle finger
on the “3” key. Stimulus presentation, as well as the
collection of response latency and accuracy data were
controlled using E-prime 2.0 software (Psychology
Software Tools, Inc., Sharpsburg, PA, USA), and data
analysis was conducted using MATLAB (ver. R2018b)
and R software (2020).

Procedure

The procedure of this experiment was adapted from
Cant and colleagues (2008). The order of stimulus
set presentation (e.g., objects vs. unmodified scenes
in Experiment 1) was counterbalanced between
participants within each experiment. Within each
stimulus set, or task, there were two conditions involving
attention to a specific feature: the classification of
stimulus shape and texture. The order of these
conditions within each task was counterbalanced

across participants. Furthermore, within each attended
feature condition, participants completed two baseline
blocks (where only the relevant, or attended, feature
varied; e.g., shape) and two filtering blocks (where both
relevant and irrelevant features varied; e.g., shape and
texture), with 32 trials within each block (block order
was pseudorandom for each combination of attended
feature and task). This design yielded a total of eight
blocks of trials per task (two baseline and two filtering
blocks for both the shape and texture conditions)
and thus 16 total blocks per experiment (2 tasks × 2
attended features/task × 4 blocks/attended feature × 32
trials/block = 512 trials/participant).

For each attended feature, the participants were
asked to attend to the center of the screen and classify
as quickly and accurately as possible either the shape
of the stimulus in the shape condition, or the texture
of the stimulus in the texture condition. Stimuli were
presented in a pseudorandom order within each block
of trials and participants responded by pressing either
the “1” or “3” key for a specific shape or texture (e.g., in
Experiment 1, pressing “1” for a triangular room and
“3” for a pentagonal room in the scene shape condition,
and pressing “1” for a spotted textured room and “3” for
a mesh textured room in the scene texture condition).
For two-textured scenes in Experiments 2 and 3,
participants were asked to classify the texture seen only
in the center of the scene on the back wall/surface of
the room. The assignment of a particular shape or
texture to a particular number key on the keyboard
was counterbalanced across participants. Each block
began with instructions to the participant about the
task they were about to complete. The first trial in each
block began with a central fixation cross for 2000 ms,
was followed by the presentation of a stimulus that
remained onscreen until the participant’s response, and
was then followed by an interstimulus interval indicated
by a fixation point at the center of the screen that lasted
for 2000 ms (see Figure 1). This trial structure repeated
until all stimuli within a block were presented.

At the beginning of each of the four unique
combinations of task and attended feature (i.e., shape
and texture conditions for both stimulus sets) within
each experiment, participants were shown examples
of the stimuli and were given instructions on how
to complete the classification task. Next, before
commencing the experimental blocks of trials for
a particular attended feature (e.g., object shape in
Experiment 1), participants completed 20 practice trials
that had the same stimuli, presentation parameters, and
response key assignment as the ensuing experimental
blocks of trials. In these practice trials participants
received feedback as to the accuracy of their responses
(i.e., “correct” or “incorrect” was presented on the
screen after each response). Verbal feedback was also
provided as necessary. This feedback was specific to the
practice trials and was not provided in the experimental



Journal of Vision (2021) 21(7):11, 1–19 Tharmaratnam, Patel, Lowe, & Cant 6

Figure 1. Schematic of experimental design. In all blocks, the
stimuli are presented in a pseudorandom order and remained
on the screen until a response is made. Once a response is
made an inter-stimulus interval of 2000 milliseconds (ms)
commences and is followed by the presentation of another
stimulus on the subsequent trial. In the baseline blocks only the
attended feature varies between stimuli (in the example above,
scene texture), while in the filtering blocks both the attended
feature (e.g., scene texture) and the unattended feature (e.g.,
scene shape) can vary between stimuli.

trials. Once the participants completed the practice
trials, they proceeded to the experimental blocks of
trials, and were provided with written instructions
onscreen between each block of trials reminding
them of the task, attended feature, and number key
assignment in the ensuing block of trials. Between the
two tasks of each experiment, participants had up to
one minute to take a break and relax their eyes before
being allowed to proceed to the second half of the
experiment.

Data analysis

In all experiments, we focused our data analysis on
participants’ response latencies, rather than error rates,
since previous studies using an equivalent paradigm
demonstrated better reliability for the former measure
when using Garner’s speeded-classification task (Cant
& Goodale, 2009; Cant et al., 2008; Cant et al., 2015).
Nevertheless, for completeness we report the error data
in the supplementary material. Only correct responses
were entered into the response latency analysis, and an
outlier analysis on correct responses was conducted.
For each participant separately and for each experiment
as a whole, responses that were more than 1.5 times
the interquartile range above or below the third and
first quartile mean response latency, respectively, for
a given block type were excluded. For accuracy, the
mean and standard error (SEM) were calculated for

each block type and participant separately, and then
mean accuracies that were 1.5 interquartile range above
or below the third and first quartile mean accuracy,
respectively, for a given block type were excluded.
Finally, if a participant’s mean response latency or
accuracy was deemed an outlier (using the criteria
above for each combination of stimulus, attended
feature, and block type), both dependent measures were
excluded from all analyses.

These outlier analyses resulted in the removal of
different numbers of participants across the four
conditions used in each experiment. Note that the type
of statistical analysis we used (i.e., repeated measures
mixed-effects model; see below) is robust to differences
in sample size across experimental conditions in a
repeated-measures design (Quené & Van Den Bergh,
2004). Below we describe how many participants were
removed from each condition in each experiment (based
on the outlier exclusion criteria for both response
latency and accuracy outlined above). In Experiment 1,
different numbers of participants were excluded from
the object shape, object texture, scene shape, and scene
texture conditions (six, two, three, and six participants,
respectively), and the same was true for the bolded-edge
scene shape, bolded-edge scene texture, two-textured
scene shape, and two-textured scene texture conditions
in Experiments 2 and 3 (Experiment 2: six, three, five,
and two participants, respectively; Experiment 3: one,
six, three, and three participants, respectively).

The data within each experiment was analyzed using
a 2 × 2 × 2 repeated measures mixed-effects model (α
= 0.05; type III Wald F tests with Kenward-Roger df).
Main effects included stimulus (Experiment 1: objects
vs. original scenes; Experiments 2 and 3: bolded-edge
vs. two-textured scenes), attended feature (attending to
shape vs. texture), and block type (baseline vs. filtering),
with a random intercept given for each subject (Barr,
Levy, R., Scheepers, C., & Tily, 2013). Significant effects
were investigated using planned pairwise comparisons
(α = 0.05, two-tailed), with corresponding Bayes factors
(BF10) reported using JASP software (JASP Team,
2016) to verify nonsignificant effects where appropriate
(i.e., the absence of interference in object or scene
processing). According to standard convention (Biel &
Friedrich, 2018; Jeffreys, 1998), a BF10 <1 constitutes
evidence in favor of the null hypothesis over the
alternative hypothesis. Specifically, Garner interference
or independence was evaluated by comparing response
latencies in the baseline and filtering blocks separately
for each combination of attended feature and stimulus
set (i.e., only two comparisons were made for each
stimulus set).

The data across experiments was analyzed using a 6
× 2 mixed-effects model (α = 0.05; type III Wald F tests
with Kenward-Roger df), collapsing across block type.
Main effects included stimulus (objects, original scenes,
bolded-edge scenes, two-textured scenes, bolded-edge
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scenes with textured floors, two-textured scenes with
textured floors), and attended feature (attending to
shape vs. texture), with a random intercept given for
each subject. Planned comparisons were conducted
between the object stimuli used in Experiment 1 and the
various scene stimuli used in Experiments 2 and 3, and
also between the original scenes used in Experiment 1
and the scene stimuli used in Experiments 2 and 3 (α =
0.05/8 = 0.00625, two-tailed), separately for each scene
feature attended to.

In addition, to evaluate the potential impact of
baseline differences in the processing of shape and
texture on resultant Garner interference, for each
stimulus within each experiment, differences in
response latency at baseline (i.e., texture baseline
response latency – shape baseline response latency)
across participants were correlated with differences
in response latency for the Garner interference
effect (i.e. filtering – baseline), separately for each
stimulus, for either shape and texture (Pearson’s
correlation coefficient, α = 0.05/2 = 0.025, two-tailed;
see Supplementary Materials and Supplementary
Figure S4).

Experiment 1

The main purpose of Experiment 1 was to assess
whether scene shape and scene texture are processed
independently or interactively. Based on previous fMRI
results, there are at least three different possibilities
that we may observe when using Garner’s task. First,
given that both of these global scene features are
processed within PPA, the processing of these scene
features may mutually interfere with each other (i.e.,
full or reciprocal Garner interference), similar to what
is observed with the processing of ensemble shape
and texture (i.e., interference between both features
using Garner’s task and sensitivity to processing both
features in PPA; Cant et al., 2015; Cant & Xu, 2017).
Second, the finding of different populations of PPA
neurons involved in processing the shape versus the
texture of artificial scenes may translate into behavioral
independence when processing these features. In
other words, this would mirror the same type of
independence observed when different cortical regions
are involved in processing different object features
(i.e., independence of object shape vs. texture in LOC
and PPA, respectively; Cant & Goodale, 2007; Cant &
Goodale, 2011; Cant et al., 2008). A third possibility
stems from the finding of feature diagnosticity in the
representation of scenes in PPA. Although multiple
scene features are processed within the PPA, certain
features may receive preferential processing depending
on the task at hand. As mentioned previously, Lowe et
al. (2016) demonstrated that shape was more diagnostic

than texture when processing artificial human–made
scenes. Given that we are using indoor rooms as our
scene category in this study, we may observe asymmetric
interference between the processing of scene shape and
texture. That is, the more diagnostic feature (i.e., shape)
will interfere with the processing of the less diagnostic
feature (i.e., texture), but not vice versa.

Since observing independence between scene features
would rest on a null result, it was important to pair
the scene task with another task that reliably produces
independence between shape and texture processing.
This would ensure that any independence we observe
in the scene task is not likely to be explained by
confounds within our experimental design. To that end,
participants also classified the shape and texture of
single objects (not presented within the context of a
scene), and we predicted independence in the processing
of these object features, consistent with previous studies
(Cant et al., 2008; Cant et al., 2015).

Results and discussion

Participants performed very accurately in each task,
as overall accuracy was near ceiling (mean accuracy
across all blocks across participants was 97.35%,
SEM = 0.15%; see Supplementary Materials and
Supplementary Figure S3A). For response latency, the
main effect of stimulus (objects: M = 540.28 ms, SEM
= 6.63 ms; original scenes:M = 585.94 ms, SEM = 9.10
ms; F(1,189.18) = 41.24, p < 0.001) was significant. In
contrast, nonsignificant results were observed for the
main effects of attended feature and block type, and all
interactions (all Fs(1,∼189) <1.88, all ps > 0.17).

Based on our prediction of independence between
shape and texture processing in object perception, and
the three distinct predictions for the processing of these
features in scene perception, we conducted pairwise
comparisons between the baseline and filtering blocks
separately for each combination of attended feature
(i.e., shape and texture) and stimulus (i.e., objects
and scenes). As predicted, we found nonsignificant
differences between baseline and filtering blocks when
participants attended both object shape (baseline:
M = 531.34 ms, SEM = 15.28 ms; filtering: M =
529.91 ms, SEM = 13.53 ms; t(24) < 0.14, p = 0.89,
BF10 = 0.368, p = 0.269) and object texture (baseline:
M = 547.22 ms, SEM = 12.75 ms; filtering: M =
548.82 ms, SEM = 13.59 ms; t(28) < 0.19, p = 0.85,
BF10 = 0.299, p = 0.165). In the scene shape task
we did not observe a significant difference between
baseline and filtering blocks (baseline: M = 593.20
ms, SEM = 17.01 ms; filtering: M = 582.74 ms, SEM
= 18.67 ms; t(27) = 1.03, p = 0.31, BF10 = 0.474, p
= 0.321) but did find a significant difference when
participants attended scene texture (baseline: M =
568.15 ms, SEM = 17.99 ms; filtering: M = 598.58 ms,
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Figure 2. Results from Experiment 1 (n = 31), using object stimuli and original scene stimuli. Orange arrows/bars represent baseline
blocks (where only the attended feature changes across trials), and red arrows/bars represent filtering blocks (where both the
attended and unattended features change across trials). These (and all subsequent) stimuli displayed are for illustrative purposes only
and thus do not reflect the actual size of stimuli used in the experiments. **p < 0.01; ms = milliseconds.

SEM = 22.55 ms; t(24) = 2.81, p < 0.01) (see Figure 2).
This result is consistent with our third prediction,
namely, asymmetric interference between the processing
of scene shape and scene texture. That is, the more
diagnostic feature when processing artificial scenes
(scene shape) interferes with the processing of the less
diagnostic feature (scene texture), but not vice versa.
Taken together, these results replicate previous and
well-established findings of independence between
shape and texture processing in object perception (e.g.,
Cant & Goodale, 2009; Cant et al., 2008; Cant et al.,
2015), but importantly, demonstrate, for the first time,
behavioral interference between shape and texture
processing in scene perception.

Experiment 2

Having established asymmetric interference between
the processing of scene shape and texture in Experiment
1, the purpose of Experiment 2 was to examine whether
this asymmetric interference effect, which was governed
by feature diagnosticity, is affected by manipulations to
the scope of visual attention. Using object ensembles
(which, like scenes, are processed globally within
PPA; see Cant & Xu, 2017) in a behavioral paradigm,
Cant et al. (2015) demonstrated that implementing a
global-processing style accentuated Garner interference
between ensemble shape and texture, whereas attending
locally eliminated interference. With this in mind, we
made two manipulations to the scene stimuli in this
experiment to influence the participants’ scope of
attention.

Previous research has demonstrated that contour
junctions are particularly important visual cues in
scene categorization (Walther & Shen, 2014; Wilder,
Dickinson, Jepson, & Walther, 2018), and the neural
representation of global scene features in high-level
scene-selective cortex (e.g., PPA) is particularly sensitive
to contour junctions (Choo & Walther, 2016). On the
basis of these findings, we created one type of stimulus
(bolded-edge scenes) whereby the contour junctions of
adjacent surfaces were demarcated with a bold line,
thus enhancing the saliency of the scene’s global shape
(see Figure 3).

One way that we parse objects within scenes is based
on texture segmentation, where local textural differences
across surfaces demarcate foreground (i.e., “object”)
from background (i.e., “scene”) (Wagemans, Elder,
Kubovy, Palmer, Peterson, Singh, & von der Heydt,
2012). Such texture segmentation processes have been
proposed to be localized in early visual cortex (i.e., V2),
where neurons process local textural discontinuities
(Schmid & Victor, 2014). With this in mind, we created a
second type of stimulus (two-textured scenes), in which
two different textures were used in each scene, with one
applied to the lateral walls/surfaces and another applied
to the central wall/surface. This effectively created a
perceptual “pop-out” effect based on the segmentation
of dissimilar textures across surfaces and increased the
saliency of the central wall’s shape and texture (as if an
object had been placed in the center of the scene).

Given that Parkhurst, Law, and Niebur, (2002)
have shown that increasing the saliency of features
(through regional differences in color, luminance, and
orientation) within a scene increases the allocation
of attention toward them, we predicted that our
stimulus manipulations would promote global attention
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Figure 3. Results from Experiment 2 (n = 32), using bolded-edge and two-textured scene stimuli. Orange arrows/bars represent
baseline blocks (where only the attended feature changes across trials), and red arrows/bars represent filtering blocks (where both
the attended and unattended features change across trials). *p < 0.05; ms = milliseconds.

in bolded-edge scenes, and local attention to the
central wall in two-textured scenes. Of particular
interest in this experiment is the comparison of the
importance of feature diagnosticity and attentional
scope in modulating Garner-interference effects in scene
perception. If scene feature diagnosticity largely governs
the asymmetric interference effect, then asymmetric
interference between shape and texture should persist
in both types of stimuli, even when attention is drawn
to local elements in two-textured scenes. If, however,
attentional scope plays a larger role, then we should
see stronger interference (compared with Experiment
1) when attention is manipulated globally, and the
elimination of interference with a local attentional
manipulation. A finding in between these possibilities
(e.g., similar interference in bolded-edge scenes and
the elimination of interference in two-textured scenes)
would point to the dual importance of both cognitive
processes.

Results and discussion

Participants performed very accurately in each task
in Experiment 2, as overall accuracy was again near
ceiling (mean accuracy across all blocks was 97.22%,
SEM = 0.23%; see Supplementary Materials and
Supplementary Figure S3B). For response latency,
the main effect of attended feature (shape: M =
505.60 ms, SEM = 7.82 ms; texture: M = 540.46 ms,
SEM = 10.87 ms; F(1,197.75) = 13.20, p < 0.001)
and the stimulus-by-attended feature interaction
(F(1,197.51) = 10.41, p < 0.01) were both significant,
but all other main effects and interactions were not
significant (all Fs(1,∼198) < 2.61, all ps > 0.11).

Based on our predictions, we investigated
potential Garner interference by conducting pairwise

comparisons between the baseline and filtering blocks
separately for each attended feature (i.e., shape and
texture) in each stimulus set (i.e., bolded-edge and
two-textured scenes). For bolded-edge scenes we found
that reaction times in the baseline and filtering blocks
differed when attending to both scene shape (baseline:
M = 479.37 ms, SEM = 14.54 ms; filtering:M = 495.81
ms, SEM = 15.02 ms; t(25) = 2.48, p < 0.05), and
scene texture (baseline: M = 539.78ms, SEM = 18.87
ms; filtering: M = 566.11 ms, SEM = 25.86 ms; t(28)
= 2.13, p < 0.05), indicating reciprocal interference.
In contrast, there was no interference observed in the
two-textured scene stimuli when attending to either
shape (baseline: M = 510.01 ms, SEM = 14.48 ms;
filtering: M = 494.57 ms, SEM = 10.19 ms; t(26) =
1.69, p = 0.10, BF10 = 1.400 , p = 0.58) or texture
(baseline: M = 515.17 ms, SEM = 20.36 ms; filtering:
M = 529.15 ms, SEM = 22.83 ms; t(29) = 1.59, p =
0.12, BF10 = 0.264, p = 0.208) (see Figure 3).

These results reveal that our scene stimulus
manipulations replicated (i.e., bolded-edge scenes)
and eliminated (two-textured scenes) the interference
of scene shape on texture processing observed in
Experiment 1, by expanding and contracting the scope
of attention, respectively. This demonstrates that both
scene feature diagnosticity and the scope of visual
attention contribute to the pattern of interference (or
lack thereof) observed in the processing of scene shape
and texture (see below). Surprisingly, scene texture
interfered with scene shape processing in bolded-edge
scenes, which we did not observe with the original scene
stimuli used in Experiment 1. However, as shown in
subsequent experiments (see Experiments 3, and S1
and S2 in the Supplementary Materials), this result
does not replicate, whereas the interference of scene
shape on scene texture processing does in each instance.
This is further supported by the lack of a significant
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effect of block type in the mixed-effects model. Thus
the interference of scene texture on shape processing
in this experiment is not consistently reliable across
experiments and should not be interpreted further.
As such, the more reliable finding, as will be seen in
subsequent experiments, is asymmetric interference
between scene shape and scene texture processing (as
seen in Experiment 1).

The replication of asymmetric interference by
bolding the edges of adjacent surfaces in the scene
highlights the importance of feature diagnosticity
in scene perception, since a global attentional
manipulation did not strengthen the asymmetric
interference effect observed in Experiment 1. However,
it is difficult to conclude that feature diagnosticity plays
a stronger role than attentional scope in governing
scene feature interference effects based on these results
alone. Indeed, it is still possible that the global spread
of attention contributed to the asymmetric interference
observed in bolded-edge scenes. To further investigate
the effect of manipulating attention, we compared the
response latencies when responding to bolded-edge
scenes(and two-textured scenes) with the responses to
the original scenes in Experiment 1 (see “Comparisons
Across Experiments” for details).

In contrast to the results seen with bolded-edge
scenes, using two-textured stimuli to localize attentional
processing eliminated Garner interference between
scene shape and texture processing. Since independence
between the processing of shape and texture is routinely
observed in object perception (Cant et al., 2008; Cant
et al., 2015), this finding provides support for the
notion that participants may have been using more
local, “object-like” processing resources to perceive the
two-textured scenes, based on texture segmentation.
This result is also consistent with those in (Cant et al.,
2015), which examined global and local processing of
shape and texture in object-ensemble stimuli using a
Garner interference paradigm. This validates the use
of our scene stimulus manipulations since such effects
would be expected given that both scenes and ensembles
are functionally related and share similar underlying
neural substrates (Cant & Xu, 2012; Cant & Xu, 2015;
Cant & Xu, 2017). Together, the results of Experiment
2 reveal that interference in the perception of scene
features depends partly upon the diagnosticity of the
scene feature in question, and partly upon the scope of
visual attention. This latter effect is further explored in
Experiment 3, where additional scene manipulations
were applied to accentuate global processing styles.

Experiment 3

The purpose of Experiment 3 was to further
investigate how feature diagnosticity and the scope
of visual attention contribute to interference effects

observed in scene processing. In Experiment 2
we manipulated the focus of attention globally in
bolded-edge scenes and more locally in two-textured
scenes. In Experiment 3 we examine the processing
of scene shape and texture further by manipulating
both types of scene stimuli to potentially accentuate
global-processing styles. Specifically, we textured the
floor of each type of scene with the same texture that
was applied to the lateral walls, where previously all
scene stimuli contained a gray-colored textureless
floor (see Figure 4). For bolded-edge scenes, texturing
the floor to match the lateral and central walls would
increase the saliency of the scene’s global shape and
texture, spreading attention globally, based on Gestalt
grouping cues (i.e., texture similarity). For the same
reason, we believe that attention will spread globally
when viewing the two-textured scenes. Indeed, given
that Gestalt grouping cues have been found to modulate
the automatic spread of attention (Wannig, Stanisor,
& Roelfsema, 2011), we predict that we will find
asymmetric Garner interference for bolded-edge and
two-textured scenes with textured floors. Alternatively,
for two-textured scenes specifically, adding textured
floors may accentuate a local-processing style by
reinforcing the strong object “pop out” effect, also
explained by Gestalt principles (i.e., segmentation
based on texture dissimilarity). In this case, we would
expect to see independence in the processing of shape
versus texture in the two-textured scenes (as seen in
Experiment 2). However, we believe the stronger effect
will result from texture similarity, and thus predict
asymmetric Garner interference (i.e., shape interferes
with texture processing but not vice versa) for both
types of scene stimuli.

Results and discussion

As in Experiments 1 and 2, accuracy was near
ceiling in Experiment 3 (mean accuracy across all
blocks was 97.72%, SEM = 0.15%; see Supplementary
Materials and Supplementary Figure S3C). For
the response latency data, the stimulus-by-attended
feature (F(1,193.24) = 56.64, p < 0.001) and the
attended feature-by-block type (F(1,193.50) = 6.43,
p < 0.05) interactions were significant. In contrast,
the main effects, stimulus-by-block type interaction,
and three-way interaction were all non-significant (all
Fs(1,∼193) < 3.44, all ps > 0.065).

Based on our predictions, we conducted pairwise
comparisons between the baseline and filtering blocks
separately for each combination of attended feature
(i.e., shape vs. texture) and stimulus set (i.e., bolded-
edge vs. two-textured scenes). These comparisons
revealed significantly faster responses in the baseline
compared with the filtering blocks when attending
to texture in bolded-edge scenes with textured floors
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Figure 4. Results from Experiment 3 (n = 31), using bolded-edge and two-textured scene stimuli with textured floors. Orange
arrows/bars represent baseline blocks (where only the attended feature changes across trials), and red arrows/bars represent
filtering blocks (where both the attended and unattended features change across trials). *p < 0.05; **p < 0.01; ms = milliseconds.

(baseline: M = 558.34 ms, SEM = 17.15 ms; filtering:
M = 585.04 ms, SEM = 18.30 ms; t(24) = 3.06, p <
0.01), but no difference across blocks when attending
to shape (baseline: M = 518.52 ms, SEM = 18.30 ms;
filtering: M = 524.97 ms, SEM = 19.49 ms; t(29) =
0.73, p = 0.47, BF10 = 0.204, p = 0.246).

Similarly, there were significantly faster response
latencies in the baseline blocks, compared with the
filtering blocks, when attending to texture in the
two-textured scenes with textured floors (baseline: M
= 500.59 ms, SEM = 13.90 ms; filtering: M = 516.52
ms, SEM = 14.89 ms; t(27) = 2.47, p < 0.05), but no
difference between blocks when attending to shape
(baseline: M = 555.78 ms, SEM = 17.21 ms; filtering:
M = 534.43 ms, SEM = 15.70 ms; t(27) = 1.77, p =
0.09, BF10 = 0.398, p = 0.556) (see Figure 4).

These results replicate the asymmetric interference
effect between texture and shape in bolded-edge scene
stimuli (i.e., shape interfered with texture processing
but not vice versa), and interestingly, we observe the
same asymmetric interference effect in two-textured
scenes (which was not observed in Experiment 2).
Together, this demonstrates the importance of feature
diagnosticity in scene perception, since the more
diagnostic feature (i.e., shape) interfered with the
less diagnostic feature (i.e., texture) in two different
types of manufactured scenes. But these findings, and
those in Experiment 2, also point to the contribution
of the scope of visual attention, since using a local
attentional manipulation eliminated interference
(i.e., two-textured scenes in Experiment 2), and
adding a global manipulation led to interference
(i.e., two-textured scenes with textured floors in this
experiment).

We contend that adding textured floors to both types
of stimuli effectively spread attention globally, resulting

in asymmetric Garner interference by overriding the
object “pop-out” effect present in two-textured scenes.
To more comprehensively explore the impact that
each of our scene stimulus manipulations had, we
conducted an analysis where the response latency data
was compared across all three experiments (for the
results of two control experiments that completely
replicated the results of Experiments 2 and 3 and
demonstrated that the interference effects observed
could not be explained by differences in luminance
across the textures used, see experiments S1 and S2,
respectively, in the Supplementary Materials).

Comparison across experiments

The results of Experiment 1 demonstrated that
feature diagnosticity likely explained the asymmetric
interference observed between the processing of scene
shape and texture. The results of Experiments 2 and
3 reinforced the importance of feature diagnosticity,
but also revealed the contribution of the scope of
visual attention to scene feature processing. The goal of
this cross-experiment analysis was to understand the
relative contributions of feature diagnosticity and the
scope of attention to Garner interference. To do so,
we compared the speed of processing scene features in
Experiments 2 and 3 against the speed of processing
features of the original scenes in Experiment 1, to gauge
how manipulating the scope of visual attention affected
overall processing speed (i.e., comparing RTs for stimuli
across experiments, separately for each attended feature,
and collapsed across block type). To preview, we show
that asymmetric interference between the processing
of scene shape and scene texture is governed primarily
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Figure 5. Results of the analysis comparing response latencies for the various stimuli across experiments. Planned comparisons were
conducted between the original scene stimuli used in Experiment 1 with each of the scene stimuli used in Experiments 2 and 3, and
between the object stimuli used in Experiment 1 with the scene stimuli used in Experiments 2 and 3 (α = 0.05/8 = 0.00625). Each bar
represents data collapsed across baseline and filtering blocks. ***p < .001; ms = milliseconds.

via feature diagnosticity, but it can nevertheless be
influenced by the scope of visual attention.

If a global-processing strategy is being employed
on manufactured scenes, we expect asymmetric
interference because of feature diagnosticity, with the
more diagnostic feature (i.e., scene shape) interfering
with the less diagnostic feature (i.e., scene texture).
We would also expect feature diagnosticity to largely
dictate the speed of feature processing under a
global processing strategy. Because rapid global scene
perception prioritizes the processing of more diagnostic
features over lesser ones, if a global attentional
manipulation in Experiments 2 or 3 made a scene
feature more salient (compared to Experiment 1), we
would expect to see larger decreases in response latency
for more diagnostic features (i.e., scene shape) than less
diagnostic ones (i.e., scene texture).

In contrast, if a local-processing strategy is employed,
we expect independence between the processing of
scene features. Furthermore, we expect that the saliency
of the local feature attended to would dictate processing
speed, irrespective of the diagnosticity of that feature.
Given that increased attention has been shown to speed
up visual processing of localized attended features
(Tünnermann, Petersen, & Scharlau, 2015) and the
participants’ task in all three experiments was to
attend to the back wall of the scene when classifying
scene features, if a scene manipulation promoted a
more local processing strategy of shape or texture
(i.e., two-textured scenes in Experiment 2), we expect
response latencies for the locally attended scene feature
to decrease (compared with the response latencies in
Experiment 1).

Results and discussion

The main effects of stimulus (F(5,189.30) = 9.49, p
< 0.001), attended feature (F(1,591.67) = 11.73 , p <
0.001), and their interaction (F(5,591.57) = 12.77, p <
0.001) were all significant.

In Experiment 2, adding bolded edges to the original
scenes was meant to promote a global processing
strategy, and enhance Garner interference. However,
because the interference observed was similar to the
original scenes used in Experiment 1, it was difficult
to ascertain whether expanding attention globally
contributed to this interference effect, above and
beyond the contribution of feature diagnosticity. When
comparing response latencies across experiments, we
found that bolded-edge scenes had significantly faster
response latencies compared with the original scenes
used in Experiment 1 when attending to shape (original
scenes: M = 586.07 ms, SEM = 11.71 ms; bolded-edge
scenes: M = 500.56 ms, SEM = 11.71 ms; t(341) =
5.16, p < 0.001), but not texture (original scenes: M =
585.81 ms, SEM = 13.19 ms; bolded-edge scenes: M =
556.35 ms, SEM = 12.53 ms; t(341) = 1.62, p = 0.11)
(see Figure 5). The reduction of response latency for
the more diagnostic feature (scene shape) but not the
less diagnostic one (scene texture) suggests that adding
salient contours in bolded-edge scenes did in fact spread
attention globally and impacted feature processing.

It should be noted that because participants always
focus on the center wall, and the saliency of the
contours surrounding the center wall are enhanced, a
similar reduction in response latency for scene shape
(but not scene texture) would also be expected if using
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a local processing strategy. However, because a local
processing strategy would also likely eliminate Garner
interference (Cant et al., 2015; results with two-textured
scenes in Experiment 2), and we instead observed
interference between shape and texture, the use of
a global processing strategy in bolded-edge scenes
appears to be the more consistent conclusion.

Two-textured scenes in Experiment 2 had significantly
faster response latencies when attending to both shape
(original scenes: M = 586.07 ms, SEM = 11.71 ms;
two-textured scenes: M = 510.64 ms, SEM = 11.71 ms;
t(340) = 4.55, p < 0.001) and texture (original scenes:
M = 585.81 ms, SEM = 13.19 ms; two-textured scenes:
M = 524.57 ms, SEM = 12.53 ms; t(340) = 3.37, p
< 0.001). Combined with the finding that shape and
texture were processed independently in two-textured
scenes, these results suggest that the use of texture
dissimilarity in two-textured scenes did in fact facilitate
a local-processing strategy compared with the original
scenes used in Experiment 1.

The response latencies for bolded-edge scenes with
textured floors in Experiment 3 were significantly
faster than those for the original scenes in Experiment
1 when attending scene shape (original scenes: M =
586.07 ms, SEM = 11.71 ms; bolded-edge scenes with
textured floors: M = 520.29 ms, SEM = 11.32 ms;
t(341) = 4.04, p < 0.001) but not scene texture (original
scenes: M = 585.81 ms, SEM = 13.19 ms; bolded-edge
scenes with textured floors: M = 568.00 ms, SEM
= 13.32 ms; t(340) = 0.95, p = 0.34). Combined
with the finding of asymmetric Garner interference
between scene shape and texture, these results suggest
that, in addition to the contribution of feature
diagnosticity, a global-processing strategy was indeed
being implemented when processing bolded-edge scenes
with textured floors.

In Experiment 3, adding a textured floor to two-
textured scenes created a scenario where global (i.e.,
texture similarity) and local (i.e., texture dissimilarity)
processing strategies potentially competed against each
other. The fact that we observed asymmetric Garner
interference for two-textured scenes with textured floors
(compared with independence for two-textured scenes
without textured floors in Experiment 2) suggests that
these scenes were processed in a more global manner.
However, it is unclear whether this effect is due to
a complete shift from local to global processing, or
whether the existing local processing strategy was
simply attenuated by the spread of attention globally
away from the back wall.

The results support the second scenario. When
attending to shape, response latencies increased
compared with the two-textured scenes in Experiment
2 and were now no longer significantly different from
the original scenes in Experiment 1 (original scenes: M
= 586.07 ms, SEM = 11.71 ms; two-textured scenes
with textured floors: M = 548.72 ms, SEM = 11.51 ms;

t(341) = 2.27, p = 0.02; note, this is not significantly
different based on the Bonferroni correction value
of α = 0.00625). In contrast, response latencies
when attending texture remained significantly faster
compared with the original scenes from Experiment
1 (original scenes: M = 585.81 ms, SEM = 13.19 ms;
two-textured scenes with textured floors: M = 509.22
ms, SEM = 12.96 ms; t(340) = 4.14, p < 0.001).

In summary, the effect of adding textured floors to
two-textured scenes had a more pronounced impact on
shape, compared with texture classifications. Spreading
attention globally during shape classifications does
not impact accuracy, since global and local scene
shape match. However, during texture classifications,
attention still has to have a degree of focus on the
texture of the central wall to maintain accuracy,
since classifications based on the global texture of the
lateral walls and floor would be incorrect (this likely
occurred, given the high accuracy in this condition; see
Supplemental Materials and Figures). Thus, it appears
that the local-processing strategy based on texture
dissimilarity was attenuated by the global spread of
attention from the addition of a textured floor, which
ultimately led to the reemergence of Garner interference
that was absent in the two-textured scenes used in
Experiment 2.

Finally, we also made all of the same pairwise
comparisons between the object stimuli used in
Experiment 1 and the scene stimuli used in Experiments
2 and 3, but all comparisons were non-significant (all
t(∼341) < 2.13, p > 0.03, Bonferroni correction value
of α = .00625).

When considering all of these results, an important
point to make is that we do not simply see asymmetric
interference when the diagnostic feature is facilitated,
because shape processing was facilitated for two-
textured scenes in Experiment 2 yet we found
independence between the processing of scene shape
and texture. Thus a stimulus manipulation that focuses
attention locally can remove the interfering influence
of the diagnostic feature. Furthermore, a stimulus
manipulation that expanded the scope of attention
globally for both the diagnostic and less diagnostic
feature resulted in the reemergence of asymmetric
Garner interference. Taken together, although feature
diagnosticity appears to dominate scene processing
and leads to asymmetric interference, the results
of this across experiment response latency analysis
demonstrate that it can be influenced by the scope of
visual attention.

General discussion

Using Garner’s speeded-classification task (Garner,
1974) along with traditional null-hypothesis significance
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testing and Bayesian analyses across 3 experiments (plus
two additional control experiments; see Supplementary
Materials), the potential interactivity between scene
shape and texture processing was examined, motivated
by fMRI findings that a region of scene-selective
visual cortex (i.e., PPA) is sensitive to processing
both features (Lowe et al., 2016). In Experiment 1,
asymmetric interference between scene shape and scene
texture processing was observed, and this effect was
governed by feature diagnosticity. Specifically, the more
diagnostic feature for the perception of a given scene
category (in this case, shape for indoor rooms; see Oliva
& Torralba, 2001) interfered with the processing of the
less diagnostic scene feature (i.e., scene texture), but not
vice versa. Importantly, the lack of interference of scene
texture on scene shape processing is not likely explained
by confounds within our experimental design, because
independence was observed between the processing of
object shape and texture, replicating a well-established
finding in the object perception literature (Cant et
al., 2008; Cant et al., 2015). This behavioral finding
of asymmetric interference (which persists through
Experiments 2 and 3, S1, and S2) reliably supports
fMRI literature indicating that feature diagnosticity
significantly contributes to scene representation in
PPA (Lowe et al., 2016) and demonstrates that scene
shape and texture are integral feature dimensions.
Given that shape and texture are equally diagnostic in
natural scenes (Lowe et al., 2016), future studies should
investigate whether symmetric or reciprocal interference
between shape and texture would be observed when
using natural scene categories. Importantly, the results
of these experiments demonstrate that the processing
of scene shape and scene texture are mediated by at
least partially shared cognitive mechanisms.

After establishing asymmetric interference between
the processing of scene shape and texture, Experiments
2 and 3 (as well Experiments S1 and S2) revealed
that, in addition to feature diagnosticity, the scope of
visual attention also influences Garner interference.
Specifically, scene stimulusmanipulations that expanded
the scope of attention globally (i.e., adding bolded
edges or textured floors) led to asymmetric interference,
whereas manipulations that contracted the scope of
attention locally (i.e., adding two textures) eliminated
such interference. These findings directly mirror results
from Cant et al. (2015), which used object ensembles (a
type of visual stimulus functionally and anatomically
linked with scene perception; Cant & Xu, 2012; Cant
& Xu, 2015; Cant & Xu, 2017) and demonstrated that
expanding the scope of visual attention led to Garner
interference between shape and texture processing,
whereas contracting attention eliminated it. Because we
consistently observe asymmetric interference between
the processing of scene shape and texture, it seems that
feature diagnosticity is a strong and reliable contributor
to scene representation. However, the fact that this

interference can be eliminated and reinstated using
local and global attentional manipulations, respectively,
speaks to the additional influence of the scope of
visual attention. Interestingly, adding textured floors
to the scenes in Experiment 3 revealed that global-
and local-processing strategies can compete with
each other, thereby influencing the processing and
interference observed between scene features. Further
research is necessary to disambiguate the effects of
competing global and local processing strategies on
scene feature processing. It is also important to note
that the results of Experiments 2 and 3 completely
replicate after correcting for differences in luminance
across textures in Supplementary Experiments S1 and
S2, respectively. This demonstrates that the presence
or absence of asymmetric interference cannot be
explained simply by appealing to low-level visual
processing (see Supplementary Materials and Figures),
and the reliability of these results reveal new insights
into the cognitive mechanisms underlying scene
representation. We contend that these results are
not attributable to differences in cognitive strategy
across the baseline and filtering trials (i.e., trading off
speed for accuracy and vice versa) as performance
in all Experiments was uniformly near ceiling. Thus
differences in response latency across baseline and
filtering blocks where interference is observed cannot
be accounted for by differences in accuracy across
those blocks. Furthermore, we do not believe our
asymmetric interference results are attributable to the
type of scene-processing task we used. An argument
could be made that we see no interference in the scene
shape condition because participants are fixating on the
central wall and this strategy engages more localized
processing, whereas we see interference in the scene
texture condition because this condition is better
suited to engaging global scene-processing mechanisms.
This is not likely given that the task requirements
for both attending shape and texture required the
participant to fixate the central wall. If participants
were explicitly sampling information from the lateral
walls when making their texture discriminations,
then we would expect to see lower accuracy in the
two-textured scenes compared with the bolded-edge
scenes, which was never the case (i.e., the main effect
of stimulus was non-significant in the accuracy
analysis in all experiments). Thus it is more likely that
participants were complying with task requirements in
all experiments, and interference in scene processing is
better explained by the more diagnostic feature (i.e.,
shape) interfering with the less diagnostic feature (i.e.,
texture), but not vice versa.

The validity in interpreting asymmetric Garner
interference as integral processing is dependent on
an assumption that response latencies at baseline
between scene shape and texture are not significantly
different. If one scene feature (e.g., shape) is processed
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faster than the other (e.g., texture) at baseline, then
the interference observed in texture processing (but
not shape processing) could be partially explained
by the serial processing of these features (Algom &
Fitousi, 2016; Gandolfo & Downing, 2020; Garner,
1976; Johnstone & Downing, 2017; Schweinberger et
al., 1999). In a serial-processing hypothesis, the faster
the first feature is perceptually represented, the more
potential it has to interfere with the processing of the
second feature, thereby increasing Garner interference.
Thus, a larger difference between baseline shape and
texture processing would translate to a stronger Garner
interference effect. To investigate this possibility, a
Pearson correlation coefficient was calculated across
participants between baseline differences in response
latency (i.e., texture baseline – shape baseline) and
differences in Garner interference response latency (i.e.,
filtering – baseline), separately for shape and texture
(see Supplementary Materials, and Supplementary
Figure S4). Across all three experiments (and both
control experiments), we find no significant positive
correlations for the attended scene feature that
demonstrated Garner interference and thus conclude
that the asymmetric interference observed was likely
due to integral processing and is not fully explained by
serial processing differences between the scene features
at baseline.

Beyond furthering our understanding of the
cognitive mechanisms mediating global and local
processing in scene perception, our results also relate
to their underlying neural representations. Specifically,
expanding or contracting attention to create or
eliminate Garner interference is directly supported by
fMRI studies investigating the functional properties of
PPA and LOC. For example, studies suggest the role
of the LOC and PPA extends beyond merely object
and scene processing, respectively, as these regions are
also involved in representing local and global visual
aspects of the environment (which of course could
be mechanisms with which to derive object and scene
representations from). There have been several examples
where the PPA is involved in object processing, provided
the objects contribute to the perception of the global
spatial layout of a scene. For instance, it was found that
the PPA not only responds strongly to scenes but also
to non-scene landmark objects like buildings (Bastin,
Vidal, Bouvier, Perrone-Bertolotti, Bénis, Kahane,
David, Lachaux, Epstein, 2013; Cate, Goodale, &
Köhler, 2011). Furthermore, objects are represented
in brain regions based on their real-world size, with
smaller objects showing increased activation in the
occipital temporal sulcus and LOC, and larger objects
showing increased activation in the PPA (Konkle &
Oliva, 2012). In addition, simple rectangles of identical
size that were perceived as close and far away within
a scene increased activation in the LOC and the PPA,
respectively (Cate et al., 2011). Conversely, LOC plays a

role in scene processing whereby its greater sensitivity
to scene-specific local object details within scenes aids
in scene categorization (MacEvoy & Epstein, 2011;
Walther et al., 2009), and errors in scene categorization
are correlated with LOC activity when the object
content between scene stimuli are more similar (Park
et al., 2011). Combined with these fMRI findings, our
behavioral findings reinforce the idea that the scope of
attention plays a key role in determining how the brain
processes visual features.

Our scene perception results relate particularly well
to ensemble perception. Ensemble perception refers to
the visual system’s ability to extract global summary
statistical information (e.g., average orientation of a
group of gabors: Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001; average facial expression of a crowd of
faces: (Haberman & Whitney, 2007; Roberts, Cant, &
Nestor, 2019; Sama, Nestor, & Cant, 2019) from large
groups of objects, at the expense of insensitivity to local
features of individual objects (for reviews, see Alvarez,
2011; Whitney & Yamanashi Leib, 2017). A region in
parahippocampal cortex along the collateral sulcus and
overlapping the PPA has been shown to be sensitive to
processing both scenes and object ensembles (Cant &
Xu, 2012; Cant & Xu, 2015; Cant & Xu, 2017; Cant &
Xu, 2020). This common neuroanatomical architecture
is supported by similar findings regarding the functional
information processing of visual features in ensemble
and scene perception. Namely, the processing of shape
and texture in both stimulus domains is mediated
by shared cognitive mechanisms (ensembles: Cant
et al., 2015; scenes: results of the present study),
which are co-localized within anterior-medial ventral
visual cortex (i.e., PPA; ensembles: Cant & Xu,
2017; scenes: Lowe et al., 2016; Lowe et al., 2017).
Moreover, Brady, Shafer-Skelton and Alvarez (2017)
have provided compelling evidence for a correlation
between scene, texture, and ensemble processing
and have proposed that scene recognition ability can
be explained via the processing of global ensemble
textures (i.e., spatial patterns of orientation). Thus
the shared neural substrates for scene and ensemble
processing are likely explained by a reliance on similar
underlying computational processes (i.e., the extraction
of statistical features from repeating and redundant
visual information). Given the wide range of global
visual features processed by PPA, future studies could
use Garner’s task (1974) to investigate the global (and
local) processing of objects and object ensembles
within scenes, to explore the pattern of interference and
independence observed across multiple combinations
of different stimulus types and visual features.

In summary, across three experiments (and
two control experiments) using Garner’s speeded-
classification task, we demonstrate asymmetric
interference between the processing of scene shape and
scene texture. This asymmetry can be explained by
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the more diagnostic feature (scene shape) interfering
with the processing of the less diagnostic feature
(scene texture), but not vice versa. Moreover, we
demonstrated that stimulus manipulations that promote
more global-based processing can lead to interference
between shape and texture, whereas manipulations that
promote more local-based processing can lead to the
elimination of interference (i.e., independence), possibly
because of a greater reliance on local object-based
processingmechanisms. Together, these novel behavioral
results consistently and reliably demonstrate that the
processing of scene shape and texture are mediated by
shared cognitive resources and thus provide important
constraints on neuroimaging and neurocomputational
models of scene representation. Moreover, these results
further our understanding of other cognitive processes
that are functionally related to scene perception,
such as texture and ensemble perception, and reveal
the interactive nature of visual feature processing in
everyday global perception.

Keywords: attention, feature diagnosticity, garner
interference, global vs. local processing, lateral occipital
cortex, parahippocampal place area, scene perception,
shape perception, texture perception

Acknowledgments

The authors thank Lindsay Arathoon and Idil Askar
for assisting in data collection for this study.

Supported by a Natural Sciences and Engineering
Research Council Undergraduate Student Research
Award (NSERC USRA) to V.T., and an NSERC
Discovery Grant (435647) to J.S.C.

Commercial relationships: none.
Corresponding author: Vignash Tharmaratnam.
Email: vignash.tharmaratnam@mail.utoronto.ca.
Address: 1265 Military Trail, Science Wing Room 411,
Toronto, ON, Canada, M1C 1A4.

References

Algom, D., & Fitousi, D. (2016). Half a century
of research on garner interference and the
separability-integrality distinction. Psychological
Bulletin, 142(12), 1352–1383, https://doi.org/10.
1037/bul0000072.

Alvarez, G. A. (2011). Representing multiple objects
as an ensemble enhances visual cognition.
Trends in Cognitive Sciences, 15(3), 122–131,
https://doi.org/10.1016/j.tics.2011.01.003.

Atkinson, A. P., & Burt, D. M. (2005). Asymmetric
interference between sex and emotion in
face perception. Perception & Psychophysics,
67(7), 1199–1213, https://doi.org/https:
//doi.org/10.3758/BF03207617.

Balas, B., Nakano, L., & Rosenholtz, R. (2009). A
summary-statistic representation in peripheral
vision explains visual crowding. Journal of Vision,
9(12), 1–18, https://doi.org/10.1167/9.12.1.

Baldassano, C., Beck, D. M., & Fei-Fei, L.
(2013). Differential connectivity within the
parahippocampal place area. NeuroImage, 75,
236–245, https://doi.org/10.1016/j.neuroimage.
2013.02.073.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J.
(2013). Random effects structure for confirmatory
hypothesis testing: Keep it maximal. Journal of
Memory and Language, 68(3), 255–278.

Bastin, J., Vidal, J. R., Bouvier, S., Perrone-
Bertolotti, M., Benis, D., Kahane, P., . . .
Epstein, R. A. (2013). Temporal components
in the parahippocampal place area revealed
by human intracerebral recordings. Journal
of Neuroscience, 33(24), 10123–10131, https:
//doi.org/10.1523/JNEUROSCI.4646-12.2013.

Berman, D., Golomb, J. D., & Walther, D. B.
(2017). Scene content is predominantly conveyed
by high spatial frequencies in scene-selective
visual cortex. PLoS ONE, 12(12), 1–16,
https://doi.org/10.1371/journal.pone.0189828.

Biederman, I., Mezzanotte, R. J., & Rabinowitz,
J. C. (1982). Scene perception: Detecting
and judging objects undergoing relational
violations. Cognitive Psychology, 14(2), 143–177,
https://doi.org/10.1016/0010-0285(82)90007-X.

Biel, A. L., & Friedrich, E. V. (2018). Why you should
report bayes factors in your transcranial brain
stimulation studies. Frontiers in Psychology, 9, 1125.

Bonner, M. F., & Epstein, R. A. (2017). Coding
of navigational affordances in the human
visual system. Proceedings of the National
Academy of Sciences, 114(18), 4793–4798,
https://doi.org/10.1073/pnas.1618228114.

Brady, T. F., Shafer-Skelton, A., & Alvarez,
G. A. (2017). Global ensemble texture
representations are critical to rapid scene
perception. Journal of Experimental Psychology:
Human Perception and Performance, 43(6),
1160–1176, https://doi.org/10.1037/xhp0000399.

Cant, J. S., & Goodale, M. A. (2007). Attention
to form or surface properties modulates
different regions of human occipitotemporal
cortex. Cerebral Cortex, 17(3), 713–731,
https://doi.org/10.1093/cercor/bhk022.

https://doi.org/10.1037/bul0000072
https://doi.org/10.1016/j.tics.2011.01.003
https://doi.org/https://doi.org/10.3758/BF03207617
https://doi.org/10.1167/9.12.1
https://doi.org/10.1016/j.neuroimage.2013.02.073
https://doi.org/10.1523/JNEUROSCI.4646-12.2013
https://doi.org/10.1371/journal.pone.0189828
https://doi.org/10.1016/0010-0285(82)90007-X
https://doi.org/10.1073/pnas.1618228114
https://doi.org/10.1037/xhp0000399
https://doi.org/10.1093/cercor/bhk022


Journal of Vision (2021) 21(7):11, 1–19 Tharmaratnam, Patel, Lowe, & Cant 17

Cant, J. S., & Goodale, M. A. (2009). Asymmetric
interference between the perception of shape and
the perception of surface properties. Journal of
Vision, 9(5), 13–13, https://doi.org/10.1167/9.5.13.

Cant, J. S., & Goodale, M. A. (2011). Scratching
beneath the surface: New insights into the
functional properties of the lateral occipital
area and parahippocampal place area. Journal
of Neuroscience, 31(22), 8248–8258, https:
//doi.org/10.1523/JNEUROSCI.6113-10.2011.

Cant, J. S., Large, M.-E., McCall, L., & Goodale, M.
A. (2008). Independent processing of form, colour,
and texture in object perception. Perception, 37(1),
57–78, https://doi.org/10.1068/p5727.

Cant, J. S., Sun, S. Z., & Xu, Y. (2015). Distinct
cognitive mechanisms involved in the processing
of single objects and object ensembles. Journal of
Vision, 15(4), 12, https://doi.org/10.1167/15.4.12.

Cant, J. S., & Xu, Y. (2012). Object ensemble processing
in human anterior-medial ventral visual cortex.
Journal of Neuroscience, 32(22), 7685–7700, https:
//doi.org/10.1523/JNEUROSCI.3325-11.2012.

Cant, J. S., & Xu, Y. (2015). The impact of density
and ratio on object-ensemble representation in
human anterior-medial ventral visual cortex.
Cerebral Cortex, 25(November), 4226–4239,
https://doi.org/10.1093/cercor/bhu145.

Cant, J. S., & Xu, Y. (2017). The contribution of object
shape and surface properties to object ensemble
representation in anterior-medial ventral visual
cortex. Journal of Cognitive Neuroscience, 29(2),
398–412, https://doi.org/10.1162/jocn_a_01050.

Cant, J. S., & Xu, Y. (2020). One bad apple spoils the
whole bushel: The neural basis of outlier processing.
NeuroImage, 211(October 2019), 116629,
https://doi.org/10.1016/j.neuroimage.2020.116629.

Cate, A. D., Goodale, M. A., & Köhler, S.
(2011). The role of apparent size in building-
and object-specific regions of ventral visual
cortex. Brain Research, 1388, 109–122,
https://doi.org/10.1016/j.brainres.2011.02.022.

Cheng, K. (1986). A purely geometric module in the rat’s
spatial representation. Cognition, 23(2), 149–178,
https://doi.org/10.1016/0010-0277(86)90041-7.

Choo, H., & Walther, D. B. (2016). Contour
junctions underlie neural representations of
scene categories in high-level human visual
cortex: Contour junctions underlie neural
representations of scenes. NeuroImage, 135, 32–44,
https://doi.org/10.1016/j.neuroimage.2016.04.021.

Dick, M., & Hochstein, S. (1988). Interactions in
the discrimination and absolute judgement of
orientation and length. Perception, 17(2), 177–189,
https://doi.org/10.1068/p170177.

Dykes, J. R., & Cooper, R. G. (1978). An investigation
of the perceptual basis of redundancy gain and
orthogonal interference for integral dimensions.
Perception & Psychophysics, 23(1), 36–42,
https://doi.org/10.3758/BF03214292.

Epstein, R., & Baker, C. I. (2019). Scene perception
in the human brain. Annual Review of Vision
Science, 5, 373–397, https://doi.org/10.1146/
annurev-vision-091718-014809.

Epstein, R., Graham, K. S., & Downing, P. E.
(2003). Viewpoint-specific scene representations
in human parahippocampal cortex. Neuron, 37(5),
865–876, https://doi.org/10.1016/S0896-6273(03)
00117-X.

Epstein, R., & Kanwisher, N. (1998). A cortical
representation of the local visual environment.
Nature, 392(6676), 598–601, https://doi.org/10.
1038/33402.

Felfoldy, G. L. (1974). Repetition effects in choice
reaction time to multidimensional stimuli.
Perception & Psychophysics, 15(3), 453–459,
https://doi.org/10.3758/BF03199285.

Gandolfo, M., & Downing, P. E. (2020). Perceiving
emotion and sex from the body: evidence from
the Garner task for independent processes.
Cognition and Emotion, 34(3), 427–437,
https://doi.org/10.1080/02699931.2019.1634003.

Ganel, T., & Goodale, M. A. (2003). Visual control
of action but not perception requires analytical
processing of object shape. Nature, 426(6967),
664–667, https://doi.org/10.1038/nature02156.

Garner, W. R. (1974). The processing of information and
structure. Potomac, MD: L. Erlbaum Associates.

Garner, W. R. (1976). Interaction of stimulus
dimensions in concept and choice processes.
Cognitive Psychology, 8(1), 98–123, https:
//doi.org/10.1016/0010-0285(76)90006-2.

Gegenfurtner, K. R., & Rieger, J. (2000). Sensory and
cognitive contributions of color to the recognition
of natural scenes. Current Biology, 10(13), 805–808,
https://doi.org/10.1016/S0960-9822(00)00563-
7.

Haberman, J., & Whitney, D. (2007). Rapid extraction
of mean emotion and gender from sets of
faces. Current Biology, 17(17), R751–R753,
https://doi.org/10.1016/j.cub.2007.06.039.

Harel, A., Kravitz, D. J., & Baker, C. I. (2013).
Deconstructing visual scenes in cortex:
Gradients of object and spatial layout
information. Cerebral Cortex, 23(4), 947–957,
https://doi.org/10.1093/cercor/bhs091.

Hermer, L., & Spelke, E. S. (1994). A geometric process
for spatial reorientation in young children. Nature,
370(6484), 57–59, https://doi.org/10.1038/370057a0.

https://doi.org/10.1167/9.5.13
https://doi.org/10.1523/JNEUROSCI.6113-10.2011
https://doi.org/10.1068/p5727
https://doi.org/10.1167/15.4.12
https://doi.org/10.1523/JNEUROSCI.3325-11.2012
https://doi.org/10.1093/cercor/bhu145
https://doi.org/10.1162/jocn10a1001050
https://doi.org/10.1016/j.neuroimage.2020.116629
https://doi.org/10.1016/j.brainres.2011.02.022
https://doi.org/10.1016/0010-0277(86)90041-7
https://doi.org/10.1016/j.neuroimage.2016.04.021
https://doi.org/10.1068/p170177
https://doi.org/10.3758/BF03214292
https://doi.org/10.1146/annurev-vision-091718-014809
https://doi.org/10.1016/S0896-6273(03)00117-X
https://doi.org/10.1038/33402
https://doi.org/10.3758/BF03199285
https://doi.org/10.1080/02699931.2019.1634003
https://doi.org/10.1038/nature02156
https://doi.org/10.1016/0010-0285(76)90006-2
https://doi.org/10.1016/S0960-9822(00)00563-7
https://doi.org/10.1016/j.cub.2007.06.039
https://doi.org/10.1093/cercor/bhs091
https://doi.org/10.1038/370057a0


Journal of Vision (2021) 21(7):11, 1–19 Tharmaratnam, Patel, Lowe, & Cant 18

Humphrey, G. K., Goodale, M. A., Jakobson, L. S., &
Servos, P. (1994). The role of surface information in
object recognition: Studies of a visual form agnosic
and normal subjects. Perception, 23(12), 1457–1481,
https://doi.org/10.1068/p231457.

Humphreys, G. W., Romani, C., Olson, A., Riddoch,
M. J., & Duncan, J. (1994). Non-spatial
extinction following lesions of the parietal
lobe in humans. Nature, 372(6504), 357–359,
https://doi.org/10.1038/372357a0.

Jeffreys, H. (1998). The theory of probability. Oxford:
OUP.

Johnstone, L. T., & Downing, P. E. (2017).
Dissecting the visual perception of body
shape with the Garner selective atten-
tion paradigm. Visual Cognition, 25(4–6),
507–523, https://doi.org/10.1080/13506285.2017.
1334733.

Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A.
(2016). The occipital place area is causally involved
in representing environmental boundaries during
navigation. Current Biology, 26(8), 1104–1109,
https://doi.org/10.1016/j.cub.2016.02.066.

Kamps, F. S., Julian, J. B., Kubilius, J., Kanwisher,
N., & Dilks, D. D. (2016). The occipital
place area represents the local elements
of scenes. NeuroImage, 132(3), 417–424,
https://doi.org/10.1016/j.neuroimage.2016.02.062.

Konkle, T., & Oliva, A. (2012). A real-world
size organization of object responses in
occipitotemporal cortex. Neuron, 74(6), 1114–1124,
https://doi.org/10.1016/j.neuron.2012.04.036.

Kornblith, S., Cheng, X., Ohayon, S., & Tsao, D. Y.
(2013). A network for scene processing in the
macaque temporal lobe. Neuron, 79(4), 766–781,
https://doi.org/10.1016/j.neuron.2013.06.015.

Lowe, M. X., Gallivan, J. P., Ferber, S., & Cant,
J. S. (2016). Feature diagnosticity and task
context shape activity in human scene-
selective cortex. NeuroImage, 125, 681–692,
https://doi.org/10.1016/j.neuroimage.2015.10.089.

Lowe, M. X., Rajsic, J., Gallivan, J. P., Ferber, S.,
& Cant, J. S. (2017). Neural representation of
geometry and surface properties in object and
scene perception. NeuroImage, 157, 586–597,
https://doi.org/10.1016/j.neuroimage.2017.06.043.

MacEvoy, S. P., & Epstein, R. A. (2011). Constructing
scenes from objects in human occipitotemporal
cortex. Nature Neuroscience, 14(10), 1323–1329,
https://doi.org/10.1038/nn.2903.

Malcolm, G. L., Groen, I. I. A., & Baker, C. I.
(2016). Making sense of real-world scenes.
Trends in Cognitive Sciences, 20(11), 843–856,
https://doi.org/10.1016/j.tics.2016.09.003.

Milner, A. D., Perrett, D. I., Johnston, R. S., Benson,
P. J., Jordan, T. R., Heeley, D. W., . . . Davidson,
D. L. W. (1991). Perception and action in
“visual form agnosia.” Brain, 114(1), 405–428,
https://doi.org/10.1093/brain/114.1.405.

Møller, P., & Hurlbert, A. C. (1996). Psychophysical
evidence for fast region-based segmentation
processes in motion and color. Proceedings
of the National Academy of Sciences of the
United States of America, 93(14), 7421–7426,
https://doi.org/10.1073/pnas.93.14.7421.

Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine
edges? Evidence that information diagnosticity
changes the perception of complex visual
stimuli. Cognitive Psychology, 34(1), 72–107,
https://doi.org/10.1006/cogp.1997.0667.

Oliva, A., & Schyns, P. G. (2000). Diagnostic colors
mediate scene recognition. Cognitive Psychology,
41(2), 176–210, https://doi.org/10.1006/cogp.1999.
0728.

Oliva, A., & Torralba, A. (2001). Modeling the shape
of the scene: a holistic representation of the spatial
envelope. International Journal of Computer Vision,
42(3), 145–175.

Park, S., Brady, T. F., Greene, M. R., & Oliva,
A. (2011). Disentangling scene content from
spatial boundary: complementary roles for the
parahippocampal place area and lateral occipital
complex in representing real-world scenes.
Journal of Neuroscience, 31(4), 1333–1340, https:
//doi.org/10.1523/JNEUROSCI.3885-10.2011.

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A.,
& Morgan, M. (2001). Compulsory averaging
of crowded orientation signals in human
vision. Nature Neuroscience, 4(7), 739–744,
https://doi.org/10.1038/89532.

Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling
the role of salience in the allocation of overt visual
attention. 42, 107–123.

Quené, H., & Van Den Bergh, H. (2004). On multi-level
modeling of data from repeatedmeasures designs: A
tutorial. Speech Communication, 43(1–2), 103–121,
https://doi.org/10.1016/j.specom.2004.02.004.

Reed, C. L., Bukach, C. M., Garber, M., &
McIntosh, D. N. (2018). It’s not all about the
face: Variability reveals asymmetric obligatory
processing of faces and bodies in whole-
body contexts. Perception, 47(6), 626–646,
https://doi.org/10.1177/0301006618771270.

Roberts, T., Cant, J. S., & Nestor, A. (2019).
Elucidating the neural representation and the
processing dynamics of face ensembles. The
Journal of Neuroscience, 39(39), 7737–7747, https:
//doi.org/10.1523/JNEUROSCI.0471-19.2019.

https://doi.org/10.1068/p231457
https://doi.org/10.1038/372357a0
https://doi.org/10.1080/13506285.2017.1334733
https://doi.org/10.1016/j.cub.2016.02.066
https://doi.org/10.1016/j.neuroimage.2016.02.062
https://doi.org/10.1016/j.neuron.2012.04.036
https://doi.org/10.1016/j.neuron.2013.06.015
https://doi.org/10.1016/j.neuroimage.2015.10.089
https://doi.org/10.1016/j.neuroimage.2017.06.043
https://doi.org/10.1038/nn.2903
https://doi.org/10.1016/j.tics.2016.09.003
https://doi.org/10.1093/brain/114.1.405
https://doi.org/10.1073/pnas.93.14.7421
https://doi.org/10.1006/cogp.1997.0667
https://doi.org/10.1006/cogp.1999.0728
https://doi.org/10.1523/JNEUROSCI.3885-10.2011
https://doi.org/10.1038/89532
https://doi.org/10.1016/j.specom.2004.02.004
https://doi.org/10.1177/0301006618771270
https://doi.org/10.1523/JNEUROSCI.0471-19.2019


Journal of Vision (2021) 21(7):11, 1–19 Tharmaratnam, Patel, Lowe, & Cant 19

Robin, J., Lowe, M. X., Pishdadian, S., Rivest,
J., Cant, J. S., & Moscovitch, M. (2017).
Selective scene perception deficits in a case of
topographical disorientation. Cortex, 92, 70–80,
https://doi.org/10.1016/j.cortex.2017.03.014.

Rosenholtz, R. (2011). What your visual system
sees where you are not looking. Human Vision
and Electronic Imaging XVI, 7865, 786510,
https://doi.org/10.1117/12.876659.

Sama, M. A., Nestor, A., & Cant, J. S. (2019).
Independence of viewpoint and identity in face
ensemble processing. Journal of Vision, 19(5), 1–17,
https://doi.org/10.1167/19.5.2.

Schmid, A. M., & Victor, J. D. (2014). Possible
functions of contextual modulations and
receptive field nonlinearities: Pop-out and texture
segmentation. Vision Research, 104, 57–67,
https://doi.org/10.1016/j.visres.2014.07.002.

Schweinberger, S. R., Burton, A. M., & Kelly, S. W.
(1999). Asymmetric dependencies in perceiving
identity and emotion: Experiments with morphed
faces. Perception and Psychophysics, 61(6),
1102–1115, https://doi.org/10.3758/BF03207617.

Schweinberger, S. R., Soukup, G. R., & Konstanz, U.
(1998). Asymmetric relationships among perceptions
of facial identity, emotion, and facial speech. Journal
of Experimental Psychology: Human Perception and
Performance 24(6), 1748–1765.

Schyns, P. G., & Oliva, A. (1994). From blobs to
boundary edges: Evidence for time- and spatial-
scale-sependent scene recognition. Psychological
Science, 5(4), 195–201.

Schyns, P. G., & Oliva, A. (1997). Flexible,
diagnosticity-driven, rather than fixed, perceptually
determined scale selection in scene and face
recognition. Perception, 26(8), 1027–1038,
https://doi.org/10.1068/p261027.

Shechter, S., & Hochstein, S. (1992). Asymmetric
interactions in the processing of the visual
dimensions of position, width, and contrast
of bar stimuli. Perception, 21(3), 297–312,
https://doi.org/10.1068/p210297.

Silson, E. H., Steel, A. D., & Baker, C. I. (2016). Scene-
selectivity and retinotopy in medial parietal cortex.
Frontiers in Human Neuroscience, 10(August), 17,
https://doi.org/10.3389/fnhum.2016.00412.

Steeves, J. K. E., Humphrey, G. K., Culham, J.
C., Menon, R. S., Milner, A. D., & Goodale,
M. A. (2004). Behavioral and neuroimaging
evidence for a contribution of color and
texture information to scene classification in
a patients with visual form agnosia. Journal
of Cognitive Neuroscience, 16(6), 955–965,
https://doi.org/10.1162/0898929041502715.

Tünnermann, J., Petersen, A., & Scharlau, I. (2015).
Does attention speed up processing? Decreases
and increases of processing rates in visual
prior entry. Journal of Vision, 15(3), 1–27,
https://doi.org/10.1167/15.3.1.

Vailaya, A., Jain, A., & Zhang, H. J. (1998). On
image classification: city images vs. Landscapes.
Pattern Recognition, 31(12), 1921–1935,
https://doi.org/10.1016/S0031-3203(98)00079-X.

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E.,
Peterson, M. A., Singh, M., . . . von der Heydt, R.
(2012). A century of Gestalt psychology in visual
perception: I. Perceptual grouping and figure-
ground organization. Psychological Bulletin, 138(6),
1172–1217, https://doi.org/10.1037/a0029333.

Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D.
M. (2009). Natural scene categories revealed in
distributed patterns of activity in the human brain.
Journal of Neuroscience, 29(34), 10573–10581, https:
//doi.org/10.1523/JNEUROSCI.0559-09.2009.

Walther, D. B., & Shen, D. (2014). Nonaccidental
Properties Underlie Human Categorization
of Complex Natural Scenes. Psychological
Science, 25(4), 851–860, https://doi.org/10.1177/
0956797613512662.

Wannig, A., Stanisor, L., & Roelfsema, P. R. (2011).
Automatic spread of attentional response
modulation along Gestalt criteria in primary visual
cortex. Nature Neuroscience, 14(10), 1243–1244,
https://doi.org/10.1038/nn.2910.

Whitney, D., & Yamanashi Leib, A. (2017). Ensemble
Perception. Annual Review of Psychology,
12(16), annurev-psych-010416-044232, https:
//doi.org/10.1146/annurev-psych-010416-044232.

Wilder, J., Dickinson, S., Jepson, A., & Walther, D.
B. (2018). Spatial relationships between contours
impact rapid scene classification. Journal of Vision,
18(8), 1–15, https://doi.org/10.1167/18.8.1.

https://doi.org/10.1016/j.cortex.2017.03.014
https://doi.org/10.1117/12.876659
https://doi.org/10.1167/19.5.2
https://doi.org/10.1016/j.visres.2014.07.002
https://doi.org/10.3758/BF03207617
https://doi.org/10.1068/p261027
https://doi.org/10.1068/p210297
https://doi.org/10.3389/fnhum.2016.00412
https://doi.org/10.1162/0898929041502715
https://doi.org/10.1167/15.3.1
https://doi.org/10.1016/S0031-3203(98)00079-X
https://doi.org/10.1037/a0029333
https://doi.org/10.1523/JNEUROSCI.0559-09.2009
https://doi.org/10.1177/0956797613512662
https://doi.org/10.1038/nn.2910
https://doi.org/10.1146/annurev-psych-010416-044232
https://doi.org/10.1167/18.8.1

