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Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with one of the worst
prognoses worldwide and has an overall 5-year survival rate of only 9%. Although
chemotherapy is the recommended treatment for patients with advanced PDAC, its
efficacy is not satisfactory. The dense dysplastic stroma of PDAC is a major obstacle to
the delivery of chemotherapy drugs and plays an important role in the progression of
PDAC. Therefore, stroma-targeting therapy is considered a potential treatment strategy to
improve the efficacy of chemotherapy and patient survival. While several preclinical studies
have shown encouraging results, the anti-tumor potential of the PDAC stroma has also
been revealed, and the extreme depletion might promote tumor progression and
undermine patient survival. Therefore, achieving a balance between stromal abundance
and depletion might be the further of stroma-targeting therapy. This review summarized
the current progress of stroma-targeting therapy in PDAC and discussed the double-
edged sword of its therapeutic effects.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) ranks seventh as the cause of cancer-associated
mortality worldwide and has an overall 5-year survival rate of only 9% (1, 2). In the United
States, PDAC is projected to become the second deadliest cancer by 2030 (3). With the acceleration
of industrialization and population aging, the incidence of PDAC has also increased in China (4). In
the past few decades, the treatment of PDAC has not made substantial progress. Surgery remains the
only treatment that might achieve a cure. However, about 80% of PDAC patients are unable to
access surgery at the time of diagnosis (5). Because of the early recurrence and metastasis of PDAC,
even the patients who have already undergone radical surgery present a 5-year survival rate of only
25% (5). Therefore, PDAC has emerged as a major public health problem that needs to be
addressed urgently.

For the majority of patients with advanced PDAC, chemotherapy is the generally recommended
treatment. The standardized chemotherapy regimens include the use of the cytosine nucleoside
analog gemcitabine or a more potent but highly toxic four-drugs regimen, FOLFIRINOX (i.e., 5-
fluorouracil, leucovorin, oxaliplatin, and irinotecan) (6). In addition, chemotherapy is also applied
as a neoadjuvant treatment for some PDAC patients who are suitable for surgery to lower the risk of
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recurrence (7). However, the efficacy of these regimens is not
satisfactory. One of the main features of PDAC is its dense
abundant stroma, which increases the interstitial fluid pressure
(IFP). The compression of intratumoral vasculature impedes the
efficiency of chemotherapeutic agent delivery and forms a hypoxic
microenvironment, which promotes tumor progression (8, 9).
Therefore, reversing the negative effects of PDAC stroma might
improve the efficacy of chemotherapy and patient survival (8).
PDAC STROMA AND ITS ROLE IN
DISEASE PROGRESSION

In PDAC, tumor cells account for less than 20% of the total
tumor volume, while the stroma components occupy more than
70% (10). The dense desmoplasia stroma of PDAC consists of
several cellular components (e.g., fibroblasts, stellate cells,
immune cells, and pericytes), acellular components (e.g., fibrin,
collagen, hyaluronic acid, fibronectin, growth factors, and
cytokines), and biophysical components (e.g., low pH, hypoxia,
and high tumor IFP) (11). These components interact mutually
to promote the progression of PDAC (12).

During the progression of PDAC, pro-inflammatory cytokines
secreted by neoplastic cells stimulate fibroblasts and pancreatic
stellate cells (PSCs), which produce extracellular matrix (ECM)
and increase fibrotic stromal deposition (13, 14). The solid stress
generated by the dense stroma and lymphatic obstruction causes
intratumoral IFP to increase, which leads to vascular compression,
tissue perfusion reduction, and a hypoxic microenvironment (15,
16). In fact, approximately 80% of intratumoral blood vessels are
dysfunctional, poorly fenestrated, and covered with a thick
layer of pericytes, which hinder the effective accumulation of
chemotherapeutic agents. In addition, the PDAC stroma
potentially alters the pharmacokinetics and pharmacodynamics
of chemotherapeutic drugs (8). For example, the high expression
level of cytidine deaminase in the stroma shortened the
circulating half-life of gemcitabine (17). Furthermore, the
fibrotic microenvironment of PDAC results in an inhibitory
effect on the innate and adaptive immune systems, reducing
cytotoxic T cells and increasing M2 macrophages, N2 neutrophils,
and T-regulatory cells (Tregs) at tumor sites. Growth factors and
cytokines secreted by PSCs also promote the formation of a tumor
immunosuppressive microenvironment (18). In summary, the
dense proliferative stroma of PDAC promotes tumor progression
and metastasis via various routes (11). Therefore, overcoming the
tumor-promoting effects of PDAC stromal barriers has become an
imperative issue.
STROMA-TARGETING THERAPY IN PDAC

In order to overcome the physical and biological barriers to
effective PDAC treatments, several strategies based on targeting
the stroma have been designed to improve the efficacy of
chemotherapeutic agents and reverse the stroma’s impact on
tumor progression (Table 1).
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Depletion of the Stroma in PDAC
One of the main components of PDAC stroma is hyaluronic acid
(HA) or hyaluronan (Figure 1). HA is a complex glycosaminoglycan
secreted abundantly by neoplastic cells (19–21), and it is a core
polymer in the assembly of multiple hydrophilic matrix
proteoglycans (22). HA binds to cell surface receptors to maintain
tumor cell survival and activate downstream signaling pathways
related to tumor proliferation, migration, and invasion (23–25). In
addition, its ability to absorb and retain water increases IFP (24, 26).
Therefore, HA is considered a potential therapeutic target in PDAC.
Pegylated hyaluronidase (PEGPH20) is a pegylated nanoscale
complex of recombinant human hyaluronidase (27, 28). Previous
studies showed that PEGPH20 induced the degradation of HA,
remodeled tumor vasculature, and improved chemotherapeutic drug
efficacy (22, 27, 29). A phase II clinical study HALO-109-202
(NCT01839487), involving 279 patients with metastatic PDAC,
showed that PEGPH20 combined with Abraxane (an albumin-
bound paclitaxel nanocomplex) and gemcitabine nearly doubled
the progression-free survival and improved the overall survival in
patients with high level HA (30). However, a subsequent phase III
clinical study HALO-109-301 (NCT02715804) showed that
PEGPH20 combined with Abraxane and gemcitabine did not
significantly extend the overall survival of PDAC patients.
Therefore, Halozyme announced the termination of further
research and development of PEGPH20 in November 2019.

Another major component of the tumor ECM is collagen
(Figure 1). PDAC stroma is rich in fibrillar collagens, which
support tumor cell survival and promote tumor progression
through discoidin domain receptor 1 and 2 (DDR1 and 2). High
expression ofDDR1was identified as an independent risk factor for
poor prognosis in patients with PDAC (31). In fact, the selective
small molecule inhibitor of DDR1 reduced collagen deposition and
improved the response to chemotherapy in PDAC mouse models
(32). Preclinical studies are currently investigating the effects of
DDR1 inhibition on the immune microenvironment of PDAC.
Recently, the potent antifibrotic ability of halofuginone (a natural
quinazolinone alkaloid febrifugine analog) was observed in a
genetically engineered mouse model of PDAC (33). Halofuginone
directly inhibited the activation of PSCs, thereby reducing the
deposition of several ECM components, including collagen and
HA. The decrease of the intratumoral IFP resulted in the improved
delivery of chemotherapeutic agents, which was visually proven by
exploiting the autofluorescence of doxorubicin. In addition,
halofuginone helped increase immune cell infiltration and shift
them closer to cytokeratin positive tumor cells, suggesting that
stroma-targeting therapy might improve the efficacy of
immunotherapy to some extent in PDAC.

The Hedgehog (Hh) signaling pathway is generally
hyperactive in PDAC (Figure 1) (34). It is known that the Hh
signaling pathway activates PSCs through paracrine effects and
regulates stroma deposition (35). There are several strategies
intended to treat PDAC by inhibiting the Hh signaling pathway
in order to eliminate the tumor stroma (36). Cyclopamine is a
natural steroidal alkaloid that inhibits the Hh signaling pathway
via binding to Smoothened (SMO) (37). It reduced fibronectin
content and enhanced tumor vascularization in a PDAC xenograft
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mouse model. When combined with paclitaxel-loaded
nanoparticles, cyclopamine increased tumor growth inhibition by
63.3% (38). In addition, a preclinical study showed that IPI-926, a
small molecule that inhibited the Hh pathway, increased blood
vessel density and gemcitabine drug concentration in PDAC (39).
In a phase I clinical trial, IPI-926 was well tolerated by PDAC
patients (40). However, a phase II clinical trial of IPI-926 failed to
show significant therapeutic benefits in PDAC patients (41, 42).
Similarly, Vismodegib, another Hh pathway inhibitor, combined
with gemcitabine did not significantly improve the median overall
survival and progression-free survival in patients with metastatic
PDAC comparedwith gemcitabine alone (43). In fact, while several
treatments targeting the Hh signaling pathway showed uplifting
results in preclinical models (44), few of them improved patient
survival, and their use was often accompanied by drug-related
toxicity (45). In addition to the above-mentioned drugs, other
stroma-targeting drugs include metalloproteinase inhibitors (46–
48), connective tissue growth factor (CTGF) antagonists (e.g.,
pamrevlumab) (49, 50), and anti-fibrotic agents (e.g., pirfenidone)
(Figure 1) (51, 52).

Remodeling Tumor Vasculature
The dense fibrotic stroma surrounding the blood vessels and the
proliferating cancer-associated fibroblasts (CAFs) damage
Frontiers in Oncology | www.frontiersin.org 3
intratumoral vasculature, resulting in a hypoxic microenvironment,
which promotes PDAC invasion, metastasis, and the acquisition of
chemoresistance phenotypes (Figure 1) (53–55). Therefore,
remodeling PDAC blood vessels not only improves drug delivery
but also overcomes the hypoxic microenvironment.

The transforming growth factor-b (TGF-b) signaling
pathway is involved in the adhesion of pericytes to tumor
vascular endothelial cells (56). TGF-b receptor kinase
inhibitors or monoclonal antibodies enhanced vascular access
and promoted the perfusion of chemotherapeutic agents to
PDAC tumor sites (56–58). In addition, the repurposing of
antihypertensive drugs targeting the renin-angiotensin pathway
can reprogram CAFs towards normalizing ECM by inhibiting
TGF-b (59, 60). In tumors, Angiotensin II (Ang II) activates
TGF-b and promotes CAFs to express CTGF by binding to Ang
II type 1 receptor (AT1R) (61). Moreover, Ang II stimulates
proliferation of PSCs by activating protein kinase C and EGF-
ERK signaling pathways (61, 62). Several angiotensin system
inhibitors (ASIs) have been used to target the PDAC stroma (59,
63). A phase II clinical study evaluated the efficacy of
neoadjuvant chemoradiotherapy with FOLFIRINOX combined
with losartan in patients with locally advanced PDAC. The
therapy was associated with a high proportion (69%) of
patients achieving R0 resection (64). Interestingly, the lack of
TABLE 1 | Clinical trials assessing stroma-targeting therapy in PDAC.

Target Agents Patient population Trial
phase

mPFS
(months)

mOS
(months)

Status NIH number

HA PEGPH20 + GEM + nab-paclitaxel vs
GEM + nab-paclitaxel

Metastatic PDAC Phase II 6.0 vs 5.3 9.6 vs 9.2 Completed NCT01839487

PEGPH20 + GEM + nab-paclitaxel vs
GEM + nab-paclitaxel

Metastatic PDAC (HA-High) Phase II 9.2 vs 5.2 11.5 vs 8.5 Completed NCT01839487

PEGPH20 + GEM + nab-paclitaxel vs
GEM + nab-paclitaxel

Metastatic PDAC (HA-High) Phase III 7.1 vs 7.1 11.2 vs 11.5 Terminated NCT02715804

PEGPH20 + FOLFIRINOX vs
FOLFIRINOX

Metastatic PDAC Phase
Ib/II

4.3 vs 6.2 7.7 vs 14.4 Terminated NCT01959139

Hedgehog IPI-926 Solid tumors
(including PDAC)

Phase I – – Completed NCT00761696

IPI-926 + GEM vs GEM Metastatic PC Phase
Ib/II

The former <
the latter

The former <
the latter

Completed NCT01130142

IPI-926+ FOLFIRINOX Locally advanced or metastatic PDAC Phase
Ib

8.4 – Completed NCT01383538

Vismodegib + GEM vs GEM Metastatic PC Phase
Ib/II

4.0 vs 2.5 6.9 vs 6.1 Completed NCT01064622

Vismodegib +GEM Metastatic PC Phase II 2.8 5.3 Completed NCT01195415
Vismodegib +GEM + nab-paclitaxel Metastatic PDAC Phase II 5.42 9.79 Completed NCT01088815
Sonidegib + GEM Locally advanced or metastatic PDAC Phase

Ib
4.9 – Completed NCT01487785

CTGF Pamrevlumab + GEM + nab-paclitaxel
vs GEM + nab-paclitaxel

Locally advanced PDAC Phase I/
II

– – Completed NCT02210559

Pamrevlumab + GEM + nab-paclitaxel
vs GEM + nab-paclitaxel

Locally advanced PDAC Phase III – – Recruiting NCT03941093

Pamrevlumab + GEM + erlotinib Locally advanced or metastatic PDAC Phase I 4.3 9.4 Completed NCT01181245
R-A
system

Losartan + FOLFIRINOX +
chemoradiotherapy

Locally advanced PDAC Phase II 17.5 31.4 Completed NCT01821729

Losartan + nivolumab + FOLFIRINOX
+ SBRT

Localized PDAC (Borderline/potentially
resectable or locally advanced)

Phase II – – Recruiting NCT03563248

– UM + GEM Locally advanced or metastatic PDAC Phase I – 17.6 vs 8.9 Completed NCT01674556
O
ctober 2020 |
 Volume 10 |
CTGF, connective tissue growth factor; DDR1, discoidin domain receptor 1; FOLFIRINOX, 5-fluorouracil, leucovorin, oxaliplatin, and irinotecan; GEM, gemcitabine; HA, hyaluronic acid;
NIH, National Institutes of Health; mOS, median overall survival; PC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; mPFS, median progression-free survival; R-A system,
renin-angiotensin system; SBRT, stereotactic body radiation therapy; UM, ultrasound microbubbles.
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Angiotensin II type 2 receptor (AT2R) in pancreatic fibroblasts
also leads to tumor cell proliferation (65). Therefore, the role of
the Ang II signaling pathway in the PDAC stroma needs to be
further investigated before its use in the clinic.

In addition to the pharmacological interference, focused
ultrasound combined with microbubbles was investigated to
determine if it improved vascular patency. Microbubbles are
restrained within the vascular compartment because of their
diameter. Focused ultrasound causes the microbubbles to
disintegrate, which releases acoustic forces that are capable of
inducing thrombolysis and increasing drug penetration (66).
Moreover, appropriate ultrasound energy induces the destruction
of the microbubbles and generates acoustic pressure that
temporarily increases the permeability of blood vessels and cell
membranes (66). The efficacy of ultrasound microbubble delivery
of gemcitabine was evaluated in a PDAC murine model. The study
showed that the ultrasound microbubbles treatment group
presented significant tumor growth inhibition (67). In addition,
the use of nab-paclitaxel combined with ultrasound microbubbles
significantly inhibited the activity of PDAC tumor cells in vitro and
reduced the tumor volume in a subcutaneous PDAC mouse model
(68). Furthermore, a clinical trial evaluated the efficacy of focused
ultrasound combined with microbubble delivery of gemcitabine in
Frontiers in Oncology | www.frontiersin.org 4
PDAC patients. The combination-treated patients tolerated more
gemcitabine chemotherapeutic cycles, and half of them showed
maximum tumor diameter decrease. In addition, the median
survival was prolonged by 8.7 months (69).

Nano-Drug Delivery Systems in PDAC
The dense stroma of PDAC limits the application of
chemotherapeutic drugs to efficiently target neoplastic cells
through the enhanced permeability and retention (EPR) effect
(15, 70). Nanomedicine, the result of the formulation of drugs
into nano-size delivery carriers, such as liposomes and polymer
nanoparticles, delivers chemotherapeutic agents through
mechanisms that are different from those used to deliver
conventional non-encapsulated molecular drugs (71). By
optimizing the particle size, surface charge, and specific ligand
modification of nanocarriers, nanomedicine improves the ability
of nanocarriers to penetrate the stromal barrier in PDAC tumor
sites (72). A study showed that both 30-nm and 100-nm
nanoparticles penetrated into the hyperpermeable colon cancer
model, but only the 30-nm nanoparticle penetrated the stroma-
rich PDAC model and achieved anti-tumor efficacy in the
murine model (73). Different charges on ECM components
make the nano-drug delivery heterogeneous in spatial
FIGURE 1 | Schematic of the extracellular matrix network and stroma-targeting strategies in pancreatic ductal adenocarcinoma (PDAC). The dense desmoplasia
stroma of PDAC consists of several cellular, acellular and biophysical components, which interact mutually to promote the growth and metastasis of PDAC.
Inactivating pancreatic stellate cells (PSCs) or a certain population of cancer-associated fibroblasts (CAFs) by Hedgehog inhibitors and halofuginone or altering the
products these CAFs produce, such as hyaluronic acid (HA) and collagen, by PEGPH20 or discoidin domain receptor (DDR) inhibitor might be potential strategies to
reverse the dense dysplastic stroma of PDAC. In addition, remodeling the tumor vasculature by transforming growth factor-b (TGF-b) inhibitors or angiotensin system
inhibitors (ASIs) decreases the interstitial fluid pressure (IFP), reverses acidosis, and the hypoxic environment, and enhances the efficacy of drug delivery.
Furthermore, nano-drug delivery systems have been designed to respond to environmental or external stimuli which triggers drug release. T-mark represents
inhibition; arrow, activation. ECM, extracellular matrix; MMPs, matrix metalloproteinase; CTGF, connective tissue growth factor.
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distribution, compromising the drug delivery efficiency (74).
Therefore, active targeted drug delivery with modified specific
ligands has been designed to address the issues (75, 76). Several
studies showed that nanoparticle albumin–bound paclitaxel (Nab-
paclitaxel) improved the delivery efficiency of paclitaxel. In
addition, nab-paclitaxel combined with gemcitabine improved
the overall survival and disease-free survival in patients with
advanced PDAC (77), and this combination therapy strategy has
been approved by the Food and Drug Administration (FDA).
Several nab-paclitaxel-based combination therapy strategies are
currently in the clinical evaluation stage (78, 79). A recent meta-
analysis showed that nanoparticles improved the efficacy of various
anti-tumor drugs while reducing their toxicity in patients with
PDAC (80).

To further improve the efficiency of nano-delivery drugs, smart
nanoparticles have been designed to respond to environmental or
external stimuli, which triggers drug release after passive or active
tumor accumulation (81). The PDAC tumor microenvironment
exhibits some unique physiological characteristics, such as the low
pH, cancer cells lysosomes (81), and a high level of reducing
substances in tumor cells (e.g., glutathione) (82). Therefore, a
nano-drug delivery system responsive to the stimuli from the
internal environment of the tumor has been designed. In
addition, researchers have also designed nano-drug delivery
systems triggered by the external stimuli. Thermal, magnetic, and
mechanical waves (including ultrasound) via image guidance have
been applied to trigger the nano-drug delivery system to release the
loaded drug. Furthermore, a study combined the internal and
external stimuli and designed a new nano-drug carrier to respond
to a three-dimensional trigger (ultrasonic, acid-sensitivity and
reduced glutathione) (Figure 1) (83).
STROMA-TARGETING THERAPY AS A
DOUBLE-EDGED SWORD

The tumor suppressive properties of the PDAC stroma have been
revealed gradually. Several studies, using genetic or
pharmacological approaches to eliminate the PDAC stroma in
preclinical models, showed that stromal depletion promoted
tumor cell proliferation, invasion, and metastasis and reduced
survival (84, 85). PDAC tumor cells in the primary lesion showed
loss of differentiation, epithelial-to-mesenchymal transition
(EMT), and enhanced cancer stem cell-like phenotypes after
stromal ablative treatment. In addition, severe weight loss,
acidosis, and cachexia were observed in PDAC mouse models
(84–87). These findings suggest that stroma depletion might
activate dormant neoplastic cells and induce their metastatic
potential, thereby promoting PDAC progression.

Prominently, different subtypes of CAFs that exhibit distinct
characteristics and activity levels have been identified in breast
cancer (88) and PDAC (89). In PDAC, CAFs have been classified
into several subpopulations on the basis of the expression patterns
of various fibroblast markers (89, 90). One subgroup is
characterized by the a-SMA expression and generally considered
as myofibroblastic CAFs, while another is classified as inflammatory
Frontiers in Oncology | www.frontiersin.org 5
CAFs for the secretion of multiple inflammatory chemokines (e.g.,
IL-6). Studies have assessed the effects of these CAFs subgroups on
tumor microenvironment and immune escape in PDAC. For
example, the targeted inhibition of IL-6, which is produced by
inflammatory CAFs, improved the efficacy of anti-PD-L1
checkpoint inhibitors in PDAC. However, the genetic deletion of
Hedgehog resulted in the reduction of stroma deposition and
myofibroblastic CAFs, inducing more aggressive and de-
differentiated tumor phenotypes (85). Similarly, another study
determined that genetic deletion of myofibroblastic CAFs induced
more aggressive PDAC tumor phenotypes, manifested by EMT,
cancer stemness, chemotherapy resistance, and tumor immune
evasion (84). These findings suggest that inflammatory CAFs
might be the potential therapeutic target, while myofibroblastic
CAFs support tumor suppression in PDAC. Recently, Biffi et al.
identified that TGFb and interleukin 1 (IL1) as tumor-secreted
ligands promoted CAFs heterogeneity, illuminating strategies to
selectively target CAFs that support tumor growth (91).

Pericyte is an important cellular component related to the tumor
vasculature in PDAC (92). One of the main biomarkers associated
with vascular pericytes is platelet-derived growth factor receptor-b
(PDGFR-b) (93). Its ligand, PDGF, was shown to induce pericyte-
fibroblast transition (PFT), which makes pericyte an origin of
CAFs, thereby promoting tumor invasion and metastasis.
Pharmacological inhibition and genetic deletion of PDGFR-b
reversed PDGF induced PFT (92). However, PDGFR-b inhibitors
(e.g., imatinib and sunitinib) caused pericytes to detach from
vascular endothelial cells, destroying vasculature integrity and
promoting tumor metastasis (93). Therefore, non-discriminatory
depletion of CAFs might remove partial tumor-suppressing CAFs
subgroups. Although stroma-targeting therapy enhances the
delivery of chemotherapeutic agents, it might also promote
tumor chemoresistance and metastasis. In fact, the unsatisfactory
results in clinical applications and the revelation that the PDAC
stroma harbors tumor suppressive activity indicates that future
research should focus on the tumor ECM biology. The various
components in the PDAC stroma might have different effects on
tumor biological behavior. Therefore, the pathophysiological
analysis of distinct PDAC stromal cell might enlighten future
stroma-targeting strategies (90).
DISCUSSION AND PERSPECTIVE

The dense desmoplasia stroma of PDAC, which hinders the
efficient delivery of chemotherapeutic agents, plays a critical role
in tumor progression and metastasis. On the one hand, various
stroma-targeting treatment strategies have been applied to
improve drug efficacy and inhibit tumor progression. However,
the clinical efficacy of these treatments has not been satisfactory
in PDAC patients. On the other hand, several studies showed
that extreme PDAC stromal depletion caused a deterioration in
tumor phenotypes, supporting the perspective that the stromal
response is a host response to inhibit tumor growth. Therefore, a
stroma-targeting treatment might not be an optimal neoadjuvant
therapy for patients with locally advanced PDAC.
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It is worth noting that lack of taking the heterogeneity of
PDAC stromal composition into account might be one reason
why unsatisfactory results were observed in the clinical studies.
Stroma-targeting therapy would be beneficial in sites with high
density of the targeted stromal composition, while be a
disadvantage in sites with low density. Therefore, it is crucial
to access the quantitative degree and type of tumor stroma
density (TSD), which might be a significant section of the
clinical study design (94). The phase II study, HALO-109-202,
was an example of stratification analysis based on the level of HA
(30). In addition, the activation status of stroma could be
identified, according to consensus clustering of expression
levels of certain biomarkers (95). For instance, prior work
found that A Disintegrin And Metalloproteases 12 (ADAM12)
was a blood-borne proxy for stromal activation, the levels of
which had prognostic significance and correlate with treatment
benefit (96). In fact, the stroma is a reservoir of various potential
biomarkers, which might be used to classify PDAC patient
subgroups and facilitate the clinical application of stroma-
targeting therapy.

In addition, the heterogeneity of stromal microenvironment
between the primary tumor and metastases sites might result in
distinct responses to stroma-targeting therapy (94). Previous
studies showed that PDAC metastatic tumors had limited
driver-mutation heterogeneity compared to the primary tumors
(97), and TSD was various across metastatic sites and primary
tumors (94). These observations suggested that the heterogeneity
of stroma might be a function of host organ-site physiology and not
inferior to cancer genomic or epigenomic variations between the
primary and metastatic tumors. Furthermore, the effects of
individual and ethnic-specific genetic variations on the stroma
microenvironment of PDAC might need further investigation.
Genomic analyses of single PDAC stroma cell might help identify
inter- and intra-individual heterogeneity and optimize individualized
stroma-targeting therapy in order to maximize patient treatment
benefits (98–100).

Pharmacological agents that alter the tumor microenvironment
might help evade the negative effect of stromal depletion. For
example, the inhibition of PDAC tumor-associated macrophages
by clodronate liposomes prevented the establishment of a pre-
metastatic microenvironment in organs of metastasis, markedly
reducing metastasis formation (101). Therefore, clodronate
liposomes might be a candidate for combination strategies
Frontiers in Oncology | www.frontiersin.org 6
with stroma-targeting therapy. Furthermore, although the
proliferative stroma of PDAC usually exerts an immunosuppressive
effect, stromal depletion might exacerbate the immunosuppression
effect in some cases (84). Therefore, the combination of immune
checkpoint inhibitors and stroma-targeting therapymight reduce the
negative effects of stromal ablation and further enhance the efficacy of
chemotherapy in PDAC patients.

In summary, stroma-targeting therapy in PDAC has emerged
as a double-edged sword. On the one hand, it enhances the
delivery of chemotherapeutic agents to tumor sites. On the other
hand, it eliminates the physical and biochemical barriers that
potentially inhibit tumor progression. Therefore, it is imperative
to understand the complex role of the PDAC stroma in order to
improve the current stroma-targeting therapies through
appropriately adjusting the balance between stroma deposition
and ablation.
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