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Abstract
Social interactions require quick perception, interpretation, and categorization of faces, with facial features offering cues to
emotions, intentions, and traits. Importantly, reactions to faces depend not only on their features but also on their processing
fluency, with disfluent faces suffering social devaluation. The current research used electrophysiological (EEG) and behavioral
measures to explore at what processing stage and under what conditions emotional ambiguity is detected in the brain and how it
influences trustworthiness judgments. Participants viewed male and female faces ranging from pure anger, through mixed
expressions, to pure happiness. They categorized each face along the experimental dimension (happy vs. angry) or a control
dimension (gender). In the emotion-categorization condition, mixed (ambiguous) expressions were classified relatively slower,
and their trustworthiness was rated relatively lower. EEG analyses revealed that early brain responses are independent of the
categorization condition, with pure faces evoking larger P1/N1 responses than mixed expressions. Some late (728- 880 ms) brain
responses from central-parietal sites also were independent of the categorization condition and presumably reflect familiarity of
the emotion categories, with pure expressions evoking larger central-parietal LPP amplitude than mixed expressions.
Interestingly, other late responses were sensitive to both expressive features and categorization task, with ambiguous faces
evoking a larger LPP amplitude in frontal-medial sites around 560-660 ms but only in the emotion categorization task.
Critically, these late responses from the frontal-medial cluster correlated with the reduction in trustworthiness judgments.
Overall, the results suggest that ambiguity detection involves late, top-down processes and that it influences important social
impressions.
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Introduction

Social interactions often require quick perception, interpreta-
tion, and categorization of faces (Todorov, 2017). Facial fea-
tures offer cues to a target’s emotional states, personality, and
behavioral intentions, as documented by decades of work on
facial displays (Knutson, 1996; Russel, Bachorowski, &
Fernadez-Doz, 2003). Facial features also allow people to
form rapid judgments about important social traits, including
trustworthiness—a major element in relationships, trade, and
politics (Rezlescu, Duchaine, Olivola, & Chater, 2012;
Todorov, Pakrashi, & Oosterhof, 2009; Wojciszke, Bazinska,
& Jaworski, 1998). Interestingly, the processes involved in
emotion perception and impression formation seem tightly
intertwined (Ambady & Skowronski, 2008). For example,
people judge a face as more trustworthy when it has features
resembling smiles and less trustworthy when the face resem-
bles anger (Oosterhof & Todorov, 2008).

Electronic supplementary material The online version of this article
(https://doi.org/10.3758/s13415-020-00778-5) contains supplementary
material, which is available to authorized users.

* Olga Katarzyna Kaminska
olgakaminsk@gmail.com

* Piotr Winkielman
pwinkiel@ucsd.edu

1 University of Social Sciences and Humanities, Warsaw, Poland
2 Institute for Neural Computation, Swartz Center for Computational

Neuroscience, University of California, San Diego, La Jolla, CA,
USA

3 Institute of Psychology, Polish Academy of Sciences,
Warsaw, Poland

4 Psychology Department, University of California, San Diego, La
Jolla, CA, USA

5 Department of Neurosurgery, Cedars-Sinai Medical Center, Los
Angeles, CA, USA

https://doi.org/10.3758/s13415-020-00778-5
Cognitive, Affective, & Behavioral Neuroscience (2020) 20:441–454

Published online: 12 March 2020

http://crossmark.crossref.org/dialog/?doi=10.3758/s13415-020-00778-5&domain=pdf
https://doi.org/10.3758/s13415-020-00778-5
mailto:olgakaminsk@gmail.com
mailto:pwinkiel@ucsd.edu


Most of the existing research has focused on understanding
the psychological and neural underpinnings of facial feature
processing in emotion perception and impression formation.
However, people’s evaluative judgments and affective re-
sponses depend not only on features but also on the fluency
(ease or difficulty) with which such features are processed. For
example, when the task requires categorizing faces on some
dimension, a face ambiguous on that dimension becomes
disfluent, which lowers its evaluation (Halberstadt &
Winkielman, 2014; Winkielman, Olszanowski, & Gola,
2015; Olszanowski, Kaminska, & Winkielman, 2018; Owen,
Halberstadt, Carr, & Winkielman, 2016). The negative reac-
tion caused by disfluency is sometimes strong enough to over-
ride the benefits of positive stimulus features. For example,
objectively happier but disfluent faces are sometimes rated as
less trustworthy than objectively angrier but fluent faces
(Winkielman et al., 2015). This presumably occurs because
disfluency triggers negative affect, which perceivers then use
when judging the effort-inducing stimulus.

Despite several recent demonstrations of such effects on
evaluations, their underlying mechanisms are poorly under-
stood. Specifically, we do not know when (at what processing
stage) ambiguity is detected, how ambiguity detection de-
pends on task requirements, and what kind of ambiguity in-
fluences evaluative judgments. In the current article, we used
behavioral and physiological (EEG)measures to explore these
questions by examining the temporal dynamics of brain pro-
cessing of emotional faces during emotional perception, cate-
gorization, and social judgments. Our investigation helps us to
better understand the processing of facial expression and the
formation of first impressions, including socially important
trustworthiness judgments. Understanding the role of ambigu-
ity in processing facial expressions is important given that in
the real world, faces are “inherently ambiguous” and often
contain features of multiple emotions (Aviezer et al., 2008;
Hassin, Aviezer, & Bentin, 2013). This investigation also
helps us to extend our understanding of the mechanisms un-
derlying ambiguity processing more generally, as similar be-
havioral effects in evaluation have been obtained with a vari-
ety of facial and nonfacial stimuli (Carr et al., 2017a; Carr
et al., 2017b; Sun et al., 2017; Winkielman, Halberstadt,
Fazendeiro, & Catty, 2006). Before we describe the current
study, we offer more background on the concept of processing
fluency and the EEG measures of face processing in the brain.

Processing Fluency in Perception and Categorization
and its Impact on Evaluation

Processing fluency is the effort of perceptual and conceptual
mental operations and is typically indexed using reaction
times (Jacoby, Kelley, & Dywan, 1989), subjective measures
of ease (Oppenheimer, 2008), and electrophysiological mea-
sures, such as EEG (Nessler et al., 2005; Trujillo,

Jankowitsch, & Langlois, 2014). Previous studies demonstrat-
ed two major classes of fluency determinants. First, fluency
depends on low-level physical stimulus characteristics, for
example, clarity or contrast, or basic stimulus features, such
as simplicity, symmetry, regularity, or a simple match with
stored patterns. These factors influence “perceptual fluency.”
Second, fluency also reflects conceptual aspects of stimulus
processing, such as categorization ease. Importantly, such
“conceptual fluency” depends on the current task. For exam-
ple, the same multidimensional stimulus might be conceptu-
ally fluent or disfluent, depending on whether the categoriza-
tion task draws on a stimulus dimension that is easy or difficult
to categorize (Winkielman et al., 2015). As mentioned, fluen-
cy matters for evaluation, with easier processing generally
enhancing favorability ratings and eliciting positive affective
responses (Schwarz, 2007; Winkielman & Cacioppo, 2001;
Winkielman, Schwarz, Fazendeiro, & Reber, 2003). These
effects have been demonstrated in the face processing domain,
using dimensions, such as gender, ethnicity, or emotion
(Halberstadt et al., 2014). For example, in previous studies
that inspired the current research, participants were shown
male and female faces ranging from pure emotion (anger or
happiness) to mixed emotion (blended anger and happiness).
Participants needed to evaluate these faces on a social dimen-
sion (attractiveness, trust). Before their judgments, partici-
pants were asked to categorize faces based on either an emo-
tional dimension or a control dimension (e.g., gender). Results
showed that ambiguous, mixed emotion stimuli (angry-happy
blends) were evaluated less positively in comparison to pure
emotion stimuli, especially when participants first needed
to categorize the stimulus on the emotion dimension. In
addition, physiological measures of affective responses
(facial EMG) showed decreased smiling to disfluent stim-
uli. Finally, categorization fluency (RTs) statistically me-
diated the impact of stimulus ambiguity (mixedness) on
evaluative ratings (Olszanowski et al., 2018; Winkielman,
Olszanowski, & Gola, 2015). Yet, as mentioned, the psy-
chological and neural mechanisms underlying these ef-
fects are poorly understood. Therefore, it is necessary to
examine the role of different stages and components of
facial processing, their neural signatures, and their links
with social impressions.

Stages of Face Processing and Social Evaluation

Processing of emotion and faces is a complex, gradual, and
interactive process (Adolphs, 2002; Cunningham & Zelazo,
2007). However, for the current purposes, it can be roughly
divided into perceptual (early) vs. conceptual (late) conceptual
stages (Bruce & Young, 2012; Haxby, Hoffman & Gobbini,
2002). Early stages involve construction of the representation
from the perceptually available facial features and matching it
to existing templates. In contrast, later stages involve linking
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the constructed perceptual representation with existing knowl-
edge about emotional categories and social knowledge. This
early-late distinction is important for understanding what hap-
pens when a perceiver encounters a display of mixed emotion,
such as a mix of happiness and anger. At the earlier, perceptual
stages, a mixed expression represents a poorer match to a
preexisting feature template than a relatively pure, or more
“prototypical” expression (Russell et al., 2003). At the later
stages, the perceiver must resolve a conflict between the per-
ceived mix of facial features and the activated emotion cate-
gories, especially when the current task requires the perceiver
to do so. Resolution of this conflict takes cognitive effort,
recruiting cognitive, motivational, and affective resources
(Sun et al., 2017; Willadsen-Jensen & Ito, 2006). The resolu-
tion of the conflict then allows the perceiver to assign the faces
into some emotion category that can then support social
judgment.

ERP Measures of Face Processing

To better understand the dynamics of face perception, catego-
rization, and evaluation, researchers have often relied on EEG
measures, especially event-related brain potentials (ERPs).
Such measures allow for precise assessment of temporal dy-
namics (Eimer & Holmes, 2007) and provide information
about the mental effort involved in such processing (Sun
et al., 2017). Accordingly, we use ERP measures to explore
early and late effects, as a function of the physical features of
the faces and the impact of the categorization task. We briefly
review three ERPs of interest for the current research: P1,
N170, and LPP (late positive potential).

One of the earliest ERP responses to facial stimuli occurs
around 100 ms after stimulus onset and is known as the P1
potential. It appears as a positive amplitude deflection at pos-
terior electrode sites around 90-100 ms (Dering, Martin,
Moro, Pegna, & Thierry, 2011). The P1 does not reflect acti-
vation of a complete face representation but instead reflects
image properties that resemble the face, such as roundness,
specific color distribution, spatial frequency, and contrast
maps (for review see Luck & Kappenman, 2012).
Interestingly, there is some evidence that the P1 is sensitive
to the type of facial expression presented, at least under focal
attention. Presumably, this reflects processing of low-level
features that match a template for a specific expression, such
as anger, fear, or happiness (Holmes, Vuilleumier, & Eimer,
2003). Note that concurrent to the P1, the fronto-central neg-
ativity, the N1 potential occurs around 100–150 ms (Pourtois,
Thut, Grave de Peralta, Michel, & Vuilleumier, 2005). The N1
and P1 are presumably generated by the same dipolar source
in the brain and thus reflect the same processes (Rossion et al.,
1999a, b).

Another ERP, the N170, is linked to the structural encoding
of faces (Eimer&Holmes, 2007). It peaks approximately 150-

190 ms after stimulus onset over temporo-occipital electrode
sites (Rossion & Jacques, 2008). The N170 is sensitive to
differences in emotional display, with greater (i.e., more neg-
ative) amplitude to angry than happy faces (Krombholz,
Schaefer, & Boucsein, 2007). Interestingly, the N170 also is
sensitive to fluency of perceived stimuli. For example, N170
response is reduced to more familiar faces (Caharel, Courtay,
Bernard, Lalonde, & Rebaï, 2005), faces resembling a global
prototype, such as averaged faces obtained by blending many
individual faces (Trujillo et al., 2014), and faces displayed in
the canonical, upright orientation compared with rotated faces
(Rossion et al., 1999a, b; Magnuski & Gola, 2013).

The late positive potential ERP component, the LPP, ap-
pears 400-800 ms poststimulus onset and reflects more com-
plex processes associated with memory, categorization, and
evaluation of the affective and motivational significance of
the stimulus for the perceiver (Friedman & Johnson, 2000;
Frenkel & Bar-Haim, 2011; Schacht & Sommer, 2009; Sun
et al., 2017). Critically, previous work has distinguished the
timing and presumed brain sources of different psychological
processes generating distinct types of LPP response.

LPP responses at central-parietal sites are related to two
sets of processes. One is a sense of familiarity, which is be-
lieved to be relatively contextually independent (Rugg et al.,
1998). The other relates to the emotional intensity of a
stimulus—positive or negative valence stimuli both elicit rel-
atively larger (i.e., more positive) LPP amplitudes than neutral
stimuli (Duval, Moser, Huppert, & Simons, 2013; Hajcak,
MacNamara, & Olvet, 2010; Cuthbert, Schupp, Bradley,
Birbaumer, & Lang, 2000). Some LPP responses from
central-parietal sites are relatively independent of aspects of
the presentation context (Pastor et al., 2008), although a recent
review suggests top-down goals and task requirements play an
important role, especially when they change the motivational
significance of the stimulus (Hajcak & Foti, in press).

Interestingly, research suggests that some components of
the LPP are sensitive to task requirements and may reflect
processes related to effort and decision-making. Specifically,
more frontal LPPs differentiate levels of ambiguity and de-
pend on the choice requirements, rather than passive percep-
tion of ambiguous stimuli (Calvo, Marrero, Beltran, 2013;
O'Connell et al., 2012; Kelly and O'Connell, 2013; Murphy
et al., 2015). Recently Sun et al. (2017) have shown greater
LPP responses to ambiguous stimuli, including mixed facial
expressions, but only when participants had to make a catego-
rization choice. In their study, which used a similar paradigm
to our investigation, stimuli varied on two dimensions, and
participants made classification decisions that were either re-
lated or unrelated to the dimensions on which the stimuli were
ambiguous. Greater (more positive) LPP responses were
found to stimuli that were ambiguous but only when they
needed to be judged on the ambiguous dimension. Using a
combination of EEG and fMRI methods, Sun et al. (2017)
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interpreted this response as reflecting greater processing ef-
fort, perhaps due to greater engagement of brain areas in-
volved in conflict resolution. We will return to the LPP inter-
pretation issues in the Discussion.

Current Study

Based on the background presented above, we can now more
precisely articulate the hypotheses of the current study. As a
reminder, our primary goal was to understand the dynamics of
processing of pure and mixed (ambiguous) emotional expres-
sions and how that relates to social evaluations, such as trust-
worthiness. Furthermore, we wanted to understand how such
processing depends on stimulus characteristics and categori-
zation conditions.

To do so, we designed the following task based on previous
research in our lab (Olszanowski et al., 2018; Winkielman
et al., 2015). Participants were asked to view male and female
faces with emotional displays ranging from clear happiness
through mixed emotions (happiness mixed with anger) to
clear anger (Fig. 1). Participants categorized these faces along
the dimension of either gender (control condition) or emotion

(experimental condition) (Fig. 2). Because the faces gradually
ranged from happy to angry, we expected that the middle
stimuli would be difficult to categorize on the emotion dimen-
sion. Gender dimension was bipolar (male vs. female) and
never mixed, so we expected that such stimuli would be al-
ways easy to categorize. After categorizing the face, partici-
pants evaluated it on a trustworthiness scale. During the entire
procedure, we recorded EEG as a measure of processing
dynamics.

On the behavioral level, we expected to replicate previous
results (Winkielman, Olszanowski, & Gola, 2015). In terms of
fluency, mixed expressions should take longer to categorize,
compared with clear expressions, but only when participants
categorize faces on the emotion dimension (experimental con-
dition). In terms of trust ratings, mixed expressions should
receive relatively lower trust evaluations but only during emo-
tion categorization. This is because disfluency (effort) associ-
ated with resolving ambiguity is negatively tinged and spills
over to stimulus evaluation (Winkielman et al., 2003).

On EEG measures, we expected to observe differences at
early and later stages of face processing as a function of stim-
ulus characteristics and participants’ task. As discussed, the

Fig. 1 Panel A: Examples of stimuli used in the current experiment.
Expressions varied from angry to happy. On the x axis is the percentage
of anger and happiness mixed within each frame. Panel B: Results from

Computer Expression Recognition Toolbox (CERT) analyses of all ex-
perimental stimuli indicating intensity of 10 different expressions

Cogn Affect Behav Neurosci (2020) 20:441–454444



early responses (P1/N1, N170) to emotional displays should
primarily reflect their match to their respective emotion tem-
plates, with pure (clear happiness, and clear anger) facial ex-
pressions evoking larger amplitudes of their relevant compo-
nent. Our expectation for late responses (LPP) was more nu-
anced. As mentioned, the literature on decision effort in emo-
tion categorization predicts modulation of the ERP amplitude
by the categorization task (Sun et al., 2017). Specifically, in
the emotion categorization condition, LPP responses to mixed
expressions should be larger (more positive), due to
disfluency (effort) involved in disambiguation of such dis-
plays. However, other literature suggests that the LPP also
reflect emotional intensity and familiarity of facial expres-
sions, relatively independent of context (Pastor et al., 2008;
Rugg et al., 1998). Given that mixed displays are less familiar,
less intense, and less representative of prototypical emotion
categories, they may evoke smaller (less positive) responses
than pure expressions on LPP components sensitive to those
processes. We return to these nuances in the discussion.

Method

Subjects

Thirty-one healthy participants with normal or corrected-to-
normal vision took part in the study (11 males, age range 19-
29 years, M = 22.2, standard deviation [SD] = 2.5). The
Ethical Review Board at the SWPS University of Social
Sciences and Humanities approved the study and all partici-
pants (students or recent graduates from SWPS University)
gave informed consent. Participation in the study was volun-
tary and assignment to the groups was randomized. Two sub-
jects were removed from behavioral data analysis due to out-
lier reaction times (2 SD above the group’s mean). Two sub-
jects were discarded from EEG analysis, due to the low EEG
signal quality (excessive artifacts).

Stimuli and Experimental Procedure

The stimuli used in this study came from the Warsaw Set
of Emotional Facial Expression Pictures (Olszanowski

et al., 2015). From this set, we selected 16 individuals
(8 females and 8 males) who provided 2 expressions each
(anger and happiness). Mixed expression faces were con-
structed using FantaMorph 5 software by combining (in
different proportions) two source images of “pure” ex-
pressions. Transitions within 13 steps of each expressions
pair were delineated using over 100 facial landmarks,
resulting in 15 pictures from each poser (model). To limit
the total number of presented stimuli, we selected five
frames (1st – anger, 5th, 8th, 11th – mixed to a different
degree and 15th – pure happiness; Fig. 1A). This resulted
in 90 different total pictures. To “objectively” test the
emotional intensity and emotional classification of these
stimuli, we analyzed all the pictures with the Computer
Expression Recognition Toolbox - CERT (Bartlett et al.,
2008). The results are shown in Fig. 1B (the underlying
pictures and data are available on request). This analysis
showed that pictures of pure (100%) expressions of anger
and happiness yielded the maximum intensity values of
intended emotion (anger, joy) and that pictures of mixed
expressions (50/50) yielded lower intensity levels of pure
expression and did not reach high-intensity level for other
tested emotions (e.g., contempt, disgust, sadness, etc.).

The experimental procedure was programmed using the
Inquisit 3 software, which interfaced with software for EEG
data collection. Participants were randomly assigned to one of
the two conditions: control condition (gender categorization)
and experimental condition (emotion categorization). The pre-
sentation of stimulus trials was grouped in two identical
blocks of 240 trials (each picture was presented 3 times).
Every trial consisted of the following four events. First, a
fixation cross appeared for a randomized duration in range
of 1,000 to 1,800 ms in 200-ms intervals. Second, a target
face stimulus was presented for 2,000 ms. Third, a categori-
zation task, where participants indicated the appropriate cate-
gory by clicking on a virtual button located approximately 50
pixels above and below the center of the computer screen
(while the face was centrally located). Fourth, for each face,
participants responded to the question “Is this person trustwor-
thy?” by moving a 100-point slider (with anchors from “not at
all” to “very”). See Fig. 2 for a schematic representation of an
experimental trial.

Fig. 2 Example trial from the behavioral task
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EEG Acquisition

The EEG signal was acquired using 64 channels EGI
Geodesics GES 300 amplifier. The EEG was sampled at 250
Hz, using the NetStation software. No online filters were used.
Data was referenced to Cz electrode. The impedances were
kept below 50 kΩ.

EEG Preprocessing

We ran the EEG data analysis using the EEGLAB toolbox
(12.0.1) (Delorme & Makeig, 2004), Fieldtrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011), and custom Matlab scripts
(Matlab R2013a, MathWorks). First, we applied 1- to 45-Hz
band pass FIR filter, and to remove the remaining 50-Hz noise
in the signal, we applied an additional Clean Line filter (Mitra
& Bokil, 2007). To ensure good quality of Independent
Component Analysis (ICA), we followed the practice of using
the maximum amount of data for the decomposition.
Therefore, ICA was not limited to the actual segments that
were later used in analysis but was performed on full data after
exclusion ofmajor artifacts via visual inspection (such as large
signal distortions due to movement, periods of strong myo-
genic artifacts or other substantial nonrepeatable events). The
quality of Independent Components (ICs) was assessed for
each subject visually by examining the EEGLAB component
properties dialog. At this stage, the weights of the ICs were
stored in a matrix form for further usage.

Next, we went back to the original, raw data and ap-
plied a previously used filtering setup. We epoched the
data into 1,500-ms segments (from 500 ms before the
stimulus onset up to 1,000 ms after). After that, we ap-
plied previously obtained ICA weight matrices to this sig-
nal. This allowed us to use ICs extracted from full data on
epoch-limited segments, therefore, enhancing the quality
of ICA-driven artifact rejection. To objectively remove
artifact ICs, we used CORRMAP EEGLAB plugin
(Viola et al., 2009): first, we defined the IC template for
blink, eye movement, and cardiac artifacts and then
CORRMAP identified ICs with high correlation (above
threshold of r = 0.87) with the template for each partici-
pant. Then, we conducted the final visual inspection of
the ICA-cleaned epoched data and rejected any remaining
noise and artifacts. These preprocessing steps led on av-
erage to 413.4 trials remaining in the emotion condition
(86.13% of all trials, SD = 37.3 trials; 7.78%) and 378.7
trials in the gender condition (78.90% of all trials, SD =
63.2; 13.16%). The difference between the number of tri-
als remaining in each condition was not significant (t =
1.71, p = 0.10). Finally, we re-referenced the data to the
average from all 64 electrodes and baselined the signal
with respect to a period of 500 ms before stimulus pre-
sentation (−500 ms up to 0 ms).

EEG Analysis

All EEG analyses were conducted using nonparametric
cluster-based permutation tests (Maris and Oostenveld,
2007). The reader unfamiliar with these analyses will find
additional information in Supplementary Materials.

Application of cluster-based analyses to the current data

To assess the overall effect of ambiguity (pure vs. mix), we
compared the ERPs obtained from the middle frame to ERPs
obtained from the combined happy and angry frames. The
cluster-based permutation test was used on the search space
consisting of all channels and all-time samples using repeated
measures t-test as the test statistic and 1,000 permutations.
Cluster membership threshold was set to t > 2.052 for positive
effects and t < −2.052 for negative effects. This t-value corre-
sponds to p = 0.05 for a t-test with 27 degrees of freedom (our
repeated measures case).

To quantify the interaction effect, we performed a two-
step analysis, popular when using cluster-based tests to
test for interactions. In the first step, we computed the
contrast between mix and pure frame ERPs within each
participant using a t-test. Because we expected this inter-
action effect to appear late and be located frontally, we
restricted the search space to a time window of 400-
1,000 ms and frontal channels. This step resulted in one
channel by time t statistic map per participant—each
representing the within-subject pure vs. mix contrast.
Then, in the second step, we used cluster-based approach
to test for inequality in these t-value maps depending on
categorization condition using independent t-test as the
test statistic and 1,000 permutations. Cluster membership
threshold was set to t > 2.056 for positive effects and t <
−2.056 for negative effects. This t-value corresponds to p
= 0.05 for a t-test with 26 degrees of freedom (our inde-
pendent measures case).

Results

Behavioral Data

Data were analyzed with a 2 (categorization: emotion vs.
gender) × 5 (emotion: anger to happiness) mixed-model
ANOVA. According to our hypothesis, in the emotion
categorization condition, the fluency (RT) curve should
assume an inverse U-shape, whereas the trust evaluation
curve should follow a U-shape. Accordingly, we tested for
the presence of quadratic contrasts and their interaction
with classification condition.
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Reaction times

Categorization times for mixed expressions depended on the
experimental condition. In the emotion condition, participants
took longer to categorize mixed expressions (5th frame: M =
1,005 ms, SD = 249; 8th frame:M = 1,157 ms, SD = 246; 11th

frame:M = 983 ms, SD = 166) than pure expressions (Anger –
1st frame:M = 874ms, SD = 135; Happiness – 15th frame:M =
854 ms, SD = 114). This resulted in significant quadratic (in-
verse U –shape) contrast, F(1, 15) = 45.13, p < 0.001, η2 =
0.751. In the gender condition, categorization time did not
differ across morph frames (Anger – 1st frame: M = 964 ms,
SD = 343, 5th frame: M = 949 ms, SD = 319; 8th frame: M =
919 ms, SD = 283; 11th frame: M = 924 ms, SD = 284;
Happiness – 15th frame: M = 925 ms, SD = 309).
Comparing these two patterns yielded a significant interaction
with quadratic (inverse U-shape) contrast: F(1, 27) = 32.61, p
< 0.001, η2 = 0.547 (Fig. 3B).

Trustworthiness

In both conditions, judgments of trustworthiness increased with
the percentage of happiness contributing to the expression. The
linear contrast was significant for the gender categorization con-
dition, F(1, 12) = 39.14, p < 0.001, η2 = 0.765, (1st frame: M =
32.20, SD = 10.34; 5th frame:M = 38.11, SD = 7.98; 8th frame:M
= 46.017, SD = 7.76; 11th frame: M = 55.61, SD = 9.96; 15th

frame: M = 59.83, SD = 12.05). It also was significant for the
emotion categorization condition, F(1, 15) = 31.33, p < 0.001, η2

= 0.676, (1st frame:M= 38.88, SD= 17.85; 5th frame:M= 40.07,
SD = 13.39; 8th frame:M = 43.20, SD = 11.87; 11th frame:M =
55.96, SD = 9.60; 15th frame: M = 64.45, SD = 10.15).
Importantly, we also observed a significant quadratic contrast
for trustworthiness ratings in the emotion categorization

condition, F(1, 15) = 6.61, p = 0.021, η2 = 0.306, but not in
the gender categorization condition. Altogether, comparing both
conditions resulted in significant quadratic interaction F(1, 27) =
5.74, p = 0.024, η2 = 0.175 with higher quadratic contrast (U-
shaped dependency) in the emotion categorization condition.
The quadratic contrast in the emotion categorization condition
reflects relatively lower trust evaluation for mixed frames (Fig.
3C – right graph). This shows that in the gender condition, the
trustworthiness ratings increase due to a greater amount of hap-
piness in the facial stimulus, while in the emotion categorization
condition, trustworthiness changes not only as a function of tran-
sition from anger to happiness but also due to increased
mixedness/ambiguity of the middle frames, resulting in a qua-
dratic contrast.

EEG Results

As discussed, our theoretical focus was the difference between
brain responses to pure versus ambiguous expressions. For
this reason, and to simplify the EEG analyses, we created
two categories of stimuli: (I) “pure” emotional expressions
(100% happiness and 100% anger expressions combined)
and (II) “mixed” expressions (middle frames). We first looked
at the overall mixedness effect—a comparison between pure
vs mixed expressions, which we then followed with an anal-
ysis of the mixedness by categorization condition interaction.
The clusters reported below were obtained using the cluster-
based permutation test (for details see the EEG Analysis
subsection in the Methods and also in Supplementary
Materials). As discussed in methods, the analyses looking at
mixedness of stimuli were performed on the full channel x
time ERP space. The mixedness x categorization condition
interaction was expected to appear frontally and late.
Accordingly, these analyses were conducted on a more

Fig. 3 Panel A: Proportion of categorizations for the emotion and gender
conditions for the pure and mixed expressions. Panel B: Reaction times
for the emotion and gender categorization conditions. Panel C:

Trustworthiness judgments for the emotion and gender categorization
conditions. Error bars represent standard error of the mean

Cogn Affect Behav Neurosci (2020) 20:441–454 447



restricted search space (frontal channels and time window of
400-1,000 ms). Below we report the results by grouping them
into early and late effects.

Early Effects

During early periods of sensory processing, the mixedness
analysis revealed a negative (blue) cluster extending from
68 ms to 160 ms (p = 0.03; Fig. 4A for the whole cluster
extent and Panels B and C for representative topography
and time course). Note that the difference within this neg-
ative cluster co-occurs with a large negative peak at
frontal-midline topography (N1), with more negative am-
plitude for pure than for mixed frames. Although we
found a robust N170 response in the grand average ERP,

we did not detect any significant differences between pure
and mixed emotion expressions, nor any interaction ef-
fects within the N170 spatio-temporal window. In short,
as expected, the early ERP components appeared to re-
flect the process of matching perceived facial expressions
to emotion templates.

Late Effects

The mixedness analysis revealed one late positive (red) clus-
ter, ranging from 728 ms to 880 ms (p = 0.03; Fig. 4A and D)
and one late negative (blue) cluster, ranging from 748 ms to
880 ms (p = 0.018). The late positive cluster occurs at central
electrodes with more positive values for pure than for mixed
expressions, while the late negative cluster seems to originate

Fig. 4 EEG results for pure vs mix comparison (Panels A, B, C, D). The
A panel represents the cluster plot- a heatmap of effects in channel by
time space. Colors represent the strength and direction of the pure versus
mix comparison (t-values, blue – greater amplitude for the mix category;
red – greater amplitude for the pure category). Significant clusters are
marked with contour lines and more vivid colors. Panels B, C and D
show the topography and ERP time course of the early negative cluster

(Panel B and C) and the late positive cluster (Panel D). The ERPs are
obtained by averaging channels that participate in the cluster for at least
50% of the specified time range (displayed above the topography). These
channels are marked in red on the topography plot, the remaining cluster
channels (for the specified time range) are marked in white. The topog-
raphy represents the mean t-values for representative cluster time
windows
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from the same dipolar source. As we elaborate in the discus-
sion, this late component probably reflects LPP and is related
to stimulus intensity and familiarity.

The interaction analysis revealed a component where the
mixedness effect was dependent on the categorization task, as
reflected in a significant interaction between mixedness level
and categorization task. Interestingly, this effect occurred a bit
earlier than the late mixedness effect—within a 566 ms to
644 ms time window—and had a frontal midline topography
(p = 0.034). As shown in Fig. 5A, B, and C, this interaction
reflects greater amplitude to mixed faces in the emotion cate-
gorization condition as compared to the control condition
(gender categorization). As we elaborate in the discussion, this
task-dependent late component may reflect decision effort.

Late Positive Interaction Cluster Correlates with Behavioral
Effects

As the final step, we examined the link between brain re-
sponses and two behavioral measures: trustworthiness and cat-
egorization RT. To this end, we computed trust rating “bend”
as the difference between observed trust rating for the mixed
emotion frame and trust rating expected for the same frame
based on linear interpolation obtained from two edge frames
(pure happiness and pure anger). This approach is conceptually
identical to calculating quadratic contrast for trust ratings (this
quadratic relationship can be seen in Fig. 3C). Trust rating

bend was then correlated with single-subject t-value contrasts
(mix vs pure condition) from the interaction cluster (566 ms to
644 ms at frontal midline topography). T-values were used
because the interaction cluster was obtained in a two-step ap-
proach where single-subject t-value maps are contrasted be-
tween conditions (see details in EEG Analysis methods
subsection).

As shown in Fig. 6A, single-subject t-values were nega-
tively correlated with the divergence from a linear trend ob-
served in behavioral trust ratings, r(27) = −0.495, p = 0.007.
This means that the more negatively a participant evaluated
mixed expression (greater “bend” of the rating line), the larger
the ERP’s amplitude difference was between mixed and pure
expressions. Interestingly, a similar analysis of a correlation
between cluster contrast and the “bend” of categorization RTs
did not reveal any significant differences.

One possible concern about the correlation of the whole group
of points coming from two conditions is that it can be driven by the
condition difference (Fig. 6B). To alleviate this concern, we con-
ducted the correlations separately for each condition and found the
following for the emotion condition: r = −0.50, p = 0.069, and for
the gender condition: r = −0.05, p = 0.857. Although the correla-
tionwithin the emotion condition is not nominally significant, note
that it is based on fewer participants than the whole group corre-
lation. The key point is that the correlation on the whole group is
not (or at least not entirely) driven by the between-group differ-
ence. The presence of a correlation trend in the emotion condition

Fig. 5 Stimulus type x categorization condition interaction effect (Panels
A, B, C). A) Topography and cluster plot, using the same visualization
method as in Fig. 4B) ERP plot of the interaction effect, using the same

visualization method as in Fig. 4C) Line plot of the interaction effect for
the averaged cluster time window. The error bars represent 95%
confidence interval
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and no correlation in the gender condition is in line with our
reasoning; the interaction cluster, interpreted as a correlate of cat-
egorization conflict, should relate to the trust ratings only in the
emotion condition, because in the gender condition, there is no
categorization conflict. Overall, these findings are consistent with
the interpretation of the LPP component as related to decision
conflict, which negatively influences evaluative ratings.

Discussion

In this research, we investigated the psychological and neural
mechanisms underlying the link between facial features, flu-
ency, ambiguity, and social evaluation. These results advance
our theoretical understanding of how facial ambiguity is proc-
essed and how it translates into social judgments. This is par-
ticularly important in the domain of facial expressions, given
that in real life people base consequential social judgments on
expressive features of faces (Todorov, 2017) and that such
features often are inherently ambiguous (Hassin, Aviezer, &
Bentin, 2013).

The current study confirmed on the behavioral level that
ambiguity (such as mixed facial expression) increases catego-
rization time and decreases trustworthiness ratings. Notably,
as theoretically predicted, these effects occurred only when
the categorization task was related to the ambiguous stimulus
dimension, i.e., emotions, but not the unambiguous dimen-
sion, i.e., gender. These results are consistent with previous
research with blends of emotions (Olszanowski et al., 2018;
Winkielman, Olszanowski & Gola, 2015) and also with
blends across dimensions of gender (Owen et al., 2016), eth-
nicity (Halberstadt et al., 2014), humanness (Carr et al.,
2017a), and facial identity (Carr et al., 2017b; Halberstadt,
Pecher, Zeelenberg, Wai, & Winkielman, 2013).

The key novel contribution of the study was the ability to
use EEGmeasures to better identify the mechanisms involved
in the processing and evaluation of pure and ambiguous emo-
tional faces and to examine their links to ratings of impres-
sions. We will now review our key findings.

In the early time window (100 ms), we found a negative
cluster at the fronto-central sites that, regardless of categoriza-
tion condition, reflected a stronger response to pure expres-
sions (angry and happy) compared with mixed expressions
(middle frames). This N1 effect might reflect the same brain
process as the P1, representing two projections of the same
dipolar source (Joyce & Rossion, 2005) where more negative
amplitude for pure expressions at N1 presumably translates
into more positive amplitude at the P1 (Rossion et al.,
1999a, b). We interpret this result as suggesting that the early
brain responses reflect a simple match of basic, low-level fea-
tures, with pure expressions offering a better template match
than mixed expressions (Holmes et al., 2003).

In the later time window, we obtained two distinct LPP
effects. One LPP effect occurred over central-parietal sites in
the windows of 728 to 880 ms. This effect was independent of
the categorization task and was greater to pure over mixed
stimuli. Interestingly, a similar effect was obtained by Duval
et al. (2013). These authors had participants view facial
morphs ranging from happy-to-neutral and angry-to-neutral
(without any categorization task). They found that the LPP
over central-parietal sites followed the morph intensity such
that faces withmore intense affect (less neutral morph) elicited
larger LPPs compared with faces depicting less intense affect
(more neutral morph). Duval et al. (2013) interpreted their
results as demonstrating the sensitivity of the LPP to more
socially important facial expressions. We interpret our
central-parietal LPP effect similarly in that it reflects processes
for which mixed (morphed) expressions are less important or
salient than pure expressions. It is also interesting to note
again that “pure” faces represent a match to the stored tem-
plate, which presumably generates higher familiarity of stim-
uli that match the prototypical emotion categories (Rugg et al.
1998). Finally, it is worth noting that work on affective pic-
tures in general (facial and nonfacial) suggests that the LPP is
sensitive to stronger affective content of emotional stimuli,
such as IAPS pictures (Cuthbert et al., 2000).

More interestingly, we also obtained another, very different
LPP effect over frontal midline sites in a slightly earlier time

Fig. 6 Correlation between single-subject interaction cluster t-value con-
trast (mix vs pure) and the divergence from a linear trend observed in the
behavioral trust ratings. Y-axis values close to zero indicate a linear form
of trust ratings, below zero indicate a U-shaped form, and above zero

indicate a reverse Ushaped form. Panel A: Correlation for all subjects.
Panel B: Correlations performed separately for each experimental cate-
gorization condition
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window (560-660 ms). Specifically, there was a significant
interaction between categorization condition and stimulus am-
biguity, reflecting a larger (more positive) response to ambig-
uous stimuli, but only in the emotion-categorization condition.
One suggestion on how to interpret this effect comes from a
recent review of LPP findings with affective stimuli (Hajcak
& Foti, in press). They suggest that the amplitude of LPP
depends on the salience of the processed stimulus, such that
top-down manipulations that enhance stimulus significance
tend to increase LPP amplitude. Applying this to our results,
one possible interpretation is that the emotion categorization
condition (which requires a binary decision) increases the task
significance of the mixed, ambiguous faces (which accounts
for longer decision RTs). To resolve ambiguity, participants
may even attempt to create an additional third emotion cate-
gory from the blend of happy and anger expressions (see
Watson & Stanton, 2017 for discussion of how people create
new emotions from blends). This interpretation could be test-
ed in future studies by examining if the frontal midline LPP
component tracks participants’ belief that they found such a
“third” expression and its potential significance. Still, it is
worth noting that “objectively” our mixed stimuli did not con-
tain evidence for a different “third” expression (Fig. 1B), at
least as determined by computer expressions recognition tool-
box (CERT, Bartlett et al., 2008).

On our preferred interpretation, the frontal midline LPP re-
flects the mental effort of resolving ambiguity. This interpreta-
tion is in line with findings previously reportedwith face stimuli
(Debruille, Brodeur, & Hess, 2011; Sun et al. 2017; Willadsen-
Jensen& Ito, 2006) but also with non-face stimuli (Engel, Fries,
& Singer, 2001). Presumably, the categorization task activated
specific representations of prototypical emotional expressions
(happy and angry), which highlight conflict between specific
features in the case of mixed displays. Importantly, our study is
unique in linking this LPP component to the decrease in trust-
worthiness ratings for those mixed, ambiguous displays. Our
findings are consistent with Sun and his collaborators (2017)
who found greater LPP to ambiguous facial expressions but
only when participants had to categorize the stimuli on the
ambiguous dimension. Aided by fMRI localization data, they
interpreted these findings as reflecting cognitive effort generat-
ed by sources related to dACC, dmPFC, and IFG (see also
Nomura et al., 2003). Spatial location of our LPP component
is consistent with such interpretations.

More generally, our LPP findings indicate the complex nature
of this ERP component. The current understanding is that LPPs
are generated and modulated by an extensive brain network
composed of both cortical and subcortical structures associated
with perceptual, cognitive, and cognitive processing, and that
LPP is not only sensitive to valence but also depends on the task
context determining the salience of specific stimuli (Gable,
Adams, & Proudfit, 2015; Hajcak & Foti, in press; Liu, Huang,
McGinnis-Deweese, Keil, & Ding, 2012).

Overall, our results provide a better understanding of the
interplay between facial features, processing effort, categori-
zation, and social judgments. We showed that neural and be-
havioral responses depend on (i) objective characteristics of
the stimuli (such as degree of emotion) and (ii) external task
demands (such as categorization on the emotional dimension).
Obtained results suggest that early neural responses are pri-
marily dependent on basic stimulus features and can be im-
pervious to top-down categorization set. This also is true for
some late neural responses (i.e., central-parietal LPP), which
appear to track parameters related to familiarity,
prototypicality, and/or emotional intensity of the stimulus cat-
egory, regardless of the categorization task. Critically, the
more frontally generated LPP depends on a top-down process-
ing set. This can highlight the categorization conflict for
mixed stimuli and generate disambiguation effort, leading to
an enhanced neural response. This frontal-midline LPP effect
also relates to behavior, in the form of lower trustworthiness
ratings. These findings are in line with our previous work
using facial EMG where emotionally ambiguous expressions
elicited lower zygomaticus (smiling) reactions compared with
“pure” expressions, but only relatively late, approximately
2,000 ms after stimulus onset (Winkielman, Olszanowski &
Gola, 2015). Of course, the timing of brain ERP measures
clearly differs from peripheral EMG measures, which track
activity of facial muscles that can reflect some slow processes
(e.g., induction of an affective response).

Future research should extend these findings and address
their limitations. For example, it is important to knowwhether
the current results are limited to facial emotion stimuli or
extend to ethnicity-ambiguous, gender-ambiguous, or
identity-ambiguous faces. Given previous research showing
preferences for unambiguous patterns, they also could extend
to nonfacial stimuli (Vogel, Carr, Davis, &Winkielman, 2018;
Winkielman et al., 2006). It also would be important to com-
bine EEG and EMG measures to examine relations between
brain (LPP) responses and peripheral affective (facial EMG)
responses and thus to understand better the mechanisms gen-
erating the aversive nature of ambiguity. The addition of pre-
cise physiological measures of affect would help to address
the limitation of our study regarding the interpretation of the
LPP components as it relates to stimulus significance, inten-
sity, effort, prototypicality, familiarity, and ambiguity/uncer-
tainty. From the perspective of the social implications of these
results, it is important to explore how the history of individual
experiences with a variety of different faces and facial expres-
sions can modify what is perceived as prototypical or ambig-
uous (Dotsch, Hassin, & Todorov, 2016; Principe & Langlois,
2012). Furthermore, it is useful to know how changes in top-
down social categorization and labeling of “in-between” cases
may prevent (or enhance) negative reactions to faces crossing
emotional and social categories (Halberstadt & Winkielman,
2013). Lastly, it is valuable to test whether these neural and
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rating measures help us to predict actual trust-related behavior
in real social interactions.
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