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ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs
with diverse functions in post-transcriptional
regulation of gene expression. Sequence and
length variants of miRNAs are called isomiRs
and can exert different functions compared to
their canonical counterparts. The Cancer Genome
Atlas (TCGA) provides isomiR-level expression data
for patients of various cancer entities collected
in a multi-center approach over several years.
However, the impact of batch effects within individual
cohorts has not been systematically investigated
and corrected for before. Therefore, the aim of
this study was to identify relevant cohort-specific
batch variables and generate batch-corrected isomiR
expression data for 16 TCGA cohorts. The main
batch variables included sequencing platform, plate,
sample purity and sequencing depth. Platform
bias was related to certain length and sequence
features of individual recurrently affected isomiRs.
Furthermore, significant downregulation of reported
tumor suppressive isomiRs in lung tumor tissue
compared to normal samples was only observed
after batch correction, highlighting the importance
of working with corrected data. Batch-corrected
datasets for all cohorts including quality control
are provided as supplement. In summary, this
study reveals that batch effects present in the
TCGA dataset might mask biologically relevant
effects and provides a valuable resource for
research on isomiRs in cancer (accessible through
GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE164767).

GRAPHICAL ABSTRACT

INTRODUCTION

MicroRNAs (miRNAs) are endogenous, single-stranded
RNA molecules that function as guides in RNA silencing
processes and thereby conduct post-transcriptional
inhibition of roughly one third of all genes (1,2). In
cancer, aberrant miRNA expression evokes dysregulated
gene expression. By either acting on tumor suppressor-
or oncogenes, miRNAs themselves can act as tumor
suppressive miRNAs or oncomiRs. Furthermore, the
expression of some miRNAs is regulated by tumor-
suppressor- or oncogenes (3).

One precursor miRNA molecule is not only the origin
of one specific mature miRNA, long discussed as the ‘one
arm–one miRNA’ assumption. During maturation, a great
variety of miRNA isoforms (isomiRs) is generated and can
be detected using next generation sequencing technologies
(4,5). Compared to their canonical counterpart, these
isomiRs differ in length at their 3′ or 5′ end and/or in their
internal sequence. A combination of several alteration types
to the canonical isomiR sequence is possible.
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The isomiR expression between different organs and
tissue types is highly variable (6). Even though the specific
role of most non-canonical isomiRs is unknown, biological
relevance has been characterized for some examples. For
instance, by targeting functionally related genes, they
can work as cooperative partners to their corresponding
canonical isomiR (7). For 5′ isomiRs in particular, relevance
regarding the evolution of miRNA genes is assumed due to
altering target sequences (8). Even a difference of just one
nucleotide at the 5′-end of isomiRs can lead to a substantial
difference in their target mRNA spectrum (9,10).

In recent studies, isomiR expression levels were used
as biomarkers to develop diagnosis and classification
models for different cancer types as well as for pan-cancer
multiclass predictions (11–15). Even though in some of
these models, predictors could be narrowed down to only
a few isomiRs, the mechanistic role of isomiRs, with few
exceptions, remains unknown. Inconsistencies in isomiR
annotation, data pre-processing and handling of batch
effects further complicate the biological interpretation of
such models.

In case of lung cancer, the potential role of certain
miRNAs has been previously reviewed by Ebrahimi and
Sadroddiny (16) and Lin et al. (17), followed up by
several studies highlighting the differential expression of
specific miRNAs and promoting the biomarker potential
of miRNAs due to presence and stability in blood and
urine (18–20). As an example, miR-30c-5p has been
described as tumor suppressor in lung cancer. Specifically,
its expression is downregulated in tumors compared to
adjacent normal tissue and its suppression is associated
with more aggressive phenotypes in vitro (21). While
functional relevance has been established for a variety of
miRNAs, large-scale studies on the expression and function
on isomiR-level in lung cancer have not been reported on
so far.

The Cancer Genome Atlas (TCGA) provides an
unprecedented amount of isomiR and miRNA expression
data from cancer and normal samples along with clinical
information of the patients. Thereby, it is a valuable
resource for computational studies of the unknown
mechanisms of isomiR processing and function in different
cancer types (22). The sample-linked Omics datasets
collected and pre-processed by TCGA enable to connect
information about clinical parameters, genetic status,
epigenetic marks, transcriptome and (iso)miRNAome of
individual cancer patients. As for today, data from more
than 30 000 patients covering 33 different tumor types are
publicly available (23). Out of these, isomiR quantification
data are available for 11 022 samples corresponding to
10 250 cases (24).

A general challenge for multi-centered studies is the
presence of confounding variables negatively influencing
data consistency. In the case of TCGA, data generation,
sample harvesting, processing and sequencing was not
only spread along a time period of more than one
decade but also took place in different collaborating
institutions (25). In such high-throughput sequencing
processes, batch effects are unavoidable (26). In addition
to this, reproducibility of miRNA sequencing itself is
still subject to continuous improvement, as even current

standard protocols, sequencing platforms and sequencing
depth do not always allow to directly compare sequencing
results (27).

Prior to moving the data to the NCI Genomic Data
Commons (GDC), technical biases and batch effects
were described for most datasets (28). Although the MD
Anderson Cancer Center of the university of Texas hosts
a web page with solely computationally batch corrected
TCGA data (https://bioinformatics.mdanderson.org/
public-software/tcga-batch-effects/), a systematic analysis
of the batch effects and technical biases in the harmonized
TCGA isomiR and miRNA expression quantification data
specifically, is missing so far (27). MiRNAs were sequenced
with two different Illumina platforms and the libraries were
prepared using two different protocols throughout data
generation. Those two batch effects have been described
and removed using a batch correction method based
on Empirical Bayes (29). For TCGA isomiR expression
quantification data, to our knowledge, batch effects have
not yet been described in the literature.

Here, we show that multiple batch effects are not
only present across different TCGA projects as described
before, but also affect the data within individual isomiR
expression quantification datasets. Before batch correction,
filtering steps were applied both on sample and isomiR
level to enhance data quality and reduce manifestation of
batch effects. We here performed and benchmarked isomiR
annotation correction as well as batch effect removal for 16
TCGA cohorts with isomiR expression data. Specifically,
we compared two different algorithms, limma and ComBat,
based on linear and empirical Bayes models, respectively,
and identified ideal parameter combinations for batch
correction of each data set. Batch corrected data along with
substantial quality control is provided as a supplement to
this article for further use in the research community. Using
the TCGA-LUSC dataset as an example, we characterize
the effect of potential confounding variables, demonstrate
the efficient and specific correction of the resulting batch
effects and show that biologically relevant differences are
potentially masked due to the batch effects. In addition,
we provide evidence that the detection bias related to the
use of different sequencing platforms is partly associated
with specific sequence features of the respective isomiRs.
These features include read length, GC content and first
nucleotide of the isomiR. Of note, we provide evidence that
deep sequencing is required to ensure high quality data
especially for rare isomiRs.

MATERIALS AND METHODS

Data download and pre-processing

Our results are based on the isoform expression
quantification data generated by TCGA Research Network
(https://www.cancer.gov/tcga). The open access, GRCH38
build (hg38) aligned data were downloaded from the
GDC harmonized database using the Bioconductor R
package TCGAbiolinks (version 2.12.6) (30). Sixteen
TCGA projects, including at least 290 samples each,
were examined for confounding effects (Table 1). The
data comprise different sample types: primary solid tumor,
recurrent solid tumor, additional primary tumor, metastatic

https://bioinformatics.mdanderson.org/public-software/tcga-batch-effects/
https://www.cancer.gov/tcga
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tumor as well as solid normal tissue. The primary solid
tumor and recurrent solid tumor data types were combined
as ‘tumor sample’ during the analysis since only few
samples were available for tumor sample types other than
primary solid tumor. Due to limited sample size, metastatic
tumor samples were excluded from the analysis (Table 1).
Analyses were performed for tumor samples separately
as well as tumor and normal samples combined if the
respective data was available. To improve data quality for
batch correction, samples with low coverage were excluded
from the analysis, as described by Chu et al. (22). Therefore,
unless the description of the data regarding sequencing
depth before batch correction was in scope, a filtering
step of at least 1 million mapped reads per sample was
introduced.

The GDC miRNA analysis workflow is based on
the British Columbia Genome Sciences Centre miRNA
Profiling Pipeline, as described by Chu et al. (22). Three
different data files from miRNA sequencing are stored
in the harmonized portal from the NCI GDC: aligned
reads, miRNA expression quantification that associates
miRNAs with the read count and the normalized read
count as reads-per-million-miRNA-mapped (RPM) and
the isoform expression quantification data with additional
isoform coordinates (https://docs.gdc.cancer.gov/Data/
Bioinformatics Pipelines/miRNA Pipeline/). However,
the end position of the isoform coordinates is labeled
exclusively in the isoform expression quantification file,
thus with an offset of one compared to standard annotation
formats. This finding has been added to the GDC ‘Release
Notes––Known Issues and Workarounds’ as well as to
the BCGSC miRNA Profiling Pipeline website after
contacting the authors (https://docs.gdc.cancer.gov/Data/
Release Notes/Data Release Notes/#data-release-220,
https://www.bcgsc.ca/resources/software/mirna-profiling).
The offset was corrected by subtracting one from the end
position.

Genomic locations of mature miRNAs contained in
miRBase version 22.1 (http://www.mirbase.org/) were
extracted. These positions were flanked by 3 nt on each
side. This resulted in the annotation of 49 isoforms per
mature miRNA, from |-3|-3| to |3|3| with all possible
combinations of 5′ and 3′ ends (Supplementary Table S1).

Gathering information about potential confounders

Different potential confounders and their values were
pre-defined and derived from individual data sources. The
TCGA barcode itself provides information on multiple
variables such as the plate (of library preparation) and
the sample type. Information on patient related data such
as sex, year of birth, vital status and tumor stage were
provided in clinical files by the GDC harmonized portal.
The tumor purity was derived from the TCGAbiolinks
R package using the TCGAtumor purity function. As
this function aims to filter out samples with tumor purity
below a certain threshold, purity was derived in steps of
10% by adjusting the threshold by 0.1. The cpe variable,
a consensus measurement from several purity estimation
methods, served as a threshold. For the TCGA-STAD
project, no tumor purity information was available. The

tumor subtype was derived from the TCGAbiolinks R
package using the PanCancerAtlas subtypes function,
focusing on the Selected Subtype variable (30). The
number of total mapped reads, the sequencing depth
per sample, was derived from the isoform expression
quantification data files by calculating the total sum of
read counts. The Illumina sequencing platform details
were mentioned in the supplement by Thorsson et al.
(31) and were downloaded from the GDC website (https:
//gdc.cancer.gov/about-data/publications/panimmune).
According to TCGA information, library preparation
protocols did not differ within the 16 TCGA-projects
and were therefore not included as potential confounders.
Confounding factors are stored in Supplementary Table
S2.

Assessment of confounding effects

Assessment of confounding effects and removal of batch
effects was performed separately for each TCGA project.
To improve data quality, an arbitrary median expression
filter of 15 RPM was introduced, representing a trade-
off between sensitivity and specificity, and confounding
effects were assessed with both the reduced and full
dataset. The log2 transformed expression matrices were
used as the basis for a principal component analysis (PCA).
For a confounder analysis, PCA scatterplots with PC1-10
were generated and potential confounders were identified.
Furthermore, boxplots comparing PC1-10 per batch label
were used to compare confounding effects before and after
batch effect correction, as described by Goh, Wang and
Wong (32). In addition to the visualization of confounding
effects, the difference of PC values between the batch labels
was statistically assessed. Categorical variables with more
than two labels (plate, subtype and tumor stage) were tested
with the Kruskal Wallis test, categorical variables with two
labels (platform and gender) with a Wilcoxon Rank Sum
test. The association between the PCs and the sequencing
depth as a continuous variable was tested using a Spearman
correlation. For the ordinal variable tumor purity, the
Kendall Tau Rank correlation was calculated. The P-values
were false discovery rate (FDR) adjusted using the p.adjust
function from the stats R package. The association between
potential confounder and PC was significant in case of
a q-value < 0.01. For correlation testing, an additional
threshold for the minimal absolute correlation coefficient of
0.25 was used. On an individual isomiR level, the expression
difference between samples from different plates was tested
using ANOVA. Statistical analyses were conducted using
the stats R package (version 3.6.0) (33). q-values were
visualized in forest and bubble plots using the ggplot2 R
package (version 3.3.2) (34).

Confounding effects were assessed before and after batch
effect removal in order to evaluate the ideal parameter
combination for the batch effect removal. Additionally,
t-SNE projections were generated for the uncorrected
and final batch corrected data for different confounders
using the Rtsne package which computes the Barnes-
Hut implementation of t-Distributed Stochastic Neighbors
(version 0.15) (35,36) setting perplexity to 25 and using 1000
iterations.

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/miRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Release_Notes/Data_Release_Notes/#data-release-220
https://www.bcgsc.ca/resources/software/mirna-profiling
http://www.mirbase.org/
https://gdc.cancer.gov/about-data/publications/panimmune
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Batch effect correction

Batch effects were removed from log2-transformed and
RPM-normalized expression data using different batch
effect correction strategies. The removeBatchEffects
function from the limma R package is based on a linear
model that is fit to the data in order to calculate and
remove the given batch effects (version 3.40.6) (37). As a
second approach, the ComBat function from the sva R
package was applied (version 3.32.1) (38). To this end, the
data are adjusted for batch effects by using an empirical
Bayes model, as described by Johnson, Li and Rabinovic
(39). To remove two different batch effects, the functions
were applied sequentially. The sample type was used as a
variable of interest during batch effect removal to conserve
the biological difference between normal and tumor
samples.

Assessment of systematic sequencing bias introduced by
different sequencing platforms

Heatmaps for the comparison of isomiR expression
between samples sequenced on the two different platforms
Genome Analyzer (GA) and HiSeq were generated
calculating z-scores on the log2 transformed expression
values for each isomiR with a median expression of >15
RPM within the TCGA-LUSC cohort. To avoid additional
confounders, normal samples were excluded from this
analysis. All GA sequenced samples and the same number
of randomly chosen HiSeq-sequenced samples were used
to overcome imbalance between the groups. The heatmap.2
function from the gplots package in R was used to draw
the heatmaps (version 3.0.4) (40).

To assess the effect of the batch correction on differential
expression between the platforms statistically, two-sided t-
tests were performed comparing log2 transformed isomiR
expression values for each isomiR on the two platforms. P-
values were FDR corrected for multiple testing.

To identify recurrently affected isomiRs, these t-tests
were repeated for the other TCGA datasets which contained
samples sequenced on the GA, i.e. BRCA, COAD, HNSC,
KIRC, LUAD, STAD and UCEC, together with LUSC
resulting in eight analyzed datasets. The results were filtered
for isomiRs with an absolute log2 fold change between
median expression detected by GA and HiSeq of at least
0.5 and a q-value < 0.05 in six out of eight entities to obtain
a dataset with isomiRs highly affected by platform related
batch effects.

For each isomiR expressed > 15 RPM in at least
six out of the eight projects, the sequence information
was retrieved from miRbase and length, GC content and
position as well as percentage of individual nucleotides were
determined. The outlier isomiR list was further separated
in isomiRs ‘under-represented’ or ‘over-represented’ in
patients sequenced by GA compared to HiSeq and a ‘non-
affected’ list containing all isomiRs that were neither over-
nor under-represented. These sublists were then used for
statistical comparison of all isomiRs expressed above 15
RPM. Differences in the distribution of read lengths and
GC content were analyzed by two-sided student’s t-test
and visualized as violin plots. Furthermore, the frequency
of individual nucleotides and the GC content at the first

position were compared between the ‘union’ list and the
‘over-represented’ and ‘under-represented’ isomiRs by two-
tailed Fisher’s exact test. Relative nucleotide distribution
and GC content at the first position were visualized as
heatmaps or barplots, respectively.

Effects of the batch correction on biological messages

Differential expression between tumor and normal samples
of the TCGA-LUSC cohort was investigated for all isomiRs
expressed at above 15 RPM before and after batch
correction using a t-test with Welch modification and
subsequent FDR correction for multiple testing.

Programming languages and computing resources

All analyses were performed using the computational
infrastructure of the German Cancer Research Center
(DKFZ), Heidelberg. High performance computing
clusters were used with portable batch systems (PBS)
and Load Sharing Facility (LSF) platforms, running on
CentOS Linux 7. Scripts were run using R 3.6.0.

RESULTS

Adjustment of isomiR annotation is a crucial step prior to
working with the TCGA data

Various studies have utilized isomiR quantification data
provided by TCGA to investigate the potential of isomiR-
resolution small RNA expression data for identification
of novel biomarkers or to generate hypotheses on isomiR
function. To our knowledge, these studies frequently used
the data as provided by TCGA or GDC, respectively.
However, being aware of the potential substantial bias
batch effects can cause especially in large-scale multi-
centered studies, we aimed here at their characterization and
correction to enable more robust research on isomiRs in
cancer in the future.

The GDC isoform expression quantification data
is provided as data tables including the read count,
normalized read count per million mapped reads and
miRNA, as well as information about the miRNA region
and the isoform coordinates, therefore the start and
end position. To map the isoform coordinates to the
corresponding isomiR, we first generated a mapping file.
Briefly, human mature miRNAs annotated in miRBase
version 22.1 were defined as canonical isomiR (|0|0|) for
each miRNA stem. These coordinates were shifted by a
maximum of 3 nt at the 3′ and 5′ end, resulting in a total
of 49 isoforms and their coordinates were defined per
miRNA stem (Supplementary Table S1). Their expression
associated through the isoform coordinates of the GDC
isoform expression quantification data. The notation
of isoforms derived from the same arm of a stem loop
can be visualized in a matrix-like structure (Figure 1A
and B).

In the following, we use the LUSC cohort as an example
to illustrate our observations. This cohort is highly affected
by multiple batch affects and includes both tumor and
normal samples. In addition, we provide a summary for
the other cancer entities in the supplementary information.
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A B

C

D

Figure 1. Characterization of the TCGA-LUSC isoform quantification data. (A) Different isomiRs are derived from the pre-miRNA sequence, with varying
3′ and 5′ ends. In this example, the canonical isoform |0|0| (dark blue) and the isoforms |0|1| (dark green), |1|1| (light green), |1|0| (light blue) and |-1|-1| (orange)
are depicted. (B) The matrix serves as a representation of isoforms and their respective notation. Color code matches panel (A). (C) Matrix representation
of median expression of isoforms derived from the hsa-let-7a-5p stem loop before and after annotation correction of the end position in the TCGA-LUSC
data set, colored by log2 median expression. The hsa-let-7a-5p isomiRs are derived from three genetic loci on chromosome 9 (plus strand), 11 (minus
strand) and 22 (plus strand). (D) Distribution of canonical isomiRs among all isomiRs for each miRNA arm in percent before (left panel) and after (right
panel) annotation correction. Red color marks the area in which canonical isomiRs account for <50% of the reads, i.e. more than 50% of reads coming
from this arm are non-canonical.

When first examining the expression matrices derived
from this annotation process, we observed an obvious
discrepancy for sequence-identical isomiRs derived from
different genomic locations such as hsa-let-7a-5p (Figure
1C, upper panel). Specifically, isomiRs attributed to the plus
strand of the genome exhibited a systematic shift in the
3′ annotation, whereas isomiRs expressed from the minus

strand were systematically shifted at the 5′ end. Reads which
cannot be mapped unambiguously to a genomic origin had
been randomly assigned to one of the possible origins by the
GDC pipeline (21). Therefore, sequence-identical miRNAs
are expected to exhibit similar isomiR expression profiles.
This analysis showed that the TCGA miRNA profiling
pipeline annotated the chromosomal end position of each
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isomiR feature exclusively. This annotation is not supported
by the common data file formats such as *.bed or *.gff3
resulting in a mis-annotation of isomiRs.

The left panels of Figure 1C sum up the expression
values attributed to different genomic loci yielding the final
expression values for the respective isomiRs. Comparing
those, it becomes apparent that this mis-annotation can
affect not only the isomiR annotation an expression value
is assigned to, but also distort isomiR expression patterns,
both leading to potential misinterpretation of the derived
data. After adjusting the isomiR annotation based on this
observation, the expected coherent expression values for all
sequence-identical isomiRs could be observed (Figure 1C,
lower panel).

We next sought to broadly characterize the isomiR
expression dataset. The TCGA-LUSC cohort contains
isomiR expression data for 478 tumor samples, 456 of
them were sequenced with a sequencing depth of at least
1 000 000 mapped reads. Reads were mapped to 1816
canonical isomiRs, 6773 3′ isomiRs, 3824 5′ isomiRs and
12 971 mixed isomiRs derived from 2118 distinct miRNA
arms. To further analyse the effects of the annotation
correction, we compared the ratio of reads from the
canonical isomiR to the reads of all non-canonical isomiRs
for each miRNA arm. Annotation correction leads to a
shift in distribution of the percentage of isomiRs that are
canonical and cases in which the canonical version accounts
for <50% of the isomiR reads. The percentage falls from
94% before correction to 68% after correction (Figure 1D).
The majority of the other isoforms were only mapped to
a few reads indicating that the provided sequencing depth
might be insufficient to ensure robust sequencing of rare
isoforms (Supplementary Figure S1).

Multiple batch effects are present in the TCGA-LUSC
isoform expression quantification dataset

After annotation adjustment, we next aimed to identify
potential confounding variables in the TCGA-LUSC
isomiR expression dataset accounting for potential
batch effects. For that purpose, PCA was performed
on pre-filtered data with 660 isomiRs with a median
expression above 15 RPM, and the association of potential
confounders with the principal components (PC) 1–10
was investigated. The variables gender, plate (during
library preparation), tumor purity, sequencing depth (total
number of mapped reads), sample type, year of birth,
vital status and tumor stage were analyzed as potential
confounders.

Furthermore, as two different sequencing platforms
were used to sequence the samples, Illumina Genome
Analyzer II (GA) and Illumina HiSeq (HiSeq), the platform
variable was included as well. Significant associations were
mainly found between the PCs and the batch variables
plate, platform, purity and sequencing depth (Supplementary
Figure S2a).

Batch correction was compared using two different
methods: the removeBatchEffect function of the limma
R package is based on a linear model that is fit to the
data, including the batch effect, which is then removed.
In contrast, the ComBat function of the sva R package

is based on an empirical Bayes model. Batch correction
was performed with different batch variable combinations,
consisting of plate, platform and purity. Since the sequencing
depth is a continuous variable, it could not serve as a batch
variable for correction. Up to two batch variables were
included in sequential order during batch effect removal.
While limma failed to correct efficiently for the prominent
batch variable plate in case of the LUSC cohort, the
ComBat function with plate as first batch variable and
tumor purity as second batch variable efficiently removed
all batch effects (Supplementary Figure S2).

First, we focused on the batch bias associated with the
plate variable. Here, a significant association was detected
in PC 1–3, 5, 7, 9 and 10 when analyzing the first 10 PCs,
making it the most prominent batch variable for the LUSC
cohort. The PCA plot of PC1 and PC2 demonstrates a clear
batch bias before batch correction that is removed by the
ComBat function as indicated by the colored centroids of
each plate (Figure 2A and B).

We next investigated the impact of the batch variable
tumor purity where statistical analyses had shown a
significant association with PC2. This association was
observed to be ordinal before and completely absent
after batch correction (Figure 2D and E). No significant
associations between tumor purity and any of the first
10 principle components was observed after batch
correction (Supplementary Figure S2). Further, a batch
bias was detected in the sequencing depth variable in PC1-3;
which was also successfully removed upon batch correction
(Figure 2F). Of note, correction for the batch variables
plate and purity also efficiently removed the pronounced
association of the variable platform (Figure 2C).

These observations let us further investigate the
interconnection between the batch variables sequencing
depth, plate and platform. In general, we observed that
library preparations from the same plate were primarily
sequenced on the same platform and that sequencing by
Illumina GA generally resulted in a lower sequencing
depth (Figure 2G) (24). The successful elimination of
batch effects associated with the platform variable by only
correcting for plate and tumor purity indicates that our
approach was not over-correcting the data as this would
likely not abolish interconnected batch effects so efficiently.

In general, we observed that batch effects were less
pronounced when limiting the dataset to the 660 isomiRs
with a median expression above 15 RPM as compared
to including all isomiRs with non-zero expression in any
patient (n = 25 400) (Supplementary Figure S3). Of note,
especially the batch variable sequencing depth was corrected
for less efficiently in the dataset comprising all detected
isomiRs. This raised the question if variation introduced
into the data by the varying sequencing depth present in the
dataset would be a consequence of unsaturated detection
of isomiR species. Indeed, the number of total mapped
reads and the number of isomiRs detected in a given sample
are highly correlated (R = 0.77) (Figure 2H). Saturation
in the number of isomiRs detected is not even reached
in samples sequenced with a relatively high coverage of
6 000 000 mapped reads. This observation was confirmed
for each isomiR type independently (canonical form, 3′,
5′ and mixed isomiRs) (Figure 2I). Even in the upper
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Figure 2. Batch effects dominate the isoform expression quantification data. (A) PCA plots colored by plate. The mean PC1 and PC2 values were calculated
per plate to visualize each centroid in color, actual data points are added in gray. PCA was based on the log2 TCGA-LUSC isoform quantification
data before batch correction. The percentage values in parenthesis indicate the variance explained by the corresponding principal component. (B) PCA
plots colored by plate as described in (A), after sequential batch correction with plate as first batch variable and purity as second. (C) The association
between sequencing platforms and PCs was determined using Wilcoxon Rank Sum tests. Log10 of the resulting q-value is shown before and after batch
correction. (D) PC2 of TCGA-LUSC tumor samples with different tumor purity estimates before batch correction, displaying an ordinal association
between tumor purity and PC2. Purity estimation of tumor samples was performed using the TCGAbiolinks function TCGAtumor purity. (E) Box plots
of PC2 distribution for TCGA-LUSC samples with differing tumor purity as described in (D) after batch correction. (F) Association between the total
number of reads and PC 1–10. Log10 of the q-value of the correlation is shown for each PC. (G) The distribution of sequencing depth (number of total
mapped reads) of the TCGA-LUSC isoform expression quantification data per plate, colored by sequencing platform. (H) Spearman correlation between
number of isomiRs with non-zero expression and number of mapped reads (sequencing depth) in the TCGA-LUSC cohort. Median expression of the
detected isomiRs in RPM is color coded as indicated. (I) Relative isomiR detection per TCGA-LUSC tumor sample for each isomiR type. Canonical
isomiRs (|0|0|) as well as 3′ isomiRs (|0|X|), 5′ isomiRs (|X|0|) and mixed isomiRs (|X|Y|) with X and Y unequal 0 and between -3 and 3 were annotated to
the provided isoform expression quantification data. In total, 1816 canonical isomiRs from miRBase were detected along with 6759 3′ isomiRs, 3822 5′
isomiRs and 12 916 mixed isomiRs, summing up to 25 313 total isomiRs detected in at least one patient.
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quartile of sequencing depth, for each individual patient
only about 35% of canonical isomiRs measured in at least
one patient of the cohort were detected. This number drops
gradually with sequencing depth to around 25% for patients
sequenced with a sequencing depth corresponding to the
lower quartile. A similar bias can be observed for the less
abundant classes as well, just at a much lower level of
relative detection in individual patients. In contrast, limiting
the analysis to the 660 isomiRs with a median expression
above 15 RPM, most isomiRs (646–651) are detected
in all patients, irrespective of sequencing depth further
emphasizing that a focus on more abundant isomiR species
substantially reduces the impact of sequencing depth on
data quality (Supplementary Figure S4a).

Along this line, we next investigated the impact of
confounding effects on the TCGA-LUSC miRNA
expression quantification dataset including all miRNAs
with non-zero expression in at least one patient (n =
1580). Since all read counts mapped to different isomiRs
derived from the miRNA arm are summed up to the final
miRNA read count in this dataset, fewer individual species
are detected, but in turn at a higher median expression.
Nevertheless, there is high correlation (r = 0.81, P =
2.2e-16) between the number of miRNAs detected and the
number of total mapped reads per sample (Supplementary
Figure S4b). Therefore, not only for isomiR detection, but
for miRNA sequencing in general, higher sequencing depth
would be required to obtain more robust data with more
information content. In general, the miRNA data are less
affected by batch effects, especially in PC1-3 that explain
most of the variance in the data (Supplementary Figure
S5).

In summary, we successfully corrected for substantial
batch effects in the TCGA-LUSC isomiR expression
quantification data set by sequential batch correction using
ComBat with plate as first and tumor purity as second
batch variable (Supplementary Figure S2). PCA with batch
corrected data shows that the batch effects were a large
source of variation within the original dataset potentially
interfering with the biologically relevant content of the
data.

Platform-dependent expression differences on individual
isomiR level enable identification of recurrent outlier isomiRs

After identification, characterization and removal of batch
effects from the TCGA-LUCS isomiR quantification
dataset, we next sought to further investigate the impact
of the described batch effects on an individual isomiR
level. Here, we decided to focus on the more robust
subset of isomiRs with a median expression >15 RPM to
avoid overestimation of differences due to low expression
in combination with low sequencing depth. For that
purpose, we focused on the binary batch variable platform
and first visualized expression difference between the two
different platforms GA and HiSeq as heatmaps showing the
mean of log2-transformed, z-scaled expression values for
tumor tissue samples. Most isomiRs showed pronounced
differences in mean expression values between the two
different platforms which could be mostly abolished by
batch correction (Figure 3A and B). There is no indication

of a trend in expression differences between GA and HiSeq
sequenced samples. Results from FDR corrected t-tests
confirmed that differences were significant for most isomiRs
(494 out of 660) before, but not after batch correction (1 out
of 660) (Figure 3C). Similar to the platform batch variable,
the plate batch effects were largely removed on individual
isomiR level (Supplementary Figure S6).

Next, we aimed to investigate which isomiRs were
especially affected by platform batch effects. For that
purpose, we first investigated the overall correlation
between isomiR expression levels detected by either
sequencing platform (Figure 3D, left panel). While we
globally observed a good correlation of log2 mean
expression (Spearman r = 0.89, P = 2.2e-16), consistent
with our findings in the heatmap, there was a substantial
number of outlier isomiRs defined by a q-value below 0.05
and an absolute log2 fold change expression difference
> 1.5. Density plots of two exemplary outlier isomiRs,
hsa-miR-143-3p|0|0| and hsa-miR-22-3p|2|0| show the
systematic expression difference prior to batch correction
(Figure 3D, middle and right panel). Identical analyses
of the batch-corrected data reveal an almost perfect
correlation between the platforms on a global isomiR level
(r = 0.999, P = 2.2e-16) and no residual outlier isomiRs
once again highlighting the success of our batch correction
approach (Figure 3E, left panel). Furthermore, this could
also be confirmed on an individual isomiR level with the
same examples analysed before batch correction (Figure
3E, middle and right panel).

IsomiRs which are recurrently represented differently
between sequencing platforms share distinct length and
sequence parameters

Utilizing the TCGA isomiR expression quantification
data from eight different projects where both sequencing
platforms were used (BRCA, COAD, HNSC, KIRC,
LUAD, LUSC, STAD and UCEC), we next hypothesized
that the isomiRs affected by platform bias might be
recurrent between different datasets. This would indicate a
systematic bias in sequencing results obtained from both
platforms on an isomiR level and a list of such recurrent
outlier isomiRs might be a helpful resource for future
work with the TCGA isomiR expression quantification data
as well as with future isomiR sequencing experiments in
general.

To address this question, we first defined a list of
recurrent isomiRs with a median expression >15 RPM in
at least six out of the eight included tumor entities (n = 546,
Supplementary Table S3). Within this list, we next identified
recurrent outlier isomiRs which were either significantly
over-represented (n = 69) or under-represented (n = 51) in
patients sequenced by GA compared to HiSeq, respectively
with a FDR < 0.05 and an absolute log2 fold change >
0.5 in six out of the eight included tumor entities (referred
to as ‘over-represented’ and ‘under-represented’ isomiR
list; Supplementary Table S4). As reference, we defined
the residual 426 isomiRs as ‘non-affected’ isomiR list.
Reasoning that these isomiR lists might differ from each
other in certain sequence features, we analysed GC content
in general, occurrence of certain nucleotides, especially at
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A B C
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Figure 3. Outlier isomiRs can be identified by comparing the same isomiR sequenced on different platforms. (A) Heatmaps showing means of log2
transformed, z-scored values for tumor isomiR expression of patients’ tumor material analyzed on different sequencing platforms. A total of 115 samples
sequenced on HiSeq were randomly chosen to equal the number of samples sequenced on GA. (B) After batch correction, variance is reduced. (C)
Differences between expression values derived from different platforms are non-significant after batch correction. Association between log2 transformed
expression values of the two different sequencing platforms for each isomiR. Student’s t-test followed by FDR correction for multiple testing before and
after batch correction (green and orange, respectively). (D and E) left panel: Means of log2 transformed isomiR expression values for patient tumor material
sequenced on the GA (n = 131) or the HiSeq (n = 336) platform before and after batch correction. Outlier isomiRs show significantly different sequencing
results on the different platforms (FDR corrected Student’s t-test, padj < 0.05, log2 fold change difference >|0.5|) only before correction. Middle/right
panels: Density plots for two exemplary isomiR expression values sequenced on either GA or HiSeq before and after batch correction.

the first position within the detected sequence and read
length.

To investigate a systematic bias introduced by the average
GC content, we first compared this parameter between the
three isomiR lists (Figure 4A). For isomiRs in the ‘non-
affected’ list, the average GC content was 46.1%. While
‘over-represented’ isomiRs also had a GC content of 46.1%
and were not significantly different from ‘non-affected’
isomiRs (P = 0.97), ‘under-represented’ isomiRs exhibited
a significantly higher GC content of 50.8% (P = 0.003).

Along this line, we next analysed the distribution of
nucleotides at the first position in reads. Remarkably, the
‘over-represented’ isomiR list showed significantly more
G nucleotides in the first position and significantly fewer
A nucleotides whereas the ‘under-represented’ isomiR
list contained fewer C nucleotides in the first position
when compared to the ‘non-affected’ list (Figure 4B and
Supplementary Table S5). Assuming that GC or AT content
at the first position of an isomiR potentially affects
adapter ligation during library preparation, we combined
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A CB D

Figure 4. IsomiRs recurrently expressed differentially between the two sequencing platforms in at least six different cancer entities (‘non-affected’/‘non-aff.’)
were analysed with regard to their sequence divergence when over-or under-represented (‘over-rep.’, ‘under-rep.’) in the GA sequencing results compared
to the HiSeq results, respectively. (A) GC content of the isomiR sequences in the three different categories. Statistics: Student’s t-test, n.s. = non-significant,
**: P < 0.01. (B) Comparison of base in the first position of the isomiRs. Statistics: see Supplementary Table S5. (C) Comparison of the GC/ AT content
at the first positions of the isomiRs. Statistics: Fisher’s exact test, *: P < 0.05, **: P < 0.01. (D) Comparison of the length of the isomiRs of the three
groups. Statistics: Student’s t-test, **: P < 0.01, ****: P < 0.0001.

these nucleotides for our analysis, respectively (Figure 4C).
Indeed, we observed a significant bias toward a higher
overall GC content of 43.5% in ‘over-represented’ isomiRs
compared to 26.1% in the ‘non-affected’ list of isomiRs
(P = 0.003) whereas ‘under-represented’ isomiRs exhibited
a significantly lower GC content than ‘non-affected’ ones
(9.8% GC, P = 0.009).

Lastly, we investigated if there is an association between
sequencing bias and isomiR read length: ‘Over-represented’
isomiRs were significantly shorter with 20.9 nt on average
(P = 0.001), while ‘under-represented’ isomiRs were
significantly longer with an average length of 22.5 nt
compared to the ‘non-affected’ list with 21.5 nt (P = 1.19
e-9) (Figure 4D).

In summary, these results indicate a systematic bias
towards shorter reads with an overall unchanged GC
content, but a higher GC content at the first position
in the reads on the GA platform in comparison to the
HiSeq platform. This might either arise from systematic
differences between the two platforms or slight deviations
in library preparation protocols throughout the project
as samples sequenced by GA were generally prepared
earlier than the samples sequenced on the HiSeq platform.
Furthermore, these insights might serve as a valuable
resource for the analysis of other isomiR or miRNA
sequencing datasets as it points towards systematic
misinterpretation of relative isomiR abundance depending
on library preparation protocols and sequencing platforms.

Different combination of parameters combinations for batch
correction provide optimal cohort-specific results

After characterizing isomiRs systematically affected by
the sequencing platform, we next aimed to investigate,
characterize and correct batch effects with the approach
described for the LUSC dataset above for 15 additional
projects containing isomiR quantification data for at least
290 patients per cohort (Table 1). Indeed, we observed a
similar manifestation of batch effects for all these projects
using again the datasets reduced to isomiRs with a median
expression above 15 RPM (Supplementary Figures S7–
21). For each individual cohort, batch correction was

performed with different batch variable combinations,
consisting of plate, platform and purity. Since the sequencing
depth is a continuous variable, it could not serve as a
batch variable with the algorithms used. Up to two batch
variables were included in sequential order during batch
effect removal. For each cohort, the parameter combination
with least remaining batch effects was chosen as preferred
combination (summarized in Supplementary Table S6).
Interestingly, the four cohorts for which limma batch
correction performed better than combat (BLCA, COAD,
KIRC and LGG) had a significantly higher number of
samples sequenced with the Illumina GA than the HiSeq
platform (Chi-Square test, P < 2.2 e-16) going hand in hand
with a lower sequencing depth (t-test, P = 4.2 e-6) (Table 1).

As shown in Figure 5, plate batch effects were identified
for all cancer entities, and sequencing platform batch
effects were observed for all projects consisting of patient
samples sequenced with both Illumina GA and Illumina
HiSeq. Tumor purity was another batch effect found
in most projects apart from CESC, LUAD and STAD.
Information on different tumor subtypes was provided
by the R package TCGAbiolinks for the TCGA-BLCA,
TCGA-BRCA, TCGA-LIHC, TCGA-PRAD and TCGA-
THCA projects. Interestingly, in these cohorts several PCs
were significantly associated with those subtypes. Besides
the projects TCGA-LUAD and TCGA-THCA, a highly
significant correlation was found between the sequencing
depth, and different PCs. Thus, the variance in the dataset
can partly be explained by altering sequencing depth
between the samples.

The plate and platform batch effects were successfully
removed from all 16 projects. However, especially the
tumor purity batch effect is still present in 9 of the 16
datasets. Also, the correlation between PCs and sequencing
depth is still partly present in 8 of the 16 datasets.
Only for TCGA-LIHC, TCGA-LUSC, TCGA-OV, TCGA-
STAD and TCGA-UCEC, all significant batch effects were
completely removed. Since different isomiR expression
levels are expected between different tumor subtypes, batch
correction should not reduce variance and significance in
the subtype variable. Indeed, after batch effect removal, the
PCs are still significantly different between the subtypes.
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Figure 5. Association between potentially confounding variables and principal components before and after batch correction in 16 TCGA isomiR
expression quantification datasets. PCA was performed using the log2 expression values of isomiRs with a median threshold > 15 RPM. For each variable,
association was statistically tested as follows: plate and subtype variable using a Kruskal Wallis test, platform variable using a Wilcoxon Rank Sum test,
for the ordinal purity variable a Kendall Tau Rank correlation and for the sequencing depth variable a Spearman correlation. Colors indicate -log10 of
the resulting q-values, the red scale represents values above the significance threshold (q-value < 0.01), the blue color scale non-significant q-values. Sizes
of the dots indicate the percentage of variance that can be explained by the corresponding PC. Blue arrows indicate the batch variable 1 that was chosen
for batch correction for the respective TCGA project in the same row, the yellow arrow the batch variable 2. The BLCA, COAD, KIRC and LGG datasets
were batch corrected using the limma algorithm, whereas the other 12 cohorts showed better correction results using ComBat.

These findings indicate that biological variance in the data
set is not removed during batch correction.

Variance between normal and tumor samples is sustained by
batch correction

To further focus on the maintenance of biological variance
in the data sets, batch correction was applied to the 12
TCGA isomiR expression quantification datasets including
at least 18 patient-matched normal samples (Table 1). To
ensure biologically meaningful results and at the same
time reduce the impact of limited sequencing depth, all
subsequent analyses were performed on the more robust
subset of isomiRs sequenced with at least 15 RPM
on average in the respective cohort and the quality of
batch correction examined (Supplementary Figure S22).
In general, batch effects introduced by the variables plate
and platform were less efficiently removed when normal

samples were included. This might be partly explained by
unequal distribution of normal samples across plates and
platforms. In contrast, residual batch effects associated
with sequencing depth and purity were similar between
both approaches. Of note, potentially biologically relevant
variance due to different disease subtypes was similarly
retained in both settings.

To further investigate the impact of batch correction on
biologically relevant variance in the data, we generated t-
SNE projections of the log2 transformed expression data
before batch correction and after batch correction. As
shown in Figure 6A for the uncorrected TCGA-LUSC
dataset, similar to the results obtained by PCA, t-SNE
projections revealed strong clustering of patients based
on the batch variables platform, sequencing depth and
plate. Of note, normal samples clustered distinct from
tumor samples already before batch correction. Consistent
with our previous results, all batch effects were removed
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Figure 6. Strong biological effects remain after batch correction. tSNE plots of (A) non-corrected data containing all samples containing read counts
greater zero, (B) non-corrected data containing only samples with an overall expression of at least 1 million mapped reads and a median expression of at
least 15 rpm and (C) batch effect corrected isomiR expression data for the different patients. Platform (left panel), sequencing depth (middle panel) and
sample type (tumor/normal, right panel) are colored.

efficiently in the TCGA-LUSC data set. At the same time,
biologically meaningful effects were not impaired by batch
correction and tumor and normal samples clearly cluster
separately from each other (Figure 6B), emphasizing that
exclusion of poorly sequenced samples alone cannot replace
batch correction. Similar results were achieved for the
additional 11 TCGA projects (Supplementary Figures S23–
32).

For relative comparison of isomiR expression in patient-
matched tumor and normal samples, batch effect correction
may seem avoidable. However, as clustering of patients
based on the log2 fold change in expression between tumor
and normal samples from the same and different plates
show, this only applies for samples that had their libraries
prepared on the same plate and were sequenced with the
same platform (Supplementary Figure S33 and Table 1).

Batch effects mask biologically meaningful isomiRs in the
LUSC dataset

After confirming that global differences in isomiR
expression between tumor and normal samples are
maintained during batch correction, we next aimed to
examine on an individual isomiR level whether biological
effects are revealed upon batch correction, again using the
TCGA-LUSC data set as an example. For this purpose,

we identified isomiRs with different expression levels in
tumor and normal tissue by t-test with subsequent FDR
correction. For most isomiRs, the significance of the
expression difference between tumor and normal samples
did not change. However, for a subset of 19 of 656 isomiRs,
significant differences in expression were revealed after
batch correction (in the corrected samples absolute log2
fold change of 0.4 between tumor and normal samples,
q-value < 0.05 and q-value > 0.05 in the uncorrected
samples), while a larger subset of 25 isomiRs are not
differentially expressed any more (Figure 7A). These
subsets were not associated with expression levels of the
respective isomiRs (Figure 7B). Therefore, we conclude
that batch correction did affect rare and abundant isomiRs
similarly.

Looking more carefully at a subset of 21 isomiRs with
a significant unadjusted P-value only after correction of
batch effects and an absolute log2 fold change of 0.4
between tumor and normal samples, we next investigated
their published roles in cancer (Figure 7C). Here, we
assumed that 3′ isomiRs (blue) generally exert similar
functions as their canonical counterparts (green) whereas
the functions of 5′ isomiRs (red) are generally less studied
and harder to predict due to shifted seed sequences and
altered target spectra. Therefore, we defined them to have a
not classified function, just as three isomiRs with canonical
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Figure 7. Significant differential expression in tumor versus normal tissue of a new candidate isomiR set after batch correction. (A) Comparison of fold
changes of expression in tumor versus normal before and after batch correction leads to a subset of isomiRs whose significant expression can only be
observed after batch correction. (significance: log2 FC difference between tumor and normal amples > |0.4|, q-value < 0.05) (B) IsomiRs which are
significantly differentially expressed either only before or only after batch correction show an expression spectrum well spread within all other isomiRs.
For more information on significance see (A). (C) Roles in cancer of the canonical versions of the 19 isomiRs which are only significant after correction. If
roles were controversial between tumor types, we focused on the role in lung cancer.As 5′ isomiRs have altered target spectra to the canonical versions, they
were generally defined as ‘not classified’. 3′ isomiR names are colored in blue, 5′ in red and canonical isomiR names in green. TSM = tumor suppressor
isomiR.

seed sequences but controversial reports in literature (41–
43).

Importantly, the roles of isomiRs with canonical seed
sequences (i.e. canonical forms and 3′ isomiRs) as
tumor suppressive or oncogenic miRNAs were largely in
accordance with the significant differences in expression
between tumor and normal samples unmasked upon batch
correction. For instance, the canonical forms of hsa-miR-
30c-5p, hsa-miR-342-3p and hsa-let-7f-5p were detected
as significantly downregulated in tumors compared to
normal tissues only in the batch corrected data and have
described tumor suppressive functions in lung cancer and
also partly in other cancer entities (21,44–47). A tumor
suppressive function for hsa-let-7f-5p specifically in lung
cancer has not been shown yet, however, various members
of the let-7 miRNA family have been found to be tumor
suppressive in almost all cancer entities (48). Unexpectedly,
hsa-miR-27a-3p and hsa-miR-27b-3p were detected as
significantly upregulated in tumor samples after batch
correction whereas literature describes an antitumoral role
of these two isomiRs in lung cancer (49,50), however no
study could be found investigating their specific role in
lung squamous cell carcinoma which might differ from
those in other lung cancer types. Of note, hsa-miR-199a-5p
has previously been described as tumor suppressor in lung

cancer despite its independently observed upregulation in
lung cancer samples compared to healthy tissues which is in
line with our observation (51).

DISCUSSION

In this study, we identify and remove annotation errors
and batch effects occurring in TCGA isoform expression
quantification data and thereby provide an important new
resource for downstream analysis of isomiR expression
in cancer patients. Specifically, we could illustrate that
misinterpretation of isomiR annotation can lead to strong
misconception of the resulting dataset (Figure 1C) and
this might have already affected previous studies based
on the isomiR expression quantification dataset from
TCGA. Therefore, we strongly recommend using our
correctly annotated data in the future. Similarly, the recently
proposed mirGFF3 format can be applied, also to other
small RNA datasets independent from TCGA (52). In
addition, data distortion by factors such as sequencing
platform, plate, sequencing depth and tumor purity were
identified within isomiR expression quantification datasets
from individual cancer entities and can be found across all
16 TCGA datasets which were investigated here (Figure
5 and Supplementary Figures S23–32). Variation in sample
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processing over a long time period and between different
collaborating institutes is a known confounder in TCGA
pan-cancer experiments (25) and with a sequencing span
of 10 years (2008–2018) for the TCGA miRNA data (24),
batch effects are unavoidable (26). Comparing different
combinations of batch variables (plate, platform and tumor
purity) and using two different batch effect removal
algorithms on the expression quantification data (limma
and ComBat), we identified the best correction options
i.e. the one with the least remaining batch effects for
each dataset. Thereby, we could completely remove plate
and platform effects from all datasets. Effects from batch
variables such as purity and sequencing depth could
not completely be removed in some cohorts but were
clearly reduced (Figure 5). Hence, when analyzing isomiR
expression using our provided batch corrected data within
individual cohorts, it is strongly advisable to control
for residual batch effects specifically for isomiRs under
investigation (Figure 4 and Supplementary Table S2) to
ensure robust and reliable results. Further, even if no
significant effects are detected after batch correction, we
cannot exclude the possibility that unknown or insignificant
associations might still impact the biological interpretation
of the data.

Batch effect removal was performed without and
with normal samples where applicable (Table 1). Even
though correction without normal samples improved
batch correction results (Figure 5 and Supplementary
Figure S22), we are aware that normal samples are
of importance for many biological questions. Indeed,
we confirmed that differences between tumor and
normal samples were retained after successful batch
correction in the TCGA-LUSC dataset (Figure 6) and
other relevant tumor entities (Supplementary Figures
S23–32). Furthermore, comparative expression analysis
on the level of individual isomiRs between tumor and
normal samples showed that some previously published
biological differences were indeed masked by batch bias
before correction and only became apparent after batch
correction in the TCGA-LUSC dataset (Figure 6). We
assume similar phenomena also in other relevant cancer
entities. Concomitantly, isomiRs which showed significant
differences in expression between tumors and normal
samples before batch correction were not re-identified
among the significantly differentially expressed ones after
correction pointing to the necessity of batch correction to
obtain reliable results.

As batch correction comes with potential side effects
such as e.g. unknown or overestimated effects leading to
false negative or positive results, or incomplete removal
of batch effects, avoiding the necessity of batch correction
completely, is desirable (32,53). Importantly, removal of
batch effects is only required for downstream analysis
such as PCA, clustering and data visualization, or for
direct expression comparison between patients. For other
statistical analyses, for instance differential expression
analysis, modeling of the batch variables as covariates is
preferable (32). To this end, our study provides valuable
insights to which variable should be included as covariate
in which TCGA cohort. Batch effects identified in this
study are mostly related directly or indirectly to sequencing

depth, in part due to use of different platforms with varying
capabilities. IsomiR expression quantification is even more
delicate than miRNA expression analysis as all isoforms
of one miRNA arms are summed up in miRNA datasets.
Due to the substantially higher complexity and resulting
lower expression levels of individual isomiRs species
(Figure 2H and I; Supplementary Figure S4), a high and
equal sequencing depth for isomiR sequencing is vital to
obtain comparable results and also to comprise isomiRs
apart from the usually highest expressed canonical form
(Supplementary Figure S1) (54). Therefore, sequencing
depth as central issue for batch effect generation should
get taken in more consideration for experimental design.
In addition, we highly recommend careful and substantial
quality control especially when analyzing expression
patterns of individual isomiRs provided as supplement to
this study to ensure robust and biologically meaningful
interpretations.

Another potential source for biases in sequencing results
derives from usage of different platforms for sequencing.
In fact, we find significant, platform dependent differences
in isomiR length, general GC content and GC content
at the first position and provide a list of recurrently
affected isomiRs that should be treated with care when
used for further research. The usage of different sequencing
platforms frequently comes with use of different library
preparation protocols, another factor which plays an
important role regarding batch biases. Protocols have
different sequence biases (e.g. due to adapter ligation,
reverse transcription and amplification) leading to major
differences in small RNA sequencing outcome and batch-
bias: while each mRNA consists of various possible
fragments with different GC contents, each isomiR is
only represented by one sequence with a defined GC
content leading to more significant sequencing biases
(27,55,56). To this end, clear labeling of the platform
and library preparation protocol facilitates identification
of potential batch effects and usage of this parameter for
batch correction. While this information is provided in the
GDC legacy portal, it is not available in the harmonized
data portal reducing awareness for this substantial batch
variable. Hence, development of a standardized protocol for
small RNA sequencing including standards for preparation
protocol, sequencing depth and appropriate platform
would likely allow better comparability of results and
reduce batch effects and thereby provide valuable new data
to the research community and should be developed and
used for future studies.

Together, our study highlights the importance of
annotation and batch correction as well as careful
quality control when working with the TCGA isomiR
quantification datasets. We provide both a mapping gff3
file for automated annotations of isomiRs shifted by up
to 3 nt at either end compared to the canonical isomiR as
well as substantial benchmarking of confounding variables
in 16 large TCGA cohorts (Supplementary Table S1, GEO
series GSE164767). Given the success of batch correction
especially with respect to the batch variables plate and
platform, the resulting corrected expression matrices for
these cohorts will be a valuable resource for the research
community.
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All data are publicly available and accessible as described
in the ‘Data download and pre-processing’ section. The
batch corrected data have been deposited in NCBI’s Gene
Expression Omnibus (57) and are accessible through GEO
Series accession number GSE164767 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE164767). R code
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correction as well as for the implementation of described
analyses and main figures are publicly available on GitHub
(https://github.com/susibing/BatchCor TCGAisomiR).
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