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ARTICLE INFO ABSTRACT

Keywords:
Argininosucinate lyase deficiency

Argininosuccinate lyase (ASL) deficiency impairs the function of the urea cycle that detoxifies blood ammonia in
the body. Mutation that occurs in the ASL gene is the cause of occurrence of ASL deficiency (ASLD). This
ASLD deficiency causes hyperammonemia, hepatopathy and neurodevelopmental delay in patients. In this study, the
Autosomal recessive clinical characteristics and molecular analysis of 10 ASLD patients were presented. 8 patients were associated
X;;Zgﬁmonemia with severe neonatal onset, while the other 2 were associated with late onset. Molecular analysis of ASL gene
identified four new missense variants, which were c¢.778C > T, p.(Leu260Arg), c.1340G > C, p.(Ser447Thr),
¢.436C > G, p.(Argl46Gly) and c.595C > G, p.(Leul99Val) and four reported missense variants, which were
¢.638G > A, p.(Arg213GIn); ¢.556C > T, p.(Argl86Trp), ¢.578G > A, p.(Argl93Gln) and c.436C > G, p.
(Arg146Trp). In silico servers predicted all new and reported variants as disease-causing. Structural examination
exhibited that all pathogenic variants affected the stability of the tetrameric ASL structure by disturbing the
bonding pattern with the neighboring residues.
Conclusion: This study revealed the genetic heterogeneity among Malaysian ASL patients. This study has also

expanded the mutational spectrum of the ASL.

1. Introduction

Argininosuccinate lyase deficiency (ASLD) is an autosomal recessive
urea  cycle disorder causing  argininosuccinic  aciduria.
Argininosuccinate lyase (ASL; MIM 608310) is one of the six enzymes in
urea cycle that converts waste nitrogen into urea. ASL involves in the
fourth step of the urea cycle by catalyzing argininosuccinic acid (ASA)
to produce arginine and fumarate [1,2]. Mutations in the ASL gene
result in defective cleavage of ASA leading to an accumulation of ASA
in cells and an excessive excretion of ASA in urine. ASLD can manifest a
wide clinical spectrum from asymptomatic to severe hyperammonemic
neonatal onset life-threatening courses. The estimated incidence of
ASLD is approximately one in 218,750 live births making it the second
most common disorder in the urea cycle [3]. The diagnosis of ASLD is
established based on elevation of plasma citrulline together with ele-
vated argininosuccinic acid in the plasma or urine and can be confirmed
by assay of ASL enzyme activity or molecular genetic testing of ASL
gene, the latter of which offers additional advantages for genetic
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counselling of the family or prenatal testing in later pregnancies [4].

The human ASL gene is located on chromosome 7q11.21 [5], spans
approximately 17 kb and comprises of 16 coding exons encoding 464
amino acids. ASL is a homotetramer of ~52kDA subunit and is con-
sidered as the mature enzyme carrying four identical active sites which
provide binding pockets for ASA [6]. The enzyme is located in the cy-
tosol and is expressed predominantly in liver [1]. However, it is also
detected in many other tissues, including kidney [7], small intestine [8]
and brain [9].

To date, there are 167 variants of the ASL gene reported by the
Human Gene Mutation Database (HGMD) (http://www.hgmd.cf.ac.uk)
[10], a database that provides information on DNA variants with cur-
rent listing of 107 variants in its public site and 160 variants in the
professional version 2018. Majority of variants are missense, but almost
all types of other variants are also found. Even though > 160 ASL
variants have been described, however the genotype-phenotype corre-
lations are still not completely clear as standard biochemical testing is
not sensitive enough to measure residual activity. Other possible factors
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such as ASL tissue-specific expression [11], methylation status [12] and
frequent alternative splicing variants [13] may influence the clinical
phenotype. In this study, we present the molecular characterization of
10 patients affected with ASLD by analyzing the ASL gene and struc-
ture.

2. Materials and methods
2.1. Patients

This study includes samples from 10 patients from a total of 10
different families diagnosed with ASLD at Kuala Lumpur Hospital
(HKL). All patients were identified to have ASLD according to clinical
observations and metabolic findings. To confirm the diagnosis, mole-
cular genetic testing was carried out to all patient samples, at Molecular
Diagnostics and Protein Unit (UMDP), Institute for Medical Research.
Once mutation was identified in the patients, clinicians would call
parents to test the inheritance cases. Only parent samples from 5 pa-
tients were available and all parents were healthy. The control group
was also included in this study which consisted of 50 normal healthy
individuals. Informed consent was obtained from all patients.
Peripheral blood (approximately 5 to 10 mL) was collected inside a
standard EDTA tube. This study was performed according to the
Declaration of Helsinki.

2.2. DNA extraction, PCR and sequencing

The genomic DNA from all blood samples were extracted by using
the DNA Blood Mini Kit (QIAGEN, Hilden, Germany). The ASL gene
including intron-exon boundaries [14] was amplified using the touch-
down polymerase chain reaction (PCR) method. The amplified PCR
product was run on 1.5% agarose gel under standard electrophoresis.

The PCR product was purified by using the QIAquick PCR pur-
ification kit (QIAGEN, Hilden, Germany) and cycle sequencing was then
carried out by using the Big Dye Terminator cycle sequencing version
3.1 (Applied Biosystems, Foster City, CA). The sequencing reaction was
then electrophoresed by the Applied Biosystems 3500 Genetic Analyzer.

2.3. Mutation confirmation

SeqScape Software version 2.5 (Applied Biosystems, Foster City, CA)
was used to identify the DNA variants, in which the sequencing results
were aligned to the genomic and coding DNA reference sequence of ASL
gene (NC_000007.13 and NM_000048.3). Human genome GRCh37/
hg19 was used to retrieve all reference sequences. The single nucleotide
variants (SNVs), insertion and deletion were reported by referring to
the Human Genome Variation Society (HGVS) (http://www.hgvs.org/
mutnomen).

Identified variants were compared against two public databases;
HGMD [10] and 1000 Genome Project data (http://www.
1000genomes.org) [15] in order to differentiate the one as reported
or new variants. Meanwhile, the new variants were then compared with
50 healthy normal individuals (100 alleles) and Genome Aggregation
Database (gnomAD) [16] in order to rule out a polymorphism.

2.4. In silico prediction

To validate the degree of conservation, HomoloGene program
(http://www.ncbi.nlm.nih.gov/homologene) was used to run the mul-
tiple-sequence alignment. Meanwhile, the pathogenicity of missense
variants was then predicted using four in silico webservers, FATHMM-
XF [17], Mutation Taster2 [18], M-CAP [19] and PROTEAN [20].
Missense variants predicted as damaging by at least three or more
servers were considered as disease-causing. In addition, I-Mutant 3.0
server [21], CUPSAT [22] and Site Directed Mutator (SDM) [23] were
used to predict the stability/instability of the protein. Missense variants
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were considered as destabilizing in nature if two or more than two al-
gorithms showed a decrease in stability upon mutation.

2.5. Modeling of native and mutant ASL structures

The effects of missense variants on the protein structure were then
observed through computational modeling. The human ASL X-ray
crystal structures were retrieved from the Protein Databank (RCSB-
PDB) [24]. At the moment, two human ASL X-ray crystal structures
were crystallized with resolutions 42A (PDB ID: 1A0S) [25] and
2.65A (PDB ID: 1K62) [26]. However, structure with resolution 424
consisted missing residues, while structure with resolution 2.65 A had a
mutation at residue 286. Therefore, the three dimensional (3D) ASL
native model was built using SWISS-MODEL program [27] by submit-
ting the targeted sequence (native) to the program. The ASL mutant
model was generated via the Swiss-PDB viewer [28]. The ‘Mutate’ tool
in the Swiss-PDB viewer was used to change the target amino acid in
the ASL native model. Once the ASL native and mutant models were
generated, energy minimizations were then performed using the same
program to remove unwanted contacts. The GROMOS96 force field was
used to assign the atomic charges to all the residues. The ASL native and
mutant models were then visualized using PyMol software [29].

2.5.1. Native and mutant models validation

The qualities of the ASL native and mutant models were validated
using ProCheck [30], ProSA-web [31] and ERRAT [32] programs. The
Ramachandran plot generated by the ProCheck program was used to
verify the overall stereochemical quality and accuracy of the predicted
model. The geometry of the residues from the predicted model was
compared with the X-ray crystal or NMR structures. The good quality of
predicted model which covers the residues located in the most favor-
able and additional allowed region should be > 90%.

The ProSA-web used molecular mechanics force field [31] to cal-
culate energy profiles (z-score) for the modeled structures. The z-score
predicts overall model quality and measures the total energy deviation
of the structure using random conformations. The modeled structure is
predicted to be erroneous if the z-scores range beyond the characteristic
of reference proteins. Meanwhile, for better interpretation of the pre-
dicted protein, the z-score plot can be used to check whether the z-score
of the predicted protein is within the range of scores typically found for
proteins of similar groups.

ERRAT was used to inspect the correctness of the overall fold/
structure and faults over localized regions. ERRAT score provides the
whole quality factor for non-bonded atomic interactions. Score > 50%
indicates the higher quality model. The quality of the ASL native and
mutant models were also verified by calculating the root mean square
deviation (RMSD) using the Swiss-PDB viewer. The RMSD of the native
model was calculated by superimposing the native model with the
template structure (PDB ID: 1K62). Meanwhile for the mutant models,
the RMSDs were calculated by superimposing the mutant models with
the native model.

2.5.2. Hydrogen bond analysis

The hydrogen bond interaction between native and neighboring
residues was analyzed using Chimera software [33]. The relax hy-
drogen bond constraint was set to be within 0.4 A with a maximum
angle of 30 degree.

3. Results
3.1. Clinical findings

Ten patients (4 males and 6 females) from ten families were studied.
All patients except one (Patient P7) were from Malay ethnicity back-

ground. Table 1 presents the main clinical features of these patients.
Eight patients have had their first presentation during neonatal period,
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Table 3
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Evaluation of ASL native and mutant models by using PROCHECK, ProSA-Web and ERRAT programs.

Patient Exon Mutation Ramachandran plot statistics (%) ProSA Errat (%) RMSD (&)
Coding DNA Protein number Most Additionally Generously Disallowed z-Score Overall quality
number favoured allowed allowed factor Score
Native 94.4 5.1 0.5 0.0 —8.61 95.37 0.05
P1 Ex-8 c.638G > A p.(Arg213Gln) 94.4 5.1 0.5 0.0 —8.59 95.83 0.01
P2
P3
P4
P5 Ex-7 c.556C > T p.(Arg186Trp) 94.2 5.3 0.5 0.0 —8.58 93.06 0.05
P6
P7 Ex-7 ¢.578G > A p.(Arg193Gln) 94.4 5.1 0.5 0.0 —8.59 95.37 0.01
Ex-10 c.778C>T p.(Leu260Phe)
P8 Ex-5 c.436C > T p.(Argl46Trp) 94.2 5.3 0.5 0.0 —8.66 93.52 0.05
Ex-15 ¢.1340G > C p.(Ser447Thr)
P9 Ex-5 c.436C > G p.(Arg146Gly) 94.2 5.3 0.5 0.0 —8.63 93.06 0.05
P10 Ex-7 ¢.556C > T p.(Arg186Trp) 94.2 5.3 0.5 0.0 —8.66 93.06 0.05
Ex-7 ¢.595C > G p-(Leul99val)

with blood ammonia ranging from 210 pmol/L to 510 umol/L and re-
quired emergency treatment. Two patients, P7 and P10 presented at
later age, at 5 years and 6 years old respectively. Despite dietary protein
restriction and ammonia scavengers therapy, all patients had impaired
cognitive function: 6 with mild learning disabilities, 1 with moderate
learning disabilities, and 3 with severe learning disabilities.

3.2. Molecular diagnosis

Table 2 shows direct sequencing result of ASL gene in the ten pa-
tients. Six (60%) patients were in homozygous state, three (30%) pa-
tients were in compound heterozygous state and one (10%) patient was
in heterozygous state (Table 2). Eight missense variants (c.638G > A;
c.556C > T, ¢.578G > A, ¢.778C>T, c436C>T, ¢.1340G > C,
¢.436C > G, ¢.595C > G) were identified in these ten patients. Four
missense variants (c.778C > T, ¢.1340G > C, ¢.436C>G and
¢.595C > G) were detected as new variant, in which these variants were
not found previously in HGMD and 1000 Genome Project. The re-
maining four missense variants (c.638G > A; c.556C > T, c.578G > A
and ¢.436C > G) were previously reported in literature.

The presence of all missense variants was confirmed in parental
DNA. Only parent samples from Patients 4, 5, 7, 8 and 10 were avail-
able to test for inheritance cases (Table 1). All parents carried the
variant in heterozygous form. In order to define pathogenicity of new
missense variants; p.(Leu260Phe), p.(Ser447Thr), p.(Arg146Gly) and p.
(Leul99Val), each of the variants was compared with 50 healthy
normal individuals and also with gnomAD database. None of them were
discovered in the healthy individuals as well as in gnomAD database.

3.3. Insilico prediction

To further investigate the effects of four new ASL missense variants,
multiple sequence alignment (protein) was performed using
HomoloGene program to define the cross-species conservation of each
new variant. Table 2 shows all four new missense variants were highly
conserved among the species (90% to 100%).

In silico prediction servers were then performed to predict the pa-
thogenicity of each of the new missense variants. All four in silico ser-
vers (FATHMM-X, Mutation taster 2, M-CAP and PROTEAN) predicted
that all new missense variants as disease-causing (Table 2). The effect of
new missense variants on the change in protein stability was examined
with I-Mutant 3.0, CUPSAT and SDM. All servers predicted the three
new variants; p.(Leu260Phe), p(Arg146Gly) and p.(Leul99Val) desta-
bilized the ASL structure. However, only two servers (I-Mutant 3.0 and
SDM) predicted p.(Ser447Thr) to destabilize the ASL structure.

3.4. Structural analysis

3.4.1. Quality of ASL native and mutant models

The effects of variants on the ASL structure were then further ana-
lyzed. The ASL native structure was developed from the known struc-
tures of ASL (PDB ID: 1K62 and 1AOS) using the program SWISS-
MODEL. The mutant models were developed using the Swiss-PDB
viewer. Energy minimization was then performed to the ASL native and
mutant models. The quality of ASL native and mutant models was
verified with PROCHECK. The Ramachandran plot determined by
PROCHECK revealed the residues of the ASL native and mutant models
in the most favorable regions were > 90%, as shown in Table 3. None
of residues was detected in disallowed regions of the Ramachandran
plot of the native and mutant models (Supplementary Fig. S1A). Scores
produced by the PROCHECK were closed to the 100%, which showed
the stereo-chemical quality of the ASL native and mutant models was in
a good quality.

ProSA-web and ERRAT programs were also used to further check
the quality of the ASL native and mutant models. The z-score generated
from ProSA-web exhibited the overall model quality of the ASL native
and mutant models was negative, as shown in Table 3 and Supple-
mentary Fig. S1B. For the ASL native model, the value was within the
range of z-score found for protein of similar groups, indicating the
quality of this model was high. Meanwhile, for the mutant models, the
values were within the range of the score of the native protein, sug-
gested that all mutant models were in very good overall configuration.
The ERRAT program exhibited the overall quality score for non-bonded
atomic interactions of ASL native and mutant models was > 90%, as
shown in Table 3. None of the residues were above the 99% cut off of
error-value (Supplementary Fig. S1C). The ERRAT score exhibited the
whole quality factor for the native and mutant models was greater than
accepted range (50%), which indicated all of them were within the
range of a high-quality model.

The RMSD calculation was also carried out to verify the quality of
ASL native and mutant models. The superimposition of the native
model onto the template structure (PDB ID: 1K62) produced RMSD of
0.05A. Meanwhile, for the mutant model, Table 3 shows RMSD values
of the mutant models when superimposed onto the ASL native model.

3.4.2. Position of mutations and hydrogen bond interactions

Fig. 1 shows position of the reported and new variants in the ASL
tetramer structure. The missense variants were mapped only to subunit
A of tetramer ASL structure. All reported; p.(Arg213Gln), p.
(Argl86Trp), p.(Argl93GIn) and p.(Argl46Trp) and three new; p.
(Leu260Phe), p.(Argl46Gly) and p.(Leul99Val) variants were located


http://firstglance.jmol.org/fg.htm?mol=1K62
http://firstglance.jmol.org/fg.htm?mol=1AOS
http://firstglance.jmol.org/fg.htm?mol=1K62

E.Z. Ali, et al.

Arg213GIn

Domain 1

Argl46Trp

Argl46Gly

W‘
‘_'_l

Domain 3

at domain 2, while only one variant; p.(Ser447Thr) was located at
domain 3.

Table 4 shows all the hydrogen bond interactions between the na-
tive and neighboring residues, and between the mutated and neigh-
boring residues. Information in this table includes the hydrogen bond
interactions of the reported and new variants. Fig. 2a shows the sub-
stitution of arginine to glutamine affected the bonding patterns with the
surrounding residues. Arginine (Arg213) in native structure was found
to form hydrogen bond interactions with neighboring residues in sub-
unit A, Leul99, Thr226, Arg217, Pro198 and Leul97. This residue was
also found to form hydrogen bond interaction with neighboring residue
Leu440 in subunit D. However, loss of hydrogen bond interactions with
residues Thr226, Pro198 and Leul97 in subunit A, and residue L440 in
subunit D was observed when arginine substituted to glycine at position
213.

Loss of hydrogen bond interactions with residue Asp183 in subunit
A, and residues Glu241 and Asp237 in subunit D was also observed
when the arginine substituted to tryptophan at position 186, as shown
in Fig. 2b. The substituted Trp186 was found to form hydrogen bond
interactions with residues Argl82, Val190 and Glul89 in subunit A.
These residues (Arg182, Val190 and Glul89) were also found to form
hydrogen bond interactions with Argl86 in the native structure. Re-
sidue Argl93 in native structure formed hydrogen bond interactions
with residues Argl22, Glul89, Vall90 and Glu241 in subunit A
(Fig. 2c). Concurrently, this residue also formed interactions with re-
sidues in subunit D (Glul85 and Glul89). However, substitution to
glutamine caused loss of interactions with all residues in subunit D, as
shown in Fig. 2c. For mutation occurred at position 260, which changed
from leucine to phenylalanine, the mutated residue (Phe260) was ob-
served not to affect the bonding pattern with surrounding residues, as
shown in Fig. 2d.

Fig. 2e shows arginine at position 146 in the native structure formed
interactions with residues in subunit A, Thr142, Glu150, I1e350, Leu353
and Alal49. Nevertheless, the substituted tryptophan at this position
affected the interactions with Glul50, I1e350 and Leu353. Meanwhile,
the replacement of serine to threonine at position 447 caused loss of
interactions with residue Gly441 (Fig. 2f). Instead, the mutated residue
Thr447 formed new interaction with residue Ala439. The substituted
glycine at position 146 (Gly146) was found to form similar bonding
pattern, as presented in Trp146 mutant (Fig. 2g). For mutation occurred
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Fig. 1. The tetramer model of native ASL structure and po-
sitions of new and reported missense mutations recognized in
this study. New and reported missense mutations are mapped
to subunit A. New missense mutations are presented in blue
sphere and labelled in blue font. The reported missense mu-
tations are presented in red sphere and labelled in red font.
The tetramer structure is shown in cartoon and ribbon. The
subunit A is presented in green cartoon, while the subunit B, C
and D are presented in cyan, magenta and yellow ribbons,
respectively. The tetramer model is developed by Swiss-Model
program [27] and visualized with PyMol [29]. (For inter-
pretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

-Domain 2

at position 199, which changed from leucine to valine, the mutated
residue (Val199) was observed not to affect the bonding patterns with
the surrounding residues, as shown in Fig. 2h.

4. Discussion

This study presented the first molecular analysis of ASLD in
Malaysia population. Ten patients were identified to carry a missense
variant in ASL gene with different clinical and biochemical phenotype,
indicating the heterogeneous distribution of pathogenic variants in ASL
gene. Although the splice site, deletion and insertion (indel) were not
found in this study, the potential of cryptic splice sites and RNA decay
also contributed for the severity of ASLD, as reported in other studies
[34-36]. Currently, about 167 variants have been discovered in the
HGMD, with the largest proportion are missense variants [10]. None of
the reported and new missense variants obtained in this study were
discovered at the active site of ASL protein. The new missense variants
(Leu260Phe, Ser447Thr, Argl46Gly and Leul99Val) were detected as
very rare variants as all of them were not discovered in our normal
control, gnomAD, HGMD and 1000 Genome Project databases. Two
new missense variants found in this study and located at positions 146
and 447 were basically a substitution of another amino acid at the exact
site. The missense variants reported at these positions were found to be
pathogenic [34].

In this study, four unrelated patients (Patients 1, 2, 3 and 4) shared
a similar genotype, a Leu213GIn. This pathogenic variant was pre-
viously reported in patient associated with severe neonatal onset form
in United State (US) population [34]. However, there is no detailed
information on the functional study for this pathogenic variant. Our
analysis showed although one in silico server (I-Mutant 3.0) predicted
the GIn213 mutant increased the stability of the ASL structure, how-
ever, the other two in silico servers predicted to affect the stability of the
ASL structure. Analysis of hydrogen binding patterns further supported
the mutated residue (GIn213) caused loss of four hydrogen bond in-
teractions in the ASL structure, including hydrogen bond interactions
with the adjacent subunit. This would suggest that this pathogenic
variant is predicted to highly likely affect the stability of the ASL
structure. Furthermore, this pathogenic variant occurs in highly con-
served region, implying the pathogenicity of this variant. The
Arg213GIn mutant is suggested to have loss of protein function as three
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Table 4
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Hydrogen bond interactions between native and neighboring residues and between mutant and neighboring residues.

Patient Exon Mutation

Hydrogen bond interactions

Coding DNA number Protein number

Hydrogen bond interactions between native

Hydrogen bond interactions between

and neighboring residue

mutant and neighboring residue

Residue-chain-Atom

Residue-chain-Atom

P1 Ex-8 c.638G > A p-(Arg213Gln)

P2

P3

P4

P5 Ex-7 c.556C > T p-(Argl186Trp)

P6

P7 Ex-7 ¢.578G > A p.(Arg193Gln)
Ex-10 c.778C>T p-(Leu260Phe)

P8 Ex-5 c.436C>T p-(Argl46Trp)
Ex-15 ¢.1340G > C p-(Ser447Thr)

P9 Ex-5 c.436C > G p-(Argl146Gly)

P10 Ex-7 ¢c.556C > T p.(Argl186Trp)
Ex-7 ¢.595C > G p-(Leul99Vval)

R213-A-NE: L199-A-O
R213-A-NH1: T226-A-O
R213-A-NH1: L440-D-O
R213-A-NH2: L199-A-O
R217-A-N: R213-A-0
R213-A-NH2: P198-A-O
R213-A-NH2: L197-A-O
R186-A-N: R182-A-0
R186-A-NE: D183-A-OD2
R186-A-NH1: E241-D-OE2
R186-A-NH2: D183-A-OD1
R186-A-NH2: D237-D-OD1
V190-A-N: R186-A-O
Q189-A-N: R186-A-O
R122-A-NH1: R193-A-O
R122-A-NH2: R193-A-O
R193-A-N: E189-A-0
R193-A-N: V190-A-O
R193-A-NE: E241-A-OE1
R193-A-NE: E241-A-OE2
R193-A-NH2: E241-A-OE2
R193-A-NH1: E185-D-OE1
R193-A-NH1: E189-D-OE2
R193-A-NH2: E189-D-OE1
L260-A-N: M256-A-O
C264-A-N: L260-A-O
L260-A-N: A257-A-O
R146-A-N: T142-A-O
R146-A-NE: E150-A-OE1
R146-A-NH1: 1350-A-O
R146-A-NH1: L353-A-O
R146-A-NH2: L353-A-O
R146-A-NH2: E150-A-OE1
R146-A-NH2: E150-A-OE2
E150-A-N: R146-A-O
A149-A-N: R146-A-O
G441-A-N: S447-A-0G
Q451-A-N: S447-A-O
S5447-A-N: A444-A-0
S447-A-N: S446-A-0G
R146-A-N: T142-A-O
R146-A-NE: E150-A-OE1
R146-A-NH1: 1350-A-O
R146-A-NH1: L353-A-O
R146-A-NH2: L353-A-0
R146-A-NH2: E150-A-OE2
R146-A-NH2: E150-A-OE2
E150-A-N: R146-A-O
A149-A-N: R146-A-O
R186-A-N: R182-A-O
R186-A-NE: D183-A-OD2
R186-A-NH1: E241-D-OE2
R186-A-NH2: D183-A-OD1
R186-A-NH2: D237-D-OD1
V190-A-N: R186-A-O
E189-A-N: R186-A-O
L199-A-N: T119-A-0G1
R213-A-NE: L199-A-O
R213-A-NH2: L199-A-O

Q213-A-NE2: L199-A-0
R217-A-N: Q213-A-O

W186-A-N: R182-A-0
V190-A-N: W186-A-O
E189-A-N: W186-A-O

R122-A-NH1: Q193-A-O
R122-A-NH2: Q193-A-O
Q193-A-N: E189-A-0
Q193-A-N: V190-A-O
Q193-A-NE: E241-A-OE2

F260-A-N: M256-A-O
C264-A-N: F260-A-O
F260-A-N: A257-A-O
W146-A-N: T142-A-O
E150-A-N: W146-A-O
A149-A-N: W146-A-O

T447-A-N: A444-A-0
T447-A-N: S446-A-0G
T447-A-0G1: A439-A-0
Q451-A-N: T447-A-O
G146-A-N: T142-A-O
E150-A-N: G146-A-O
A149-A-N: G146-A-O

W186-A-N: R182-A-0
V190-A-N: W186-A-O
E189-A-N: W186-A-O

V199-A-N: T119-A-0G1
R213-A-NE: V199-A-0
R213-A-NH2: V199-A-O

of our patients presented in severe neonatal disease phenotype. The
same position was also affected with pathogenic variant, Arg213*,
which was reported in patient associated with severe neonatal onset
form in Italian population [37] and unknown phenotype in Indian and
US populations [34].

Although Patient 4 had only 1 variant detected, nevertheless, me-
tabolic/biochemical testing had established the diagnosis of ASLD.

Therefore, the second disease-causing variant that could not be iden-
tified in this study might be due to undetectable by sequence analysis
such as intragenic deletions or duplications. Hence, incorporating
methods such as multiplex ligation-dependent probe amplification
(MLPA), a gene-targeted microarray, quantitative PCR or long-range
PCR could improve diagnostic yield.

Mutation of Argl86Trp was found as homozygous form in two
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Fig. 2. Hydrogen bond interactions of native and mutants with neighboring residues. Native residue is presented in orange stick and sphere, while mutant residue is
presented in purple stick and sphere. Hydrogen bonds are indicated by black dotted lines. Subunits A, B, C and D are presented in green, cyan, magenta and yellow
cartoons, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

unrelated patients (Patients 5 and 6). Both patients showed severe
clinical and biochemical phenotype, which were presented with acute
neonatal symptom. Therefore, our finding is similar with the previous
reported case, in which changes to this arginine at this position are
predicted to be deleterious and may affect the stability of the tetramer
ASL structure [34,38]. This pathogenic variant was commonly reported
in the Saudi Arabia [38] and Turkish populations [34].

Patient 7 had late-onset disease. This patient had compound het-
erozygous for new (Leu260Phe) and reported (Arg193Gln) pathogenic
variants. This new pathogenic variant (Leu260Phe) was observed to not
affecting the surrounding hydrogen bond interactions. However, this

new pathogenic variant was discovered as disease-causing by in silico
servers. In addition, this pathogenic variant occurs in highly conserved
region, strengthening the pathogenicity of this variant. Meanwhile, the
Argl193GIn was previously reported in patient associated with neonatal
onset form in US and Austrian populations, and patient with the late
onset form in Italian population [34,39]. However, there is no func-
tional study for this variant [34]. Our structural analysis discovered this
reported pathogenic variant affected the hydrogen bond interactions
with the adjacent subunit, which indirectly disturbing the formation of
tetrameric structure of ASL. Therefore, this would suggest that this
pathogenic variant might contribute to the severity of this deficiency in
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patient. The same position was also affected with pathogenic variant,
Arg193Trp, which was found in US and German populations [34].

Patient 8 was also associated with severe neonatal onset form of
disease. This patient had a compound heterozygous for new
(Ser447Thr) and reported (Argl46Trp) pathogenic variants. The re-
ported pathogenic variant, Argl46Trp was previously reported in US
and Turkish populations in the literature [34]. However, there is no
information stated about the functional study for this variant. In our
structural analysis, both pathogenic variants (Ser447Thr and
Arg146Trp) affected the ASL structure by altering the bonding patterns
with the neighboring residues. In addition, in silico servers predicted
both pathogenic variants as disease-causing. Consistent with this, both
pathogenic variants were suggested to cause loss of protein function
and resulted in a severe form in our patient.

A new variant in homozygous state (Argl146Gly) was observed in
Patient 9, which had hyperammonemia episodes at day 7. This new
pathogenic variant was predicted as disease-causing by in silico servers.
Furthermore, the substitution of long side chain of arginine to small
glycine has disturbed the bonding pattern of ASL structure. This in-
dicates the impact of this new pathogenic variant to the stability of the
ASL structure, which possibly causing the ASLD. The same position was
also affected with pathogenic variant (Arg146Trp), which was reported
in our study, US and Turkish populations [34]. Another pathogenic
variant (Argl46Gln) located at the same position was previously re-
ported in homozygous and heterozygous states in UK population [35].

Another new variant, Leul99Val was observed not to affect the
surrounding hydrogen bond interactions of ASL structure in Patient 10.
However, this pathogenic variant was found as compound heterozygous
which formed along with the reported pathogenic variant, Arg186Trp.
As mentioned above, the reported pathogenic variant, Arg186Trp was
discovered as recurrent pathogenic variant disturbing the stability of
the tetramer ASL structure [34,38]. This indicates that this reported
pathogenic variant might participate to the severity of disease in this
patient. Furthermore, in silico analysis exhibited the new pathogenic
variant, Leul99Val as disease-causing. The impacts of both pathogenic
variants were in line with the clinical phenotype of this patient, in
which Patient 10 had a late-onset disease.

5. Conclusion

In conclusion, this study has characterized the clinical and mole-
cular aspects of argininosuccinate aciduria in Malaysia patients. Eight
different missense variants from 10 patients were identified. All the
new and reported pathogenic variants discovered in this study may
potentially disturb the ASL structure. This study has expanded the
mutation spectrum of ASL mutations. Establishing a precise molecular
diagnosis is beneficial not only for accurate genetic counselling but also
for accurate carrier testing as early intervention is important to mini-
mize disease progression.
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