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Abstract: Nanoporous silica gels feature extremely large specific surface areas and high porosities
and are ideal candidates for adsorption-related processes, although they are commonly rather frag-
ile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare
mechanically robust CNF-reinforced silica nanocomposites via the incorporation of methylcellulose
and starch. Significantly, the addition of starch was very promising and substantially increased the
compressive strength while preserving the specific surface area of the gels. Moreover, different silanes
were added to the sol/gel process to introduce in situ functionality to the CNF/silica hydrogels.
Thereby, CNF/silica hydrogels bearing carboxyl groups and thiol groups were produced and tested
as adsorber materials for heavy metals and dyes. The developed solvent-free sol/gel process yielded
shapable 3D CNF/silica hydrogels with high mechanical strength; moreover, the introduction of
chemical functionalities further widens the application scope of such materials.

Keywords: nanocellulose; functional nanocomposite; aqueous process; sol–gel; hydrogels; aerogels;
freeze-drying; cryogels

1. Introduction

Nowadays, biodegradable and renewable materials play an important role in research
and industry. The most abundant biopolymer on Earth, cellulose, has been used by our
society for centuries and is indispensable in today’s economies. In cellulose-related research,
the interest in nanostructured celluloses is steadily rising. This group of celluloses includes
cellulose nanocrystals (CNC), bacterial cellulose (BC), and cellulose nanofibrils (CNF) [1,2].
Significantly, CNF and BC, as high aspect ratio nanocelluloses, are frequently used to
reinforce composite materials, e.g., 3D silica composites [3,4]. Three-dimensional silica
composites based on alkoxysilanes are usually prepared from tetraethyl orthosilicate (TEOS)
via sol–gel chemistry in a two-step gelation process: (A) TEOS is hydrolyzed in the presence
of an acid catalyst, an organic solvent, and water (usually EtOH/water) [5], yielding a low-
viscous precursor consisting of partially or completely hydrolyzed TEOS monomers and
oligomers, i.e., the silica sol [6–8]. (B) The gelation of this precursor is then induced under
basic conditions, e.g., through the addition of a base catalyst, which causes condensation
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reactions and the formation of a siloxane polymer network, i.e., the silica gel [5]. The
preparation of silica gels via sol–gel chemistry has many advantages: it is a robust and
well-investigated method, and functional gels can be easily obtained using special silanes
(e.g., 3-aminopropyl triethoxysilane and 3-mercaptopropyl trimethoxysilane) to tune the
properties of the end products [9]. Moreover, a variation of the synthesis and drying
parameters gives access to a variety of materials, such as fine powders, ceramics, glasses,
spherical particles, and nanocomposites gels [5]. Pure silica aerogels feature large specific
surface areas (SSAs) ranging from 500 to 1000 m2/g [10]. However, the application of pure
silica gels is limited due to their fragility [11]. Their mechanical properties can be improved
through the introduction of polymeric materials [12] or (nano)celluloses [3,4,13,14]. CNF-
based and BC-based silica composites were produced through the immersion of porous
cellulose aerogels into the silica sol followed by subsequent gelation induced by the addition
of ammonia acting as a base catalyst. The main drawbacks of these methods are: (1) The
required drying step to produce a cellulose aerogel precursor is time-consuming and limits
the processability into arbitrary 3D shapes. (2) Most methods are based on organic solvents,
whose use should be avoided or at least reduced for sustainability reasons. (3) Finally,
CNF–silica nanocomposites are handled as dry aerogels, and the direct preparation and
utilization of CNF–silica hydrogels remains largely untapped.

The focus of this work lies in the fabrication of shapable, mechanically robust CNF–
silica hydrogels, using an environmentally benign and solvent-free process. We studied
first the influence of the solvent on the properties of the gels and tested methylcellulose
(MC) and starch as an additive to increase the compressive strength of CNF–silica gels.
Finally, we demonstrate the versatility of our approach through the in situ introduction
of functional silanes bearing thiol or carboxylate groups and examined the functionalized
gels for utilization as adsorbers for heavy metals and dyes.

2. Materials and Methods
2.1. Materials

Cellulose nanofibers were produced from never-dried bleached birch pulp through
disintegration in an M110P microfluidizer (Microfluidics Crop., Newton, MA, USA). The
pulp was fibrillated by 12 passes through the microfluidizer. Methylcellulose (product
number: M0262, 413 cps, 30.3% methoxyl content) and potato starch (product number:
S4251, 25.9 µm granule size, 31% amylose, DPw of amylopectin subfraction: 35) [15] were
purchased from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Munich, Germany). N-
[3-Trimethoxysilyl)propyl] ethylenediamine triacetic acid trisodium salt was purchased
from abcr (abcr GmbH, Karlsruhe, Germany) as a 45% aqueous solution. All other used
chemicals were, if not otherwise noted, purchased from Sigma-Aldrich with a purity of at
least 99%.

2.2. Methods
2.2.1. Preparation of CNF–Silica Hydrogels

Here, 12 mL of 1 wt% CNF dispersion (0.12 g dry cellulose), TEOS (98% purity, 2 mL,
1.9 g, 9.1 mmol), and aqueous HCl (0.16 mL, 0.29 M, 46 µmol HCl) were stirred overnight
to hydrolyze TEOS to yield the CNF–silica sol. Then, 0.85 mL of 0.1 mol/L NH3 (85 µmol)
were added and mixed quickly to start the condensation. The solution was filled into
syringes to obtain hydrogels with cylindric shape (the shape can be freely adjusted by
using different molds or other processing techniques). After complete gelation, the silica
nanocomposites were aged in water at 50 ◦C for at least 10 h to stiffen the silica gel network.
The gels were stored in DI water in the fridge.

2.2.2. Preparation of CNF–MC–Silica Hydrogels

Here, 7 mL of 1.7 wt% CNF dispersion (0.12 g of dry cellulose), 3.5 mL of water,
methylcellulose (1.5 mL, 2 wt%, 0.03 g), 2 TEOS (2 mL, 1.9 g, 9.1 mmol), and HCl (0.16 mL,
0.29 M, 46 µmol HCl) were stirred overnight to hydrolyze TEOS. Then, 0.85 mL of 0.1 mol/L
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NH3 (85 µmol) was added and mixed quickly to start the condensation. The solution was
filled into syringes to obtain hydrogels with cylindrical shapes. Finally, CNF–MC–Silica
hydrogels were aged in water at 50 ◦C for at least 10 h to stiffen the network.

2.2.3. Preparation of CNF–Starch–Silica Hydrogels

TEOS (2 mL; 1.9 g, 9.1 mmol) was hydrolyzed in the presence of 7 mL of 1.7 wt% CNF
(0.12 g dry cellulose), HCl (0.16 mL, 0.29 M, 46 µmol HCl), and 4 mL of water. Then, a
3 wt% dispersion of starch was prepared by adding the starch into cold deionized water
and heating under agitation to 80 ◦C to allow gelatinization. Then, 1 mL of this mixture was
cooled down to 60 ◦C at room temperature, and then directly added into the CNF–silica
sol. Then, 0.85 mL of 0.1 mol/L NH3 (85 µmol) was added and mixed quickly to start the
condensation. The solution was filled into syringes to obtain hydrogels of a cylindrical
shape. Finally, CNF–Starch–Silica hydrogels were aged in water at 50 ◦C for at least 10 h to
stiffen the network.

2.2.4. Preparation of Thiol-Functionalized CNF–Starch–Silica Hydrogels

The respective hydrogels were prepared according to the above procedure for the
preparation of CNF–silica hydrogels, using the same quantities of reactants. After acidic
hydrolysis, (3-mercaptopropyl)trimethoxysilane (MTMS) (95% purity, 0.13 mL, 0.14 g,
0.7 mmol) was added into the prepared CNF–silica sol (before the addition of ammonia).
Upon addition of the mercapto silane, the sample was protected from light with aluminum
foil. Then, 0.85 mL of 0.1 mol/L NH3 (85 µmol) was added, and the sample was transferred
into a mold. After complete gelation, the silica nanocomposites were aged in water at 50 ◦C
for at least 10 h to stiffen the network. The gels were stored in DI water in the fridge.

2.2.5. Preparation of Carboxylate-Functionalized CNF–Starch–Silica Hydrogels

The respective hydrogels were prepared according to the above procedure for the
preparation of CNF–silica hydrogels, using the same quantities and procedure. Directly
after the addition of ammonia, the functional silane, N-[3-trimethoxysilyl)propyl] thylenedi-
amine triacetic acid trisodium salt (0.13 mL, 0.16 g, 0.3 mmol), was added to the CNF–silica
mixture. The sample was directly transferred into a mold. After complete gelation, the
silica nanocomposites were aged in water at 50 ◦C for at least 10 h to stiffen the network.
The gels were stored in DI water in the fridge.

2.2.6. Compression Tests

The mechanical properties of the composites were measured on a universal testing
machine Zwick/Roell Z020 (Ulm, Germany). Compression tests were performed in a wet
state, with a 500 N load cell. The strain rate was set to 2.4 mm/min and samples were
compressed to 30%. The compressive strength was defined as the maximum stress in the
performed strain range. Measurements were performed in triplicate and compared with
Student’s t-test (unpaired, n = 3).

2.2.7. Solvent Exchange to Tert-BuOH and Freeze-Drying

Samples were freeze-dried from the respective tBuOH gel to avoid ice-templating
effects and to preserve the gels’ nanostructure upon the freeze-drying process [16]. The sam-
ples were solvent-exchanged first with 1:1 tBuOH/water, second with 8:2 tBuOH/water,
and finally with pure tBuOH (each solvent exchange step was conducted with solvent
amounts of approx. ten times the respective sample volume and equilibrated for 24 h on a
shaker). All samples were freeze-dried in a Christ Beta 1–8 LD Plus freeze-dryer. After the
last step of solvent exchange with 100% tBuOH, the samples were taken out of the system
and frozen at −80 ◦C in a glass vial. The frozen samples were quickly transferred into
the lyophilizer. All samples were freeze-dried for at least 24 h and stored afterward in an
airtight container.
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2.2.8. Specific Surface Area

The 3D composites for the BET measurement were prepared by cutting the dried
samples into small pieces, pre-drying them at 60 ◦C for at least 24 h, and storing them in an
airtight beaker with drying beads to keep the samples dry. The samples were degassed in a
FlowPrep 060 (Mircomeritics, Norcross, GA, USA) at 80 ◦C under N2 flow for at least 6 h.
Afterward, the measurement was performed on a Micromeritics TriStarII instrument.

2.2.9. Porosity of Samples

The porosity of the 3D composites was calculated according to Equation (1).

Φ =

(
1− ρ

ws ∗ ρs + wc ∗ ρc

)
∗ 100 (1)

where ρ is the bulk density of the sample (measured by gravimetric means from dried
samples with defined volume), and the porosity was calculated in percent. ρs is the density
of silica, at 2.19 g/cm3 [17], and ρc is the density of cellulose, at 1.59 g/cm3 [18]. ws and wc
are the mass fraction of silica and cellulose, respectively, calculated using Equation (2).

ws[%] =

(
ρ− ρ0

ρ

)
∗ 100 (2)

where ρ0 stands for the cellulose bulk density in the sample, calculated from native CNF or
BC gels cryogels. ρ0 = 0.010 g cm−3 in case of CNF and 0.007 g cm−3 in case of BC.

2.2.10. Scanning Electron Microscopy (SEM)

Micrographs of freeze-dried samples were measured on a Zeiss Supra 55 VP. Before
the measurement, the samples were sputtered with a 10 nm-thick gold layer (Leica EM
SCD050, Wetzlar, Germany).

2.2.11. Detection of Thiol Groups

The number of thiol groups in the composite sample obtained upon the addition
of MTMS was quantified using Ellman’s test according to the instructions of Thermo
Scientific [19]. Ellman’s test was performed in a reaction buffer containing 0.1 M sodium
phosphate solution and 1 mM of ethylenediaminetetraacetic acid at a pH of 8. Ellman’s
reagent solution was prepared as follows: 4 mg Ellman’s reagent (10 µmol), i.e., 5,5′-dithio-
bis-(2-nitrobenzoic acid), was dissolved in 1 mL of the reaction buffer. A solution of 2.5 mL
of reaction buffer and 50 µL of Ellman’s reagent solution were prepared for each sample
(including blank and positive control). For the blank sample, 250 µL of reaction buffer was
added to the prepared solution. For the positive control, 4 µmol of MTMS and 246 µL of
reaction buffer were added. To measure the number of thiols in the hydrogels, 10–40 mg
hydrogel of each sample was added to the prepared solutions and the volume was adjusted
to 2.8 mL with reaction buffer. The total thiol content was detected by UV-VIS spectroscopy
(Perkin Elmer Lambda 35, Waltham, MA, USA) at a wavelength of 412 nm.

2.2.12. Adsorption of Copper(II) Sulfate

A copper(II) sulfate solution with a concentration of 500 ppm was prepared using
copper (II) sulfate pentahydrate. Here, 8.5 mL of this solution was added to the hydrogel
sample (0.9–1.2 g of hydrogel weight with approx. 6% solid content). The performance
of the carboxylate-functionalized CNF–silica composite was compared to native CNF–
silica composite and a blank sample. The amount of adsorbed copper(II) was measured by
monitoring the residual copper(II) concentration in the solution after 8 days of equilibration,
which was determined by UV-VIS spectroscopy at 812 nm. The UV-VIS measurements for
this sample were carried out without further dilution.
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3. Results and Discussion

All composites were prepared via sol–gel chemistry starting from tetraethyl orthosil-
icate (TEOS). In combination with nanocellulose, mechanically robust hydrogels were
obtained. The first experiments aimed at studying the effect of EtOH/water ratio on the
mechanical properties and specific surface area (SSA) of cellulose/silica gels. These studies
were conducted with bacterial cellulose as a model material since it naturally provided
a stiff, pre-shaped and mechanically robust gel network. For follow-up experiments, BC
was replaced with CNF, a highly viscous, shapable suspension, which allows an easy
adjustment of the final shapes of the gels (Figure 1).
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Figure 1. Preparation of silica composite gels reinforced with cellulose nanofibers (CNF) and a soluble
polysaccharide (PS), starch, or methylcellulose. (A) The individual components are mixed in the
presence of catalytic amounts of HCl to catalyze the hydrolysis of tetraethyl orthosilicate (TEOS).
(B) Subsequently, ammonia is added to increase the pH and trigger the condensation and, thereby,
the gelation of the sample. This was followed by the aging of the samples at 50 ◦C to stiffen the
gel network and obtain the final CNF–PS–Silica gel (C). The respective hydrogel (D) was dried by
freeze-drying after solvent exchange to obtain highly porous CNF–PS–silica cryogels (E). The shape
of the gel can be controlled through molding or 3D printing of the CNF–PS–silica sol.

We compared the gelation in an EtOH/water ratio of 5:1 (v:v) with our completely
water-based and solvent-free method. The prepared hydrogels were tested with uniaxial
compression tests to evaluate their mechanical resistance (Figure S1 and Table S1). In
addition, the properties of respective dry gels were compared to study their specific sur-
face area, density, and porosity (Table S2). Cryogels [20] were prepared via freeze-drying
after solvent exchange to tBuOH [21]. This gives highly porous materials, which are very
similar to conventional aerogels prepared via supercritical CO2 (scCO2) drying. We se-
lected this approach, since it is more frequently used and easier to perform than drying
with scCO2, and the obtained composite cryogels featured comparable and even slightly
higher specific surface area values than supercritical CO2 dried samples (Table S2). Silica
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hydrogels—prepared according to our organic, solvent-free method—had significantly
higher compressive strength values of 22 kPa in comparison to the 13 kPa of samples
obtained using the EtOH/water mixture (Figure S1). The higher compressive strength
can be explained by the higher density of the sample produced in the organic, solvent-
free process. The main reasons for this effect are most probably the higher rates of the
condensation reactions for increasing water content [22], which lead to a larger size of
silica particles deposited on the BC structure as shown by scanning electron microscopy
(Figure S2). Similar observations have been also made in TEOS model systems, showing
that the aggregate/particle size grows with increasing water content during TEOS gela-
tion [23]. The larger particle size in the organic, solvent-free process explains its smaller
specific surface area (759 m2 g−1 vs. 897 m2 g−1) and lower porosity (Table S1). These
values are in the range of reported properties of BC silica composites [3]. In comparison to
previous approaches [3,4,13], no drying step of nanocellulose is required, and we were able
to directly use wet nanocellulose gels. To generate gels with high mechanical strength, we
used our organic, solvent-free approach in the subsequent CNF composite preparation.

We replaced BC with CNF to further increase the versatility of our method (Figure 1)
and allow the production of silica composite gels of arbitrary shape (Figure 1D,E). In
this process, TEOS was hydrolyzed in a CNF suspension in the presence of HCl as an
acidic catalyst for the preparation of CNF–silica gels or CNF in combination with soluble
polysaccharides (PS; methylcellulose (MC), starch) to obtain CNF–PS–Silica gels. After
complete hydrolysis (usually after stirring overnight), the respective sol (Figure 1B) can
be transferred into a mold or processed with an extrusion technique, such as 3D printing,
for shaping purposes. The addition of ammonia finally triggered the gelation of the silica
gels, and the gel network was densified and stiffened (causing gel shrinkage) through
curing/aging at 50 ◦C in water (Figure 1C,D).

The mechanical properties of the gels are compared to a BC–Silica gel (Figure 2 and
Table 1). Because of the already-strong gel network of native BC, the prepared BC–Silica
gels featured higher compressive strength than the CNF–Silica gel (22 kPa vs. 14 kPa).
Since our aim was the preparation of mechanically robust composite gels, we studied the
addition of two soluble polysaccharides—starch or MC—to the gel network to strengthen
it. The addition of MC slightly raised the compressive strength by approx. 10%, whereas
the starch addition almost doubled the compressive strength from 14 kPa (CNF–Silica gel)
to 26 kPa (CNF–Starch–Silica gel).

Table 1. Properties of CNF–silica gels and the influence of the addition of starch or methylcellulose
(MC). The standard deviation of the average compressive strengths is reported (n = 3).

Samples Density (g cm−3) Specific Surface Area (m2 g−1) Porosity (%) Compressive Strength * (kPa)

CNF–Silica 0.061 603 97.1 14 ± 1

CNF–MC–Silica 0.062 740 97.1 15 ± 2

CNF–Starch–Silica 0.065 625 96.9 26 ± 4

CNF 0.010 135 99.0 -

* Measurements were conducted from 0 to 30% strain, and the highest compressive stress value in this range was
defined as compressive strength.

Respective cryogels were prepared by freeze-drying, after solvent exchange to tBuOH,
for analytical purposes. Native CNF cryogels featured a specific surface area of 135 m2 g−1

and a porosity of 99% (Table 1), which is comparable to other values in the literature [24,25].
CNF–Silica gels had a much higher specific surface area of 603 m2 g−1 and density due to the
incorporation of the silica network (Figure 3B). MC and starch increased the densities and
enlarged the SSA. The increase in SSA was especially evident in the case of CNF–MC–Silica,
which increased from 603 m2/g (CNF–Silica) to 740 m2/g. As shown in Figure 3, the native
CNF network is covered with silica particles in the composite samples. The CNF network
structure is visible in the case of CNF–Silica and CNF–MC–Silica cryogels (Figure 3B,C), in
which individual fibrils are covered with silica particles. In contrast to that, CNF–Starch–
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Silica featured a very different cauliflower-like nanostructure (Figure 3D), which covered
nearly completely the fibrillar skeleton of CNF. The drastic change in nanostructure in the
case of CNF–Starch–Silica cryogels is in line with the higher density, lower porosity, and
increased compressive strength (Table 1).
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Figure 2. Mechanical properties of the prepared CNF–silica hydrogels and influence of the addition
of the soluble polysaccharides—starch or methylcellulose (MC)—on the compression behavior.
(A) Compression tests of the CNF–Silica hydrogels up to 30% strain (CNF–silica: dotted yellow line,
CNF–MC–Silica: green dashed line, and CNF–Starch–Silica: blue solid line) in comparison to bacterial
cellulose (BC) silica gel (dash-dotted gray line). (B) Comparison of the average compressive strengths
and their standard deviation of the samples. Highlighted differences are statistically significant
(* p < 0.04, ** p < 0.04, n = 3).
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Figure 3. Scanning electron micrographs of CNF (A), CNF–Silica (B), CNF–Methylcellulose–Silica
(C), and CNF–Starch–Silica (D) cryogels.

As summarized in Figure 1, our proposed method is straightforward, organic, solvent-
free, and enables the preparation of moldable CNF–silica gels of high compressive strength.
The prepared CNF–silica gels also featured large specific surface areas in the range of
603–740 m2 g−1.

Besides TEOS, alkoxysilanes are commercially available with a wide range of addi-
tional chemical functionalities, and those functional silanes were shown, e.g., to be suitable
for the functionalization of pristine CNFs [26–29]. The addition of chemical functional
groups onto the surface of the prepared composites would further increase their application
range and versatility. We tested the in situ modification of the CNF–Silica composites with
alkoxysilanes bearing thiol (Figure 4A1) and carboxylate groups (Figure 4A2).

Functional CNF–Silica gels were prepared with 0.3–0.7 mmol (3–8% functionalization de-
gree based on the total molar amount of TEOS) of the respective alkoxysilane (Figure 4A1,A2),
3-mercaptopropyl trimethoxysilane (MTMS), or N-[3-trimethoxysilyl)propyl] ethylenedi-
amine triacetic acid trisodium salt (3CTMS). In the following section, we focus on the
results of functional CNF–Silica hydrogels, this protocol can be also applied to the mechani-
cally robust polysaccharide-reinforced composites, CNF–MC–Silica, and CNF–Starch–Silica.
Since the sol–gel process of silica gels is largely dependent on the pH, the acidity/basicity
of the functional silane must be considered, e.g., an uncontrolled change of pH could
prevent gelation or cause uncontrolled gelation and the formation of isolated gelled lumps
(this has to be taken into account if the compatibility of our method to other functional
silanes is tested). The functional silanes were first added directly into the silica sol after the
TEOS hydrolysis step to avoid influences on the hydrolysis and early reaction of TEOS and
the functional silane. MTMS did not influence the pH and could be added into the silica
sol without any modification. Upon addition of MTMS, the gelation was triggered, as in
our standard protocol with ammonia, where we noted that no shrinkage occurred during
the aging step. A similar effect was observed in the literature in the case of hydrophobic
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silanes [30]. Due to the hydrophilicity of the thiol groups and their susceptibility to oxida-
tion, we assume that disulfide crosslinks are partially formed preventing shrinkage. We
proved the successful introduction of thiol groups into the composite with Ellman’s test,
which allows the quantitative detection of thiols [31]. The incorporated amount of thiols
was determined to be 1.3 µmol g−1 gel. Due to the high reactivity of these groups, they
can be post-modified with high efficiency using, e.g., thiol–epoxy [32] or thiol–ene [33] and
thiol–Michael [34] click chemistry.
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Figure 4. (A) Preparation of functional CNF–Silica hydrogels through the addition of either
3-mercaptopropyl trimethoxysilane (A1) or N-[3-trimethoxysilyl)propyl] ethylenediamine triacetic
acid trisodium salt (A2) to introduce either thiol or carboxylate structures onto the hydrogel. Car-
boxylated CNF–Silica gels were tested as adsorbers for Cu(II) ions (B) and methylene blue (C). Vials
in (B,C) contain (left to right): solutions before the addition of gels, non-functional CNF–Silica gel,
and carboxylated CNF–Silica gel.

Due to the basicity of 3CTMS (carboxylate form), the first tests were unsuccessful and
the addition of 3CTMS into CNF–Silica sol neutralized the medium, causing rapid, uncon-
trolled gelation. To avoid this, we adapted the method and added ammonia directly before
3CTMS. Thereby, the condensation rate was reduced, and we were able to produce stable
CNF–Silica gels functionalized with carboxylate groups. We tested these carboxylated
silica hydrogels in two different adsorber applications: the adsorption of copper(II) cations
and the adsorption of the cationic dye methylene blue. All adsorption experiments were
conducted for 8 days and the amount of adsorbed Cu(II) was determined with photometry.
The carboxylated CNF–Silica gel adsorbed up 0.58 mg Cu(II)/g of hydrogel, whereas the
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native CNF–Silica gel was able to bind only 0.04 mg/g (Figure 4B). This demonstrates a
higher adsorption capacity of the functional gel and proves as well the successful incorpo-
ration of the carboxylate groups. Furthermore, we tested the adsorption of methylene blue
(a 20 ppm test solution) as part of our qualitative experiments. Additionally, in this case
the dye adsorption capacity of the CNF–silica gel modified with 3CTMS was significantly
higher than that of the CNF–silica gel counterpart (Figure 4C).

4. Conclusions

In this contribution, we demonstrated that CNF–Silica hydrogels can be produced
straightforwardly with an organic, solvent-free process. In our process, no prior drying
step is required, and the CNF can be directly dispersed in the silica sol. Gelation is fi-
nally triggered through the addition of ammonia, and the samples can be easily shaped
through molding or other processing techniques suitable for CNFs. We further increased
the compressive strength of those hydrogels through the addition of soluble polysaccha-
rides. Significantly, the addition of starch was very promising and significantly increased
the compressive strength (26 kPa) while preserving the specific surface area of the gels.
Depending on the process, the specific surface area of the CNF–silica samples can be
tuned from 603 m2 g−1 to 740 m2 g−1. Finally, we showed that alkoxysilanes bearing
thiol and carboxylate groups can be incorporated to introduce functional groups onto the
composite gels.
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(dark blue line). Figure S2: Scanning electron micrographs of A) the sample BC–Silica water/EtOH
(1:5, v:v) in comparison to B) BC–silica water.
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