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Abstract
Background  Severe heart failure (HF) has a higher mortality during vulnerable period while targeted predictive tools, 
especially based on drug exposures, to accurately assess its prognoses remain largely unexplored. Therefore, this study 
aimed to utilize drug information as the main predictor to develop and validate survival models for severe HF patients 
during this period.

Methods  We extracted severe HF patients from the MIMIC-IV database (as training and internal validation cohorts) as 
well as from the MIMIC-III database and local hospital (as external validation cohorts). Three algorithms, including Cox 
proportional hazards model (CoxPH), random survival forest (RSF), and deep learning survival prediction (DeepSurv), 
were applied to incorporate the parameters (partial hospitalization information and exposure durations of drugs) for 
constructing survival prediction models. The model performance was assessed mainly using area under the receiver 
operator characteristic curve (AUC), brier score (BS), and decision curve analysis (DCA). The model interpretability was 
determined by the permutation importance and Shapley additive explanations values.

Results  A total of 11,590 patients were included in this study. Among the 3 models, the CoxPH model ultimately 
included 10 variables, while RSF and DeepSurv models incorporated 24 variables, respectively. All of the 3 models 
achieved respectable performance metrics while the DeepSurv model exhibited the highest AUC values and relatively 
lower BS among these models. The DCA also verified that the DeepSurv model had the best clinical practicality.

Conclusions  The survival prediction tools established in this study can be applied to severe HF patients during 
vulnerable period by mainly inputting drug treatment duration, thus contributing to optimal clinical decisions 
prospectively.

Development and validation of novel 
interpretable survival prediction models 
based on drug exposures for severe heart 
failure during vulnerable period
Yu Guo1,2,3†, Fang Yu1†, Fang-Fang Jiang1,2†, Sun-Jun Yin1†, Meng-Han Jiang1,2, Ya-Jia Li1,2, Hai-Ying Yang1,2,  
Li-Rong Chen1,2, Wen-Ke Cai4* and Gong-Hao He1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-1274-3130
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05544-6&domain=pdf&date_stamp=2024-8-5


Page 2 of 10Guo et al. Journal of Translational Medicine          (2024) 22:743 

Background
Heart failure (HF) is the leading cause of cardiovascular 
morbidity and mortality, which becomes a major threat 
to human health and social development and causes a 
series of serious medical burdens [1, 2]. Despite massive 
investments devoted to the prevention and treatment of 
HF worldwide [3], HF patients still had a higher rate of 
hospitalization and may progress to severe HF that was 
prone to admission to the intensive care unit (ICU) [4, 
5]. Although the related symptoms of HF patients might 
be quickly alleviated by optimal treatment during hospi-
talization, patients were still reported to have up to 15% 
of death within the first 3 months of discharge, which 
was commonly called the vulnerable period of HF [6]. In 
addition, it was also shown that the risk of all-cause death 
in HF patients at this stage was increased by 4 to 6 times 
compared with HF patients who were not hospitalized 
[7]. According to these findings, an increasing number of 
scholars currently believe that shifting the focus appro-
priately to HF patients during their vulnerable post-dis-
charge period and strengthening their risk assessment, 
monitoring, management, and treatment could be the 
most effective and cost-effective strategy to address the 
public health and economic burdens associated with HF 
[6, 7]. Therefore, considering that patients with severe HF 
admitted to ICU have worse prognoses during the vul-
nerable period, ideal tools that can precisely predict sur-
vival still need to be developed urgently.

Currently, several scoring systems, such as the Sequen-
tial Organ Failure Assessment (SOFA) and the Acute 
Physiology Score (APS III), are valuable for assessing 
the condition of ICU patients [8, 9]. However, these sys-
tems have limited predictive power and lack pertinence 
and sensitivity in evaluating the prognosis of severe HF 
patients [10, 11]. Furthermore, although several new 
models have been developed to predict the prognoses 
of severe HF patients, they either lacked the prediction 
of mortality risk during the vulnerable period [12, 13] 
or contained multiple complex parameters that might 
eventually overlook the significant effects of drug therapy 
on the prognoses of HF patients [14–17]. From the per-
spective of clinical application, compared to the predic-
tors that predominantly relied on devices, drug therapy 
information may be more accessible and more conve-
nient for most users. Besides, since drug therapy is an 
essential means to help HF patients stabilize through the 
vulnerable period, including drug information as predic-
tors is very likely to reduce certain errors regarding the 
predicted results and might also provide a reference for 
clinical decision-makers to formulate medication strate-
gies for patients after discharge. Therefore, it is necessary 

to construct a simple and easy-to-use death risk predic-
tion model that includes drug parameters for severe HF 
patients during the vulnerable period, which, however, 
has not been performed so far as we know.

In this study, we aimed to develop and validate mod-
els that mainly consisted of drug exposures based on 
machine learning (ML) and deep learning (DL) algo-
rithms for predicting survival during the vulnerable 
period in severe HF patients. Moreover, we performed 
interpretability analyses on the models and evaluated 
the contribution of variables to prediction in combina-
tion with clinical significance, hoping to provide fur-
ther practical prognostic prediction tools for severe HF 
management.

Methods
Date source
This study was conducted based on the Medical Infor-
mation Mart for Intensive Care III v1.4 and IV v2.0, a 
publicly available database comprising medical data of 
patients who admitted to ICUs of the Beth Israel Deacon-
ess Medical Center [18, 19]. The use of the database was 
approved by the institutional review boards of the Mas-
sachusetts Institute of Technology (MIT), and informed 
consent was not required as all data were de-identified. 
The principal investigators accessed the databases after 
completing the required courses and assessments (cer-
tificate numbers: 38884075 and 44408919). We random-
ized eligible HF patients from MIMIC-IV database into 
the training and internal validation cohorts in a 7:3 ratio, 
with MIMIC-III as the external validation cohort A. Fur-
thermore, we also retrospectively included HF patients 
admitted to the 920th Hospital of Joint Logistics Support 
Force data from January 2020 to March 2023 as the exter-
nal validation cohort B, which was approved by the ethics 
committee of the 920th Hospital.

This study followed the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) statement for reporting multi-
variable prediction models development and validation 
[20].

Study population
The research subjects were identified according to the 
ninth or tenth revision of International Classification of 
Diseases (ICD-9/10) code. Patients with the ICD diagno-
ses sequence of more than 3 were excluded. For patients 
with multiple hospital admissions, only data from their 
first admission were included. Besides, additional exclu-
sion criteria are as follows: (1) age < 18 years old, (2) 
length of hospital or ICU stay < 24  h, (3) suffering from 
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malignant cancer, and (4) unrealistic hospitalization 
information.

Data extraction and preprocessing
The following information was extracted: demograph-
ics information, hospital and ICU length of stay (LOS), 
duration of medications, comorbidities, mechanical 
ventilation (MV), and renal replacement therapy (RRT). 
Some records within the first 24  h after ICU admission 
were collected, including vital signs, SOFA, APS III, and 
urine output. Drug classification was determined by the 
WHO-Anatomical Therapeutic and Chemical (ATC). 
Only systemic administration was reserved for each kind 
of drug, excluding local administration (eye, ear, topical, 
etc.). The exposure duration of medication was calcu-
lated by the start date and end date with repeated use of 
similar classes of drug on the same day not cumulatively 
counted.

The missing data were < 25% and were imputed by 
multiple imputations. In order to eliminate the dimen-
sion and ensure the reliability of data, indicators 
need to be normalized. The formula x*=x-min*0.99

max-min  was 
selected to avoid zero minimum values in partial con-
tinuous variables (age, body mass index [BMI], and 
LOS) [21]. For the exposure duration of drug, the for-
mulax* = x

length of hospital stay was selected.

Model development and evaluation
The predictive factors included durations of drugs, hospi-
tal and ICU LOS, and demographics information. Three 
algorithms were chosen: Cox Proportional-Hazards 
model (CoxPH), Random Survival Forests (RSF), and 
Deep Learning Survival Neural Network (DeepSurv). 
Firstly, Spearman’s correlation coefficients were calcu-
lated to exclude variables with strong correlations. The 
LASSO method was applied to avoid CoxPH model over-
fitting. The method reduces the coefficients of irrelevant 
variables to zero while retaining important variables [22]. 
Meanwhile, univariate and multivariate Cox regression 
were performed for reference. Each contribution of pre-
dictors of the CoxPH model was measured as the par-
tial chi-square statistic minus the degrees of freedom of 
predictors.

The RSF is an ensemble method, in which multiple 
decision trees are trained on a random sample of obser-
vations from the study data [23]. Their prediction is 
combined by using a mean value or majority vote. The 
DeepSurv is a feed-forward neural network method 
based on the Cox proportional hazards model, which was 
proven to perform well without prior assumptions on the 
risk function [24]. These 2 methods had more efficient 
data processing capabilities; thus, variable pre-screen-
ing was not carried out. For hyperparameter tuning, the 

optimal parameter combination of these models was 
determined by random search [25].

The predictive accuracy and discriminative ability of 
models were determined by the area under the receiver 
operating characteristics curves (AUC) and cumulative/
dynamic time-dependent AUC. Brier scores (BS) were 
evaluated for assessing calibration, which measured the 
mean squared error between the actual survival and the 
estimated probabilities. Then we integrated the BS to get 
the integrated Brier score (IBS). A lower score indicates 
better calibration and only models with scores below 0.25 
are deemed useful in practice. We evaluated the clinical 
effectiveness of models by decision curve analysis (DCA), 
which was reported to have certain advantages over other 
evaluating tools [26].

To enable ML model interpretability, permutation 
importance and Shapley additive explanations (SHAP) 
analyses were implemented in this study. Permutation 
importance is calculated through the increase in the pre-
diction error of models after randomly shuffling each 
feature [27]. The latter uses a concept from cooperative 
game theory to assign each feature importance score and 
rank them based on the impact of features on model pre-
dictions [28].

Statistical analysis
Continuous variables were described as mean and 
standard-deviation (SD) values or median and inter-
quartile-range (IQR) values depending on whether they 
conformed to a normal distribution. Categorical variables 
were summarized as frequency and percentage values. P 
values of less than 0.05 were considered statistically sig-
nificant. The R (version 4.1.2) software was used for data 
preprocessing. The models were implemented in Python 
(version 3.6).

Results
Baseline characteristics
After applying the inclusion criteria and data preprocess-
ing (Fig. 1), 6873 severe HF patients were identified from 
the MIMIC-IV database, with 4811 and 2062 in training 
and internal validation cohorts, respectively. For exter-
nal validation cohorts, we included 4463 and 254 par-
ticipants from the MIMIC-III database and the 920th 
Hospital, respectively. The baseline clinical characteris-
tics were listed in Table 1 and Supplementary Table S1. 
The proportions of gender were relatively balanced in 
the 3 cohorts. The patients were generally older, and the 
median ages of the 3 cohorts were 75 years (IQR 65–84 
years), 73 years (IQR 62–81 years), and 72 years (IQR 
62–78 years), respectively. For medication treatment dur-
ing hospitalization, drugs with higher average days of use 
in all 3 cohorts were generally similar, mainly including β 
blockers, diuretics, antiplatelet agents, and THMG-CoA 
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Table 1  Demographic characteristics and drug exposures situation of participants
Characteristics MIMIC-IV

(Training/Internal validation)
N = 6873

MIMIC-III
(External validation A)
N = 4463

920th Hospital
(External validation B)
N = 254

Age, median (IQR), years 75.0 (65.0–84.0) 73.0 (62.0–81.0) 72.0 (62.0–78.0)
Gender, n (%), male 3700 (53.8) 2487 (55.7) 144 (56.7)
BMI, median (IQR), kg/m2 28.7 (24.5–33.7) 28.0 (24.2–32.8) 23.3 (20.5–25.7)
Drug exposures, mean (SD), days
  ACEIs 2.1 ± 3.6 3.0 ± 4.6 1.5 ± 3.5
  ARBs 0.7 ± 2.2 0.5 ± 1.9 9.1 ± 8.3
  β blockers 6.8 ± 6.4 7.3 ± 7.1 11.9 ± 8.3
  Cardiac glycosides 0.8 ± 3.0 1.1 ± 3.6 1.6 ± 4.1
  Diuretics 6.4 ± 6.0 6.7 ± 6.8 11.5 ± 8.4
  Nitrates 1.7 ± 3.0 2.8 ± 4.3 1.3 ± 2.0
  HMG-CoA reductase inhibitors 6.6 ± 7.2 5.7 ± 6.9 11.4 ± 8.9
  CCBs 1.9 ± 4.1 1.7 ± 4.0 1.3 ± 3.8
  PDEs inhibitors 0.3 ± 1.5 0.5 ± 1.9 1.7 ± 3.8
  PPIs 4.7 ± 7.1 6.0 ± 8.2 7.6 ± 8.1
  H2RAs 2.3 ± 4.3 2.4 ± 4.2 0.0 ± 0.0
  Antibiotics 4.8 ± 5.8 5.8 ± 7.2 5.8 ± 6.4
  Antiplatelet agents 6.9 ± 7.2 7.3 ± 7.7 10.5 ± 8.7
  Insulin 5.8 ± 7.2 7.3 ± 8.1 0.6 ± 1.3
  Heparin 7.0 ± 6.6 7.0 ± 7.6 4.6 ± 4.9
  Adrenergic/dopaminergic agents 2.0 ± 4.0 2.4 ± 4.3 4.0 ± 6.7
  Glucocorticoids 1.2 ± 3.8 1.4 ± 4.4 2.2 ± 2.6
  Vitamin K antagonists 2.3 ± 4.5 2.1 ± 3.9 0.1 ± 1.1
Hospital LOS, median (IQR), days 8.0 (6.0–13.0) 9.0 (6.0–14.0) 13.0 (9.0–18.0)
ICU LOS, median (IQR), days 3.0 (2.0–5.0) 4.0 (3.0–6.0) 5.0 (3.0-9.8)
Abbreviations ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin receptor blockers; CCBs, calcium channel blockers; PDEs inhibitors, 
phosphodiesterase inhibitors; PPIs, proton pump inhibitors; H2RAs, histamine H2 receptor antagonists; LOS, length of stay

Fig. 1  Flowchart of study inclusion
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reductase inhibitors. The frequencies of the use of related 
drugs were shown in Supplementary Table S2.

Development and validation of the survival prediction 
models
In this study, we used training cohort to generate and 
train 3 models (CoxPH, RSF, and DeepSurv) for survival 
prediction. A total of 24 variables, including 6 personal 
information variables (age, gender, BMI, hospital and 
ICU LOS, and ethnicity) and 18 types of drug expo-
sures situations, were selected for constructing models. 
Spearman’s analysis demonstrated no strong correlation 
(the absolute value of correlation coefficient < 0.7), and 
the corresponding heatmap was shown in Supplemen-
tary Figure S1. For variable-screening, 10 variables were 
selected by the LASSO analysis and the related plots 
were displayed in Supplementary Figure S2. Meanwhile, 
the multivariate Cox analysis included 18 variables with 
P < 0.1 in univariate analysis (Table S3 in Supplement). 
Based on these results, 10 independent predictive vari-
ables, including age, BMI, ICU LOS, and exposure 
duration of angiotensin-converting enzyme inhibitors 
(ACEIs), angiotensin receptor blockers (ARBs), β block-
ers, nitrates, antibiotics, Vitamin K antagonists, and 
histamine H2 receptor antagonists (H2RAs), eventually 
entered the CoxPH model. For the development of RSF 
and DeepSurv models, 24 features were fully incorpo-
rated. After a 100-repeated random search with 5-fold 
cross-validation, we chose those parameters showing the 

highest average C-index in cross-validation as the opti-
mal parameters.

The validation results showed that all the 3 models 
exhibited high AUC values for predicting the survival of 
severe HF patients during the vulnerable period regard-
less of the cohort (Fig.  2). The time-dependent AUCs 
exceeded 0.7, indicating that these 3 models had depend-
able abilities at predicting long-term and short-term sur-
vival status. In internal and external validation cohort A 
and B, the DeepSurv model (mean AUC = 0.854, 0.883, 
and 0.916) outperformed RSF (mean AUC = 0.810, 0.838, 
and 0.837) and CoxPH (mean AUC = 0.736, 0.746, and 
0.796) models at most time points. The confusion matrix 
and several relevant performance indicators for 30-, 60 
-, and 90-day survival predictions of the 3 models were 
shown in Supplementary Table S4, Figure S3 and S4. The 
corresponding prediction error curves representing the 
BS (all less than 0.25) over time were depicted in Fig. 3, 
demonstrating that the 3 models had good discrimina-
tion abilities. After integration, the IBS of DeepSurv 
model was also superior to that of CoxPH and RSF model 
in the internal and external validation cohort A (Fig. 3). 
For clinical utility, the net benefit of the 3 models was 
greater over the threshold probabilities range in 2 exter-
nal validation cohorts, with the DeepSurv model having 
the greatest net benefit (Figure S5 in Supplement). As the 
DeepSurv model exhibited the most effective predictive 
performance, we then also conducted subgroup analyses 
to evaluate its model performance, which further con-
firmed that this model had ideal predictive performances 

Fig. 3  Prediction error curves show the brier score for CoxPH, RSF, and DeepSurv models at each time point. As a benchmark, a useful model will have 
a Brier score below 0.25

 

Fig. 2  Time-dependent area under the curve (AUC) for CoxPH, RSF, and DeepSurv models
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in various kinds of subpopulations (Supplementary mate-
rials Table S5).

Feature importance
The contribution of each predictor of the completed 
CoxPH model was visualized by scatter diagram (Sup-
plementary Figure S6). Assessing variable permutation 
importance identified features important to prediction 
accuracy of DeepSurv and RSF models, with a more 
than 1% mean reduction in C-index with permutation 
of age, ICU and hospital LOS, BMI, and exposure dura-
tion of adrenergic/dopaminergic agents, ACEIs, nitrates, 
antibiotics, β blockers, H2RAs, Vitamin K antagonists, 
HMG-CoA reductase inhibitors, heparin, diuretics, and 
antiplatelet agents (Fig. 4). The feature importance rank-
ing based on this method for the 2 models was listed in 
Supplementary Table S4. Furthermore, SHAP was used 
to explain the best DeepSurv model, which provided 
additional information regarding the prognosis direction 
of features. The summarized plots of positive or negative 
impact of factors were provided and clinical features were 
ranked by the average absolute value of SHAP in Fig. 5. 
It was observed that age was the top-ranked predictive 
variable in the 3 models, followed by ICU LOS, and that 
these 2 features had negative SHAP values, which drove 
the prediction toward survival and were strongly con-
sistent with clinical consensus that advanced age was a 
well-known risk factor for cardiovascular events [29]. 
Likewise, ICU LOS is also usually used as a key refer-
ence to judge the condition of severe patients and there-
fore has a great prediction value for survival prognoses 
in practice. On the contrary, some factors with positive 
SHAP values also supported survival prediction, such as 
longer hospital LOS and exposure duration of ACEIs, β 
blockers, and H2RAs, which are all conducive to the bet-
ter improvement of HF symptoms. Overall, all models 
had comparable variable importance profiles, suggesting 
that these models mainly based on drug exposures were 
reasonable and promising.

Discussion
To the best of our knowledge, this is the first study to 
develop and validate a series of drug-based clinical pre-
diction models for predicting the survival of severe HF 
patients. The extensive sample size and reliable artificial 
intelligence algorithm enabled these models to be more 
universal and more accurate in predicting the prog-
noses of patients. Our results showed that the models 
constructed separately by the 3 algorithms had satisfac-
tory prediction performance. Moreover, the drug-based 
DeepSurv model was significantly better than the CoxPH 
and RSF models in terms of clinical utility. Overall, our 
study innovatively explored the main use of drug regi-
mens to predict prognoses for severe HF patients and 

provided a new reference path for physicians to make 
clinical decision management.

As a particular period of HF, the vulnerable phase is a 
transition stage from acute decompensated HF (hospi-
talization) to chronic stable HF and hence the treatment 
process in and out of hospital may remarkably impact the 
disease outcome at this stage. Besides, previous studies 
showed that the underlying pathophysiological mecha-
nism for HF patients with poor prognoses in vulnerable 
phase was typically related to hemodynamic congestion 
[30]. In this regard, the application of drugs during hos-
pitalization is one of the primary treatments for early 
improvement of related hemodynamic symptoms. In fact, 
the 2021 ESC HF Guidelines have already recommended 
that oral medication should be given to hospitalized HF 
patients as early as possible and optimized for multi-path 
therapy based on evidence to relieve persistent signs of 
congestion [31]. As a result, relevant drug exposures in 
hospitals are of great value in reducing the occurrence 
of adverse events during the vulnerable period and it is 
also feasible to use them as the main predictors to evalu-
ate prognoses of HF patients. In addition, comparing 
with models that consisted of laboratory indicators or 
imaging data, models constructed by hospitalized drug 
exposures are not susceptible to various factors (e.g., 
instrument and human, etc.), which will avoid prediction 
errors caused by instability of certain indicators. Mean-
while, this kind of model will also significantly save time 
and cost, especially for patients in ICU who have rela-
tively more mobility difficulties and higher medical costs. 
Therefore, the establishment of this series of models may 
be a kind of breakthrough of traditional models, which 
can assist clinical decision-makers in optimizing drug 
treatment strategies and will also provide novel ideas for 
predicting prognoses of HF as well as other diseases.

Recently, ML algorithms, especially DL algorithms, 
were widely used in survival prediction models with 
superior modeling capability and prediction performance 
[32–34]. Compared with the traditional CoxPH model, 
these models are able to identify complex feature net-
works more comprehensively and maximize the value of 
each factor during model construction, which is hence 
not prone to erroneous prediction results [35]. Given 
this, the RSF and DeepSurv models were constructed 
in the present study, which respectively contained 24 
parameters for primary personal data and medication 
information. The comparison results of the 3 models 
showed that DeepSurv model had the best discrimina-
tion and calibration in internal and external validations, 
followed by RSF model, which further proved the robust-
ness of the abovementioned learning algorithms and 
suggested that both models might have a specific scope 
of application. However, given the poor clinical util-
ity of RSF model in external validation cohorts A and B, 
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this kind of model was more likely to be susceptible to 
the structural characteristics of the population. There-
fore, the DeepSurv model would be more preferentially 
recommended for patients meeting their conditions 
of use. While for the current CoxPH model, although 
only 10 parameters were included, moderate predictive 
accuracy (0.7 < AUC < 0.8) was still achieved in different 

populations with disparate sociodemographic character-
istics and risk profiles, which would also have a particular 
range of application. In this regard, CoxPH model may 
be recommended for survival prediction with patients 
with severe situations or limited available drug exposure 
information. In brief, these models are respectively appli-
cable to different patient groups, which provide a new 

Fig. 4  Heatmap of feature importance for RSF and DeepSurv models. The values are expressed as a percentage reduction in the C-index after the value 
of a feature has been replaced by random numbers. Higher values suggest that a feature is more important in influencing the predictive accuracy of the 
corresponding models
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approach for precise management of HF patients. Con-
sidering the convenience of users, web page and software 
presentation will be one of our future research directions 
after the model is well calibrated.

In the following interpretability analyses, we observed 
that, apart from certain basic personal characteristics, 
features regarding traditional anti-HF drug exposures 
were of crucial importance in artificial intelligence mod-
els, which further confirmed the rationality of the present 
models as well as our viewpoint regarding the necessity 
to integrate drug exposures parameters into construc-
tion of survival prediction models. Of note, we also 
observed that H2RAs, which were generally supposed 
to be unrelated to HF treatment, still obtained moderate 
weight and were even relatively comparable to β receptor 
antagonists in both artificial intelligence models (Figs. 4 
and 5). These interesting findings strongly indicated 
that H2RAs might play important roles in the treatment 
of HF. This is quite reasonable as cardiac histamine H2 
receptor shares a common downstream signaling path-
way with β1-receptor and has long been suggested to 
exert non-benign or even negative effects on cardiovas-
cular system according to both previous experimental 
and clinical studies [36–39]. Moreover, our recent inves-
tigations further demonstrated that H2RAs exposure was 
associated with a lower mortality in patients with various 
kinds of cardiovascular diseases (including HF) and also 

confirmed the safety profile of H2RAs in cardiovascu-
lar system [40–43]. In this regard, considering the rela-
tively significant predictive value of H2RAs exposure on 
HF survival prediction in the present study and the rela-
tively strong adverse reactions and contraindications of 
β receptor antagonists, more attention should be paid to 
the potential treatment effect of H2RAs on HF patients 
in future studies.

The present study has several intrinsic limitations. 
First, given that this study was a retrospective analysis, 
the authenticity of the results might be influenced by 
inherent wrong and missing data. Second, it was impos-
sible to collect the latest features that influenced HF 
mortality, such as NT-proBNP and Sacubitril/valsartan, 
due to the early establishment of the database. There-
fore, further studies should consider adding the latest 
guidance-recommended drug to the model to enhance 
predictive power. Third, the dosages of drug were not fur-
ther extracted because of the lack of comprehensive drug 
records in the MIMIC database. Fourth, MIMIC-III and 
IV collected patients from the same hospital at different 
times, which might somewhat reduce the generalizabil-
ity of the present models. Although cohort from a local 
hospital was employed for the second external validation, 
the included sample size was still relatively small. These 
limitations should be addressed in future investigations.

Fig. 5  Interpreting the results of DeepSurv model using SHAP explainer. Bar plots of mean absolute SHAP values (A-C): ranking of feature importance 
indicated by SHAP. The matrix plot depicts the importance of each covariate in the development of the final predictive model. SHAP summary plots for 
the top 20 clinical features (D-F): the higher the SHAP value of a feature, the higher the probability of survival development. Each line represents a feature, 
and the abscissa is the SHAP value. Red dots represent higher feature values, and blue dots represent lower feature values
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Conclusions
In conclusion, the results of this study show that 3 dif-
ferent algorithms models based on drug exposures accu-
rately identify the survival status of patients with severe 
HF during vulnerable period and that drug exposures 
as significant predictors are feasible and have consider-
able predictive value. Additionally, interpretive analysis 
comprehensively reveals the contribution of drug use to 
HF outcome prediction. Our research innovatively gen-
erates convenient and practical predictive tools for clin-
ics, which will contribute to improving the individualized 
treatment of severe HF patients and provide direction for 
subsequent research on potential relationship between 
related drugs and HF.

Abbreviations
HF	� Heart failure
ICU	� Intensive care unit
SOFA	� Sequential Organ Failure Assessment
APS III	� Acute Physiology Score
ML	� Machine learning
DL	� Deep learning
MIT	� Massachusetts Institute of Technology
TRIPOD	� Individual Prognosis or Diagnosis
ICD	� International Classification of Disease
LOS	� Length of stay
MV	� Mechanical ventilation
RRT	� Renal replacement therapy
ATC	� Anatomical Therapeutic and Chemical
BMI	� Body mass index
CoxPH	� Cox proportional hazards model
RSF	� Random survival forest
DeepSurv	� Deep learning survival prediction
AUC	� Area under the receiver operating characteristics curves
BS	� Brier scores
IBS	� Integrated Brier score
DCA	� Decision curve analysis
SHAP	� Shapley additive explanations
SD	� Standard-deviation
IQR	� Interquartile-range
ACEI	� Angiotensin-converting enzyme inhibitor
ARBs	� Angiotensin receptor blockers
H2RAs	� Histamine H2 receptor antagonists

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12967-024-05544-6.

Supplementary Material 1

Acknowledgements
The authors wish to acknowledge the MIMIC database and the 920th Hospital 
for providing clinical data for this study. The interpretation and reporting of 
these data are the sole responsibility of the authors.

Author contributions
YG, FY, FFJ, and GHH contributed to the conception or design of the work. FY, 
SJY, WKC, and YJL contributed to the acquisition and analysis of data for the 
work. MHJ, HYY, and LRC are responsible for the interpretation of data. YG and 
FFJ drafted the manuscript. YG and GHH critically revised the manuscript. All 
authors read and approved the final manuscript.

Funding
This study was supported by Grants from the National Science Foundation 
of China (No. 81960664), the Applied Basic Research Program Yunnan 

Province of China (Joint Special Project of Kunming Medical University) (No. 
202101AY070001-300 and 202401AY070001-367), and the 2024 Young and 
Middle-aged Academic and Technical Leaders Reserve Talent Project of 
Yunnan Province (No. 202405AC350037).

Data availability
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The MIMIC database was approved by the Massachusetts Institute of 
Technology (Cambridge, MA) and Beth Israel Deaconess Medical Center 
(Boston, MA), and consent was obtained for the original data collection. 
Additionally, the institutional review board (IRB) of 920th Hospital also 
approved our study and waived the need for informed consent due to the 
retrospective nature of this study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Clinical Pharmacy, The 920th Hospital of Joint Logistics 
Support Force, 212 Daguan Rd, Kunming 650032, China
2College of Pharmacy, Dali University, Dali 671000, China
3Yunnan Baiyao Group Limited Ltd, Kunming 650500, China
4Department of Cardiothoracic Surgery, The 920th Hospital of Joint 
Logistics Support Force, 212 Daguan Rd, Kunming 650032, China

Received: 8 January 2024 / Accepted: 29 July 2024

References
1.	 Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, Grupper A, et al. Burden 

of heart failure and underlying causes in 195 countries and territories 
from 1990 to 2017. Eur J Prev Cardiol. 2021;28(15):1682–90. https://doi.
org/10.1093/eurjpc/zwaa147.

2.	 Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, 
et al. The global health and economic burden of hospitalizations for heart 
failure: lessons learned from hospitalized heart failure registries. J Am Coll 
Cardiol. 2014;63(12):1123–33. https://doi.org/10.1016/j.jacc.2013.11.053.

3.	 Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global eco-
nomic burden of heart failure. Int J Cardiol. 2014;171(3):368–76. https://doi.
org/10.1016/j.ijcard.2013.12.028.

4.	 Metkus TS, Lindsley J, Fair L, Riley S, Berry S, Sahetya S, et al. Quality of heart 
failure care in the Intensive Care Unit. J Card Fail. 2021;27(10):1111–25. 
https://doi.org/10.1016/j.cardfail.2021.08.001.

5.	 Van Esbroeck ACM, Varga ZV, Di X, van Rooden EJ, Tóth VE, Onódi Z, et al. 
Activity-based protein profiling of the human failing ischemic heart reveals 
alterations in hydrolase activities involving the endocannabinoid system. 
Pharmacol Res. 2020;151:104578. https://doi.org/10.1016/j.phrs.2019.104578.

6.	 Greene SJ, Fonarow GC, Vaduganathan M, Khan SS, Butler J, Gheorghiade M. 
The vulnerable phase after hospitalization for heart failure. Nat Rev Cardiol. 
2015;12(4):220–9. https://doi.org/10.1038/nrcardio.2015.14.

7.	 Solomon SD, Dobson J, Pocock S, Skali H, McMurray JJ, Granger CB, et al. Can-
desartan in Heart failure: Assessment of reduction in mortality and morbidity 
(CHARM) investigators. Influence of nonfatal hospitalization for heart failure 
on subsequent mortality in patients with chronic heart failure. Circulation. 
2007;116(13):1482–7. https://doi.org/10.1161/CIRCULATIONAHA.107.696906.

8.	 Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. 
The SOFA (Sepsis-related Organ failure Assessment) score to describe organ 
dysfunction/failure. On behalf of the Working Group on Sepsis-related prob-
lems of the European Society of Intensive Care Medicine. Intensive Care Med. 
1996;22(7):707–10. https://doi.org/10.1007/BF01709751.

https://doi.org/10.1186/s12967-024-05544-6
https://doi.org/10.1186/s12967-024-05544-6
https://doi.org/10.1093/eurjpc/zwaa147
https://doi.org/10.1093/eurjpc/zwaa147
https://doi.org/10.1016/j.jacc.2013.11.053
https://doi.org/10.1016/j.ijcard.2013.12.028
https://doi.org/10.1016/j.ijcard.2013.12.028
https://doi.org/10.1016/j.cardfail.2021.08.001
https://doi.org/10.1016/j.phrs.2019.104578
https://doi.org/10.1038/nrcardio.2015.14
https://doi.org/10.1161/CIRCULATIONAHA.107.696906
https://doi.org/10.1007/BF01709751


Page 10 of 10Guo et al. Journal of Translational Medicine          (2024) 22:743 

9.	 Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, et al. SAPS 
3 investigators. SAPS 3–From evaluation of the patient to evaluation of the 
intensive care unit. Part 2: development of a prognostic model for hospital 
mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–55. https://
doi.org/10.1007/s00134-005-2763-5.

10.	 Rapsang AG, Shyam DC. Scoring systems in the intensive care unit: a 
compendium. Indian J Crit Care Med. 2014;18(4):220–8. https://doi.
org/10.4103/0972-5229.130573.

11.	 Sekulic AD, Trpkovic SV, Pavlovic AP, Marinkovic OM, Ilic AN. Scoring systems 
in assessing survival of critically ill ICU patients. Med Sci Monit. 2015;21:2621–
9. https://doi.org/10.12659/MSM.894153.

12.	 Ma H, Li D, Zhao J, Li W, Fu J, Li C. HR-BGCN: Predicting readmission for heart 
failure from electronic health records. Artif Intell Med. 2024;150:102829. 
https://doi.org/10.1016/j.artmed.2024.102829.

13.	 Pishgar M, Theis J, Del Rios M, Ardati A, Anahideh H, Darabi H. Prediction of 
unplanned 30-day readmission for ICU patients with heart failure. BMC Med 
Inf Decis Mak. 2022;22(1):117. https://doi.org/10.1186/s12911-022-01857-y.

14.	 Gao Z, Liu X, Kang Y, Hu P, Zhang X, Yan W, et al. Improving the Prognostic 
Evaluation Precision of Hospital Outcomes for Heart failure using admission 
notes and clinical Tabular Data: Multimodal Deep Learning Model. J Med 
Internet Res. 2024;26:e54363. https://doi.org/10.2196/54363.

15.	 Zhou Z, Liu Q, Zheng M, Zuo Z, Zhang G, Shi R, et al. Comparative study 
on the predictive value of TG/HDL-C, TyG and TyG-BMI indices for 5-year 
mortality in critically ill patients with chronic heart failure: a retrospec-
tive study. Cardiovasc Diabetol. 2024;23(1):213. https://doi.org/10.1186/
s12933-024-02308-w.

16.	 Luo C, Zhu Y, Zhu Z, Li R, Chen G, Wang Z. A machine learning-based risk 
stratification tool for in-hospital mortality of intensive care unit patients 
with heart failure. J Transl Med. 2022;20(1):136. https://doi.org/10.1186/
s12967-022-03340-8.

17.	 Li F, Xin H, Zhang J, Fu M, Zhou J, Lian Z. Prediction model of in-hospital 
mortality in intensive care unit patients with heart failure: machine 
learning-based, retrospective analysis of the MIMIC-III database. BMJ Open. 
2021;11(7):e044779. https://doi.org/10.1136/bmjopen-2020-044779.

18.	 Yang J, Li Y, Liu Q, Li L, Feng A, Wang T, et al. Brief introduction of medical 
database and data mining technology in big data era. J Evid Based Med. 
2020;13(1):57–69. https://doi.org/10.1111/jebm.12373.

19.	 Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. 
MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 
2023;10(1):1. https://doi.org/10.1038/s41597-022-01899-x.

20.	 Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a mul-
tivariable prediction model for individual prognosis or diagnosis (TRIPOD): 
the TRIPOD statement. BMJ. 2015;350:g7594. https://doi.org/10.1136/bmj.
g7594.

21.	 Guo F, Zhu X, Wu Z, Zhu L, Wu J, Zhang F. Applications of machine learn-
ing in the survival prediction and classification of sepsis: coagulation and 
heparin usage matter. J Transl Med. 2022;20(1):265. https://doi.org/10.1186/
s12967-022-03469-6.

22.	 Tibshirani R. Regression shrinkage and selection via the LASSO. J Royal Statist 
Soc. 1996;73:273–82. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

23.	 Taylor JM. Random Survival forests. J Thorac Oncol. 2011;6(12):1974–5. 
https://doi.org/10.1097/JTO.0b013e318233d835.

24.	 Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: 
personalized treatment recommender system using a Cox proportional 
hazards deep neural network. BMC Med Res Methodol. 2018;18(1):24. https://
doi.org/10.1186/s12874-018-0482-1.

25.	 Park SJ, Cho KJ, Kwon O, Park H, Lee Y, Shim WH, et al. Development and 
validation of a deep-learning-based pediatric early warning system: a 
single-center study. Biomed J. 2022;45(1):155–68. https://doi.org/10.1016/j.
bj.2021.01.003.

26.	 Mogensen UB, Ishwaran H, Gerds TA. Evaluating Random Forests for Survival 
Analysis using Prediction Error curves. J Stat Softw. 2012;50(11):1–23. https://
doi.org/10.18637/jss.v050.i11.

27.	 Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a cor-
rected feature importance measure. Bioinformatics. 2010;26(10):1340–7. 
https://doi.org/10.1093/bioinformatics/btq134.

28.	 Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local 
explanations to Global understanding with explainable AI for trees. Nat Mach 
Intell. 2020;2(1):56–67. https://doi.org/10.1038/s42256-019-0138-9.

29.	 Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Green-
berg BH, et al. OPTIMIZE-HF investigators and hospitals. Age- and gender-
related differences in quality of care and outcomes of patients hospitalized 
with heart failure (from OPTIMIZE-HF). Am J Cardiol. 2009;104(1):107–15. 
https://doi.org/10.1016/j.amjcard.2009.02.057.

30.	 Zile MR, Bennett TD, St John Sutton M, Cho YK, Adamson PB, Aaron MF, et al. 
Transition from chronic compensated to acute decompensated heart failure: 
pathophysiological insights obtained from continuous monitoring of intra-
cardiac pressures. Circulation. 2008;118(14):1433–41. https://doi.org/10.1161/
CIRCULATIONAHA.108.783910.

31.	 McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 
2021 ESC guidelines for the diagnosis and treatment of acute and chronic 
heart failure: developed by the Task Force for the diagnosis and treatment of 
acute and chronic heart failure of the European Society of Cardiology (ESC). 
With the special contribution of the Heart Failure Association (HFA) of the 
ESC. Eur J Heart Fail. 2022;24(1):4–131. https://doi.org/10.1002/ejhf.2333.

32.	 Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in health-
care: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43. https://
doi.org/10.1136/svn-2017-000101.

33.	 Miller DD, Brown EW. Artificial Intelligence in Medical Practice: the question 
to the answer? Am J Med. 2018;131(2):129–33. https://doi.org/10.1016/j.
amjmed.2017.10.035.

34.	 Wu WT, Li YJ, Feng AZ, Li L, Huang T, Xu AD, et al. Data mining in clinical big 
data: the frequently used databases, steps, and methodological models. Mil 
Med Res. 2021;8(1):44. https://doi.org/10.1186/s40779-021-00338-z.

35.	 Deo RC. Machine learning in Medicine. Circulation. 2015;132(20):1920–30. 
https://doi.org/10.1161/CIRCULATIONAHA.115.001593.

36.	 He G, Hu J, Li T, Ma X, Meng J, Jia M, et al. Arrhythmogenic effect of sympa-
thetic histamine in mouse hearts subjected to acute ischemia. Mol Med. 
2012;18(1):1–9. https://doi.org/10.2119/molmed.2011.00225.

37.	 Saheera S, Potnuri AG, Guha A, Palaniyandi SS, Thandavarayan RA. Histamine 
2 receptors in cardiovascular biology: a friend for the heart. Drug Discov 
Today. 2022;27(1):234–45. https://doi.org/10.1016/j.drudis.2021.08.008.

38.	 He GH, Cai WK, Meng JR, Ma X, Zhang F, Lu J, et al. Relation of polymor-
phism of the histidine decarboxylase gene to chronic heart failure in Han 
Chinese. Am J Cardiol. 2015;115(11):1555–62. https://doi.org/10.1016/j.
amjcard.2015.02.062.

39.	 Leary PJ, Tedford RJ, Bluemke DA, Bristow MR, Heckbert SR, Kawut SM, et al. 
Histamine H2 receptor antagonists, left ventricular morphology, and heart 
failure risk: the MESA Study. J Am Coll Cardiol. 2016;67(13):1544–52. https://
doi.org/10.1016/j.jacc.2016.01.045.

40.	 Huang YH, Cai WK, Yin SJ, Wang P, Li ZR, Yang Q, et al. Histamine H2 recep-
tor antagonist exposure was related to decreased all-cause mortality in 
critical ill patients with heart failure: a cohort study. Eur J Prev Cardiol. 
2022;29(14):1854–65. https://doi.org/10.1093/eurjpc/zwac122.

41.	 Meng R, Chen LR, Zhang ML, Cai WK, Yin SJ, Fan YX, et al. Effectiveness 
and safety of Histamine H2 receptor antagonists: an Umbrella review of 
Meta-analyses. J Clin Pharmacol. 2023;63(1):7–20. https://doi.org/10.1002/
jcph.2147.

42.	 Zhang XS, Cai WK, Wang P, Xu R, Yin SJ, Huang YH, et al. Histamine H2 recep-
tor antagonist exhibited comparable all-cause mortality-decreasing effect 
as β-blockers in critically ill patients with heart failure: a cohort study. Front 
Pharmacol. 2023;14:1273640. https://doi.org/10.3389/fphar.2023.1273640.

43.	 Pan JM, Guo Y, Jiang FF, Xu R, Zhang X, Cai WK et al. Effect of Histamine H2 
receptor antagonists on all-cause mortality in critically ill patients with essen-
tial hypertension: a retrospective cohort study. J Clin Pharmacol. https://doi.
org/10.1002/jcph.2445

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1007/s00134-005-2763-5
https://doi.org/10.1007/s00134-005-2763-5
https://doi.org/10.4103/0972-5229.130573
https://doi.org/10.4103/0972-5229.130573
https://doi.org/10.12659/MSM.894153
https://doi.org/10.1016/j.artmed.2024.102829
https://doi.org/10.1186/s12911-022-01857-y
https://doi.org/10.2196/54363
https://doi.org/10.1186/s12933-024-02308-w
https://doi.org/10.1186/s12933-024-02308-w
https://doi.org/10.1186/s12967-022-03340-8
https://doi.org/10.1186/s12967-022-03340-8
https://doi.org/10.1136/bmjopen-2020-044779
https://doi.org/10.1111/jebm.12373
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1186/s12967-022-03469-6
https://doi.org/10.1186/s12967-022-03469-6
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1097/JTO.0b013e318233d835
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1016/j.bj.2021.01.003
https://doi.org/10.1016/j.bj.2021.01.003
https://doi.org/10.18637/jss.v050.i11
https://doi.org/10.18637/jss.v050.i11
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1016/j.amjcard.2009.02.057
https://doi.org/10.1161/CIRCULATIONAHA.108.783910
https://doi.org/10.1161/CIRCULATIONAHA.108.783910
https://doi.org/10.1002/ejhf.2333
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1016/j.amjmed.2017.10.035
https://doi.org/10.1016/j.amjmed.2017.10.035
https://doi.org/10.1186/s40779-021-00338-z
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.2119/molmed.2011.00225
https://doi.org/10.1016/j.drudis.2021.08.008
https://doi.org/10.1016/j.amjcard.2015.02.062
https://doi.org/10.1016/j.amjcard.2015.02.062
https://doi.org/10.1016/j.jacc.2016.01.045
https://doi.org/10.1016/j.jacc.2016.01.045
https://doi.org/10.1093/eurjpc/zwac122
https://doi.org/10.1002/jcph.2147
https://doi.org/10.1002/jcph.2147
https://doi.org/10.3389/fphar.2023.1273640
https://doi.org/10.1002/jcph.2445
https://doi.org/10.1002/jcph.2445

	﻿Development and validation of novel interpretable survival prediction models based on drug exposures for severe heart failure during vulnerable period
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Date source
	﻿Study population
	﻿Data extraction and preprocessing
	﻿Model development and evaluation
	﻿Statistical analysis

	﻿Results
	﻿Baseline characteristics
	﻿Development and validation of the survival prediction models
	﻿Feature importance

	﻿Discussion
	﻿Conclusions
	﻿References


