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Abstract

Urban traffic demand distribution is dynamic in both space and time. A thorough analysis of

individuals’ travel patterns can effectively reflect the dynamics of a city. This study aims to

develop an analytical framework to explore the spatiotemporal traffic demand and the char-

acteristics of the community structure shaped by travel, which is analyzed empirically in

New York City. It uses spatial statistics and graph-based approaches to quantify travel

behaviors and generate previously unobtainable insights. Specifically, people primarily

travel for commuting on weekdays and entertainment on weekends. On weekdays, people

tend to arrive in the financial and commercial areas in the morning, and the functions of

zones arrived in the evening are more diversified. While on weekends, people are more

likely to arrive at parks and department stores during the daytime and theaters at night.

These hotspots show positive spatial autocorrelation at a significance level of p = 0.001. In

addition, the travel flow at different peak times form relatively stable community structures,

we find interesting phenomena through the complex network theory: 1) Every community

has a very small number of taxi zones (TZs) with a large number of passengers, and the

weighted degree of TZs in the community follows power-law distribution; 2) As the impor-

tance of TZs increases, their interaction intensity within the community gradually increases,

or increases and then decreases. In other words, the formation of a community is deter-

mined by the key TZs with numerous traffic demands, but these TZs may have limited con-

nection with the community in which they are located. The proposed analytical framework

and results provide practical insights for urban and transportation planning.

1 Introduction

The city is a large and complex system whose planning and transportation are closely linked to

our daily lives. Quantifying the spatiotemporal patterns of residents’ travel flow can effectively

reflect the dynamics of urban components [1]. Understanding the essence of it can provide us

with some perspectives and insights for improving urban planning, transport efficiency, even

energy conservation and emission reduction [2].
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In the past, the acquisition of residents’ travel behaviors was mainly achieved through fam-

ily travel surveys. The comprehensive information and its collection were labor-intensive and

often with short application time and low accuracy [3, 4]. In recent years, there is increasing

momentum in the analysis of urban travel through the data collected by travel-related digital

sensors. The rapid popularity of high-granularity, multi-source data allows us to extract more

accurate travel records and analyze the spatiotemporal mobility characteristics of the flow of

people [5]. For example, many cities used smart cards to carry out statistical analyses [6, 7] and

predict human travel behavior [8], employed taxi trajectory data to explore travel spatial distri-

bution characteristics [9], and identified travel movement patterns through cell phone data

[10]. Similar ideas have also been applied to mining spatiotemporal properties of emerging

transportation modes, such as shared cars [11] and electric vehicles [12]. These studies gener-

ally found that humans congregate in different geographic locations over time. To further clar-

ified influencing factors and aggregation patterns of travel behavior, many studies introduced

spatial statistical models in cities and transport systems and carried out empirical arguments

from multiple perspectives. These methods were mainly introduced into the spatial distribu-

tion statistical tests of the road network [13], urban bus systems [14], shared bicycles [15],

parking [16], and even marine transport demand [17]. However, most of these studies were

based on public transportation with fixed routes or short-distance travel, which often could

not reflect the characteristics of crowd movement in random travel. The travel pattern of taxis

and high-use private cars is more compatible with the city area but rarely appeared in existing

studies.

Revealing the spatial pattern of urban traffic through network science does not have a long

history. Here we present a brief review. Traditional research usually applied network analysis

to street layouts based on urban topology [18]. However, the spatial interpretation of human

activities by streets was controversial. Many studies were based solely on network topology

methods, such as space syntax [13, 19], which ignored the flow of travel. In recent years, more

and more studies divided the transportation system into multiple research units and used net-

work science theory to analyze its flow characteristics and reveal its complex properties. Most

research focused on discovering the community structure formed under different modes of

transportation, such as revealed the multi-layer unified community structure of private cars,

buses, and passengers [20], the evolution characteristics of the community structure of shared

bicycle system [2, 15], community distribution of rail transit under different travel ratios [21].

In addition, some studies introduced complex network theory to calculate the clustering coef-

ficient, path length, betweenness centrality in taxi travel networks [22] and confirmed the

small-world property [23].

So far, the researches have focused on the illustration of spatial structures formed by differ-

ent modes of transport, without revealing in depth the internal mechanism and the hidden

characteristics of these structures. Past research carried out demonstrations based on the pub-

lic system constrained by fixed stops, but the spatiotemporal characteristics of random travel

behavior were not clear enough. This study fills these gaps and aims to develop a travel analysis

framework with an empirical analysis in New York City. In this framework, kernel density

estimation is used to discover the spatial hotspots where people depart and arrive. The global

and local Moran’s I measure the spatial autocorrelation and cluster characteristics of traffic

demand. Community detection extracts the network structures of travel. Based on network

science, we analyze the weighted degree distribution of communities, the interaction property,

and the similarities under different peak periods between the communities, which provide

practical insights for urban and transportation planning.

The rest of the paper is organized as follows. In Section 2, we briefly describe the data sets

and the division of analytical units. In Section 3, we introduce the overall logical framework
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and methodology of travel hotspots recognition, spatial autocorrelation, and community char-

acteristics. In Section 4, we provide a case study based on New York City traffic network. In

Section 5, we give a discussion of the results. In Section 6, we provide concluding remarks of

the paper.

2 Study area and data

2.1 Study area

New York City (NYC) is located in New York State, which is the most populous city in the

United States. It is composed of five boroughs——Manhattan, Queens, Brooklyn, Bronx, and

Staten Island (Fig 1). So far, taxicabs come in two varieties in NYC, yellow taxis can carry pas-

sengers in any city area, green taxis were launched in 2013 to solve the problem of lack of taxi

services outside the downtown area. A full analysis of travel patterns at the city level requires

the consideration of these two types. Based on taxi flow in the city, this study analyzes the spa-

tiotemporal distribution of travel demand and specifically discusses the potential characteris-

tics of the taxi community structure in NYC based on two varieties of taxi record data.

2.2 Data description and preprocessing

All the data employed in this study is the public data sets of the New York City Taxi and Lim-

ousine Commission (TLC) trip record data, including yellow, green taxis, and for-hire vehicle

trip records in five boroughs of NYC, which contains the information of ID, pick-up and

drop-off time stamp, coordinate, passenger count, trip distance and payment. After excluding

extreme weather and holidays, we selected all taxi trip records from 2016.06.06 to 2016.6.12 to

divide spatiotemporal units. The Isolated Forest algorithm [24] is used to clean data. There are

a total of 2,005,334 travel records on weekdays and 775,836 on weekends after excluding the

outliers and trips outside the study area.

2.3 Analytical unit division

An analysis of the trip time series is carried out in one-hour units (Fig 2). From 7 am on week-

days, the traffic flow increases strongly, lasting about until 10 am, and evening peak hours are

Fig 1. Layout and spatial division of study area.

https://doi.org/10.1371/journal.pone.0259694.g001
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from 5 pm to 8 pm. This feature is reflected in a similar pattern every day of a week. However, the

traffic flow on weekends presents different times features. First, there is a small peak time between

12 pm and 3 pm, followed by a more prominent peak time between 5 pm and 8 pm. In addition,

there is less traffic on Sunday than on Saturday. In summary, we select Tuesday and Saturday

data that are representative and identify four peak periods for the following analysis Table 1.

Most studies selected grid units to group traffic sources and destinations, with sizes ranging

from 500 meters to 2 kilometers to detect urban commuting traffic [25]. In our research, we

select the size of 1 mile, which represents 25% of the overall trip distance. That is, 75% of the taxi

passengers have a travel distance of more than 1 mile, which keeps a lot of information on the

movement of taxis between different cells. Finally, 724 spatial analytical units are divided (Fig 1).

3 Methodology

3.1 Logic framework

The overall logic framework of this research is shown in Fig 3, which is divided into 3 parts:

data collection and preprocessing, trip spatial distribution pattern modeling, and trip spatio-

temporal properties analysis.

3.2 Kernel density estimation

We use kernel density estimation (KDE) to find hotspots in different peak times. KDE is a

non-parametric probability density estimation method, which has been used in spatial density

analysis of point data [26–28]. If there is a space point i with the bandwidth h, then the kernel

density estimator D(x,y) at the center point (x,y) is

Dðx; yÞ ¼
1

nh2

Xn

i¼1

K
di

h

� �

ð1Þ

where di is the distance between the space point and the center point. K is the kernel function.

The quartic kernel described in Silverman’s work is used in this study [29], it is defined by

KðuÞ ¼
3

p
ð1 � u2Þ

2
; if 0 < di < h

0; if di > h
ð2Þ

8
<

:

Fig 2. Time series of taxi flow.

https://doi.org/10.1371/journal.pone.0259694.g002
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In hotspots recognition, the choice of bandwidth h needs to ensure that the OD points on

roads are gathered around a plot. According to the area of the plots in this study, we set

h = 300m, which can exploit the origin and destination (OD) hotspots based on trip record

data from different periods in the urban transportation network effectively and perform spatial

visualization analysis.

3.3 Spatial autocorrelation methods

3.3.1 Global autocorrelation. Moran’s I index is introduced to explore the potential spa-

tial autocorrelation of traffic demand. Global Moran’s I reveals the average degree of correla-

tion between the data in the analysis space and the surrounding area. If there are n spatial

units, the global Moran’s I of the traffic demand is

I ¼
n
S0

�

Xn

i¼1

Xn

j¼1

wijðxi � �xÞðxj � �xÞ

Xn

i¼1

ðxi � �xÞ2
ð3Þ

Table 1. Time period definition.

Date Period

Tuesday (2016.6.7) peak1 7 am~10 am

peak2 5 pm~8 pm

Saturday (2016.6.11) peak3 12 pm~3 pm

peak4 5 pm~8 pm

https://doi.org/10.1371/journal.pone.0259694.t001

Fig 3. The logic framework of travel spatiotemporal analysis.

https://doi.org/10.1371/journal.pone.0259694.g003
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where S0 ¼
Pn

i¼1

Pn
j¼1

wij. xi and xj are the value of traffic demand of the cell i and j, respec-

tively. �x is the average value of global traffic demand. wij is the spatial weight between i and j,
it’s defined by wij = 1/dij, dij represents the Euclidean distance between the two cells. The Z

score is calculated as

Z ¼
I � EðIÞ
ffiffiffiffiffiffiffiffiffiffi
VðIÞ

p ð4Þ

where E(I) = −1/(n−1), V(I) = E(I2)−E(I)2, and I2[–1,1], if I close to 1 with a high Z score indi-

cates great positive spatial autocorrelation, while I close to -1 with low Z score indicates great

negative spatial autocorrelation.

3.3.2 Local autocorrelation. The local Moran’s I (LISA) [30] calculates an index for each

cell in the study area and identifies the specific location and type of correlation in the space. It

is calculated by

Ii ¼
Zi

S2

Xn

j6¼i

wijZj ð5Þ

where Zi ¼ xi � �x; Zi ¼ xj � �x; S2 ¼ 1

n

P
ðxi � �xÞ2. The value of the local Moran’s I in unit i is

determined jointly by two factors: 1) The similarity between unit i and the overall space (Zi). 2)

The similarity between the surrounding areas of unit i and the overall space (
Pn

j6¼i wijZj). It can

be divided into four cases (Fig 4): (a) H-H: High values around neighbors with high values

(cluster); (b) L-L: Low values around neighbors with low values(cluster); (c) H-L: High values

Fig 4. Local Moran’s I limit distribution.

https://doi.org/10.1371/journal.pone.0259694.g004
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around neighbors with low values(outlier); (d) L-H: Low values around neighbors with high

values(outlier).

3.4 Traffic community detection

3.4.1 Taxi mobility graph. Here, we construct a topological structure of multiple research

units of the transportation network and map the travel information. An urban mobility system

can be represented by a directed graph [15, 20], each cell (mentioned in 2.3) is regarded as a

TZ. It can be defined by a directed graph G = {V,E} with nodes V = {TZi|i = 1,2,. . .n}, where n
is the number of TZs, and the trips between TZs as edges, denoted as E = V×V = {eij}. For each

trip m in the target period T, there is a trip information vector Tripm:

Tripm ¼ ftrip
k
mjtrip

k
m ¼ ðtk; x

tk
m; y

tk
mÞ; k ¼ 1; 2; t1 2 Tg ð6Þ

where k is an index, 1 for origin and 2 for destination. A trip m at time t includes origin and

destination spatiotemporal information ðt1; xt1
m ; yt1

mÞ; ðt2; xt2
m ; yt2

mÞ, respectively. If a coordinate

ðxtk
m; ytk

mÞ falls inside the TZi, then there is ðxtk
m; ytk

mÞ 2 TZi. Next, an OD matrix is represented by

OD ¼

od11 od12 � � � od1n

od21
. .

.
od2n

..

. ..
.

odn1 odn2 � � � odnn

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð7Þ

Furthermore, we set the number of passengers as the edge weight W between origin and

destination TZs, which denoted as W = V×V = {wij|wij = odij+odji}.

3.4.2 Fast unfolding algorithm. The community detection algorithm divides the network

into sub-groups with tight internal connections between nodes, consisting primarily of three

categories: division, cohesion, and optimization methods. The last depends on the solution of

the objective functions without defining parameters artificially. Therefore, we choose the Fast

unfolding algorithm [31] to reveal the community structures of the urban traffic network. It

aims to maximize the modularity, for a weighted traffic network, the modularity is defined as

Q ¼
1

2m

X

i;j

wij �
kikj

2m

� �

dðCi;CjÞ

dða; bÞ ¼

(
1 when a == b

0 otherwise

ð8Þ

where m is the sum of weights of the network, wij is the edge weight between TZi and TZj. ki, kj

are the sum of weights of edges attached to TZi and TZj, respectively. Where ki = ∑jwij, kj =

∑iwji. Ci is the community to where TZi is assigned. At the first stage, the algorithm calculates

the modularity gain ΔQ by moving an isolated TZi into a community

DQ ¼

X

in þ 2ki;in

2m
�

X

tot þ ki

2m

 !2
2

4

3

5 �

X

in

2m
�

X

tot

2m

 !2

�
ki

2m

� �2

2

4

3

5 ð9Þ

where ∑in is the sum of edge weights within a community, while ∑tot is the sum of edge weights

of all nodes in the community. ki,in denotes the sum of weights of edges originating from TZi

to nodes in the community. Then the algorithm assigns node TZi to the community with the
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largest ΔQ. At the second stage, it treats the community generated in the previous step as a

new node. Iteration until the modularity Q in the network is maximized, thus forming a net-

work community structure with tight internal connections.

3.5 Community structure analysis

3.5.1 Weighted degree and distribution. Based on the complex network theory, we spec-

ify several indicators for community structure analysis of TZs. For each peak period, we focus

on quantifying the number of passengers between nodes rather than the number of trips.

Therefore, the weighted degree [32–34] degw(TZi) is used to measure the importance of the

node TZi, which is defined by

degðTZiÞin ¼
X

i
eij ð10Þ

degðTZiÞout ¼
X

j
eij ð11Þ

degðTZiÞ ¼ degðTZiÞin þ degðTZiÞout ð12Þ

degwðTZiÞ ¼
X

degðTZiÞ
wij ð13Þ

where deg(TZi)in and deg(TZi)out are the in-degree and out-degree of node TZi, respectively

[34]. According to the definition of degree distribution [35], we introduce the idea of weighted

degree distribution with the probability distribution of the weighted degree of TZs in the traffic

network.

PkðIÞ ¼
NkðIÞ
Nk

ð14Þ

If the set of Community = {Ck|k = 1,2,. . .m}, Pk(I) is defined as the fraction of nodes in a com-

munity network Ck with a weighted degree within a numerical interval I. Nk is the number of

nodes in the community Ck, Nk(I) is the number of nodes in the community Ck which nodes’

weighted degree falls in I.
3.5.2 Interaction intensity. In the analysis of community interaction characteristics, we

propose to use the edge weight and weighted degree of nodes [34] to quantify the intensity of

node-community interactions. For a node TZi, its interaction intensity Si with community Ck

is calculated by

Si;k ¼

X

j
wij

degwðTZiÞ
ðTZj 2 CkÞ ð15Þ

It can be understood as if TZi and TZj are in the same community, Si,k measures the inten-

sity of interaction with the community where TZi is located, otherwise, it measures the inten-

sity of interaction with other communities. For each TZi, there is
Pm

k¼1
Si;k ¼ 1.

3.5.3 Similarity index. M. Yildirimoglu et al propose a similarity measurement of differ-

ent transport network communities (bus network, passenger network, and car network) [20].

Based on this method, we introduce the similarity index of the traffic network community at
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different time periods. It is calculated by

suv ¼

X

i

X

i6¼j
au

ij�a
v
ij

minð
X

i

X

i6¼j
au

ij;
X

i

X

i6¼j
av

ijÞ

au
ij ¼

(
1 if i and j are in the same community in time period u

0 otherwise

ð16Þ

where u and v are different time periods, respectively. It measures the proportion of node pairs

that are consistently allocated to the same community at different periods, where σuv2[0,1].

The numerator represents the number of OD pairs that are consistently assigned to the same

community over the two periods. If an OD pair odij falls in the same community in the period

u and v, there is su
ij � s

v
ij ¼ 1.

4 Case study results

The OD flow map of each time period is shown in Fig 5, with more obvious edges as the weight

increases. Travel flows are mainly distributed in the surroundings of Manhattan and distant

transportation hubs.

4.1 Hotspots detection

The KDE method in ArcGIS is used to extract the hotspots from taxi OD points. A grid of

50m, h = 300 is selected for detailed visualization, and we use the natural break method to

show the results (Figs 6 and 7). Manhattan is the most important financial and commercial

district of NYC, with multiple transportation hubs. The high density of roads and the multiple

land use functions make the most of trips originate from this area. On weekday, peak1 origin

demand (Fig 6A) is mainly concentrated in central Manhattan, widely distributed in the trans-

portation hubs of the bus (Port Authority Bus Terminal), subway (Penn Station, Grand Cen-

tral Terminal), and airport (LaGuardia Airport). Destination hotspots are concentrated in

central and southern Manhattan, including the Grand Central Terminal and the surroundings

of Park Avenue, with many commercial sites around it (Fig 6B). Moreover, the World Trade

Center surrounding areas and the southern financial districts of Manhattan with light traffic

concentrations (Fig 6B). At this time period, transportation is mainly used for commuting. We

also find that the multiple medical sites on the Upper East Side and south of York Avenue have

a slightly high concentration of traffic.

Taxi origin hotspots during peak2 on weekday are mainly distributed at Penn Metro Sta-

tion, Central Station, Park Avenue, 57th Street, East 86th Street, and LaGuardia Airport (Fig

6C). The southern part of the Park Avenue hotspot is a commercial area, while the northern

part of Park Avenue, 57th Street, and Madison Avenue include a large number of catering

facilities. Moreover, the East 86th Street hot zone, which includes banks and schools also

shows a slight concentration. Destination hotspots are widely distributed, including land use

for residential, catering, shopping, entertainment (Fig 6D). It can be inferred that some people

do not return home directly after work, but engage in a series of other activities.

The taxi origin hotspots during peak3 on weekends are also widely distributed in large pub-

lic transportation hubs, like Penn Station, Grand Central Terminal, Port Authority Bus Termi-

nal, and LaGuardia Airport (Fig 7A). Unlike weekdays, the department stores (Bergdorf

Goodman, Bloomingdale), parks (Central Park, Union Square), and land use of worship

(St. Patrick’s Cathedral) appear from the results. In addition to the places mentioned above,
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people also tend to get off in the surroundings of Broadway (Fig 7B), which located in many

theaters. In general, people travel mainly for entertainment and socializing during this time.

The taxi origin hotspots of peak4 and peak3 are roughly the same. However, Meatpacking

District is the unique origin hotspot of peak4 (Fig 7C), where located American art museum,

well-known clothing stores, and elevated parks. The destination hotspots in peak4 still include

department stores and parks but are more focused on Broadway (Fig 7D). It can be inferred

that when traveling for entertainment, people tend to arrive at parks and department stores

during the daytime and go to theaters at night.

4.2 Spatial autocorrelation analysis

Under the significance level of p = 0.001, the global Moran’s I and Z-score of each peak period

are shown in Table 2.

The global Moran’s I in each period is positive and close to 1 with high Z scores, so traffic

demand presents a significant clustering pattern during all peak times with a spatially positive

correlation characteristic (Table 2). Furthermore, since the crowds are densely concentrated

Fig 5. OD flow map. a) peak1; b) peak2; c) peak3; d) peak4.

https://doi.org/10.1371/journal.pone.0259694.g005
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near Broadway during peak4, the spatial autocorrelation is higher than in other periods. The

local Moran’s I pattern and statistical significance of trip volume with two subgraphs in each

peak time are shown in Figs 8 and 9.

The traffic demand in the central area of Manhattan in NYC shows the characteristics of

the H-H cluster in all periods. For origin demand during peak1, the most significant positive

correlation area includes Penn Station with a level of p = 0.001 and then gradually decreases in

surrounding areas (Fig 8A). While for the destination, the Grand Central Terminal and sur-

rounding areas of Park Avenue have the highest level of significance, and also exist in southern

Manhattan (Fig 9A). In other words, there is a tendency for passengers to travel south

generally.

At the significance level of p = 0.001, peak4 shows a significant positive correlation in the

southern part of Central Park (origin demand), Union Park, Broadway, and transportation

hubs (destination demand). We can see that taxis also have a southward flow trend (Figs 8D

and 9D). In addition, traffic demand during every peak period has L-H clustering in the

Queens-Midtown tunnel area, while passenger arrivals show L-L clustering in the east of NYC

Fig 6. Hotspots of peak1 and peak2. a) peak1 origin; b) peak1 destination; c) peak2 origin; d) peak2 destination.

https://doi.org/10.1371/journal.pone.0259694.g006
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(Fig 9). The spatial distribution of taxi destinations is wider than origin. It can be inferred that

taxis tend to carry passengers in the central area of Manhattan and drive them to the far

peripheries.

Fig 7. Hotspots of peak3 and peak4. a) peak3 origin; b) peak3 destination; c) peak4 origin; d) peak4 destination.

https://doi.org/10.1371/journal.pone.0259694.g007

Table 2. Results of global Moran’s I.

Type Period Global Moran’s I Z-score

origin peak1 0.729 15.580

peak2 0.690 15.460

peak3 0.737 16.041

peak4 0.747 16.357

destination peak1 0.598 16.137

peak2 0.752 16. 052

peak3 0.758 19.521

peak4 0.779 20.755

https://doi.org/10.1371/journal.pone.0259694.t002
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Fig 8. Spatial autocorrelation of origin demand. a) peak1; b) peak2; c) peak3; d) peak4.

https://doi.org/10.1371/journal.pone.0259694.g008

Fig 9. Spatial autocorrelation of destination demand. a) peak1; b) peak2; c) peak3; d) peak4.

https://doi.org/10.1371/journal.pone.0259694.g009
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4.3 Community structure analysis

Fig 10 shows the community structures (the background of the network means no trip con-

nected) during each peak period. The OD pairs within a community are densely communi-

cated via taxi flow. Specifically, south Manhattan always forms a separate community, whereas

Brooklyn and Queens are sometimes connected. During peak3, there is a special community

that is geographically dispersed, probably because the connection between transportation hubs

that fall into TZs is closer than in other periods (Fig 10C). In general, the community layout is

similar to the boroughs distribution of NYC, where areas separated by the sea are often divided

into different communities.

Information on nodes and weights of communities is shown in Table 3. Due to the idea of

the Fast unfolding algorithm, the communities often have the largest edge weights within the

community and are weakly connected to other communities.

Based on traffic communities, we reveal the weighted degree distribution characteristics of

each community. We focus on the weighted degree of the network because it can better reflect

the travel behavior of individuals in the urban transportation system rather than the degree of

Fig 10. Traffic network community structures. a) peak1; b) peak2; c) peak3; d) peak4.

https://doi.org/10.1371/journal.pone.0259694.g010
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TZs. Given the small number of nodes and the large weighted degree discrepancy of commu-

nities, we set a numerical interval I for statistics of each community.

According to the analytical snapshot (Fig 11), the weighted degree of a few TZs is much

larger than that of the majority TZs. Furthermore, their weighted degree follows the power-

law distribution from a community perspective, that is, P(I)~I−γ. The R-square of each fitted

curve exceeds 0.9 (except community3 in peak1), which indicates every community during the

rush hours has at least one TZ that has a strong impact on passenger attraction or departure.

This is often a precondition for the formation of a tightly connected transport community.

Fig 12 shows the results of the interactive features of communities in each peak period. The

abscissa represents the weighted degree of nodes located in the community, and the ordinate is

the interaction intensity index. Each row represents a period, while a subgraph in a row repre-

sents the interaction intensity between nodes in a community and other communities during

this period. For example, the first subgraph in Fig 12A means the relationship between the

weighted degree of nodes in community 1 and the interaction intensity between communities

1 ~ 4 during peak1, which is marked with triangles of different colors. Under the overall obser-

vation, we can see that as the weighted degree of nodes increases, their interaction intensity

within the community always tends to increase, especially when the weighted degree of nodes

is situated before the median current. Furthermore, as the weighted degree increases to a cer-

tain extent, the intensity of the interaction stabilizes or decreases. It can be understood that the

extremely significant or insignificant nodes in most communities often have limited contact

with the community in which they are located, while some moderately important nodes have

Table 3. Nodes and weights information of communities.

Period Ck 1 2 3 4 ∑kwij

Peak1 1 35993 20440 14 3282 59729

2 - 20609 73 1021 21703

3 - - 93 5 98

4 - - - 4196 4196

nodes 44 74 17 250 85726

Peak2 Ck 1 2 3 4 ∑kwij

1 70338 13733 2980 2667 89718

2 - 8489 87 379 8955

3 - - 3706 473 4179

4 - - - 3177 3177

nodes 76 82 103 156 106029

Peak3 Ck 1 2 3 4 5 ∑kwij

1 22031 7686 1599 358 15250 46924

2 - 17639 297 441 12094 30471

3 - - 3813 298 890 5001

4 - - - 2389 684 3073

5 - - - - 8070 8070

nodes 24 94 126 108 41 93539

Peak4 Ck 1 2 3 4 ∑kwij

1 25796 24281 394 3846 54317

2 - 34185 3216 3330 40731

3 - - 2236 291 2527

4 - - - 11304 11304

nodes 27 36 72 273 108879

https://doi.org/10.1371/journal.pone.0259694.t003
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the highest correlation within the community. On the contrary, as the weighted degree of

nodes increases, their interaction intensity with other communities always tends to decline but

to increase when great to some extent (Fig 12, subgraph 1, 2, 4 of a), subgraph 2, 3, 4 of b), sub-

graph 1, 2, 3, 5 of c), d)).

Even if most nodes show the above characteristics, we also find a few particular cases, such

as subgraph 3 of a), subgraph 1 of b), and subgraph 4 of c), Fig 12. As the weighted degree of

nodes increases, the interaction intensity with the community generally continues to increase,

while with other communities continues to decline. This interaction feature is the potential

expression of the close relationship between nodes within the community. According to the

idea of the Fast unfolding algorithm, the increase of modularity is often reflected in the high

connection of nodes within the community and the sparse connection outside. Therefore, this

is expected to lead to a better division of the community.

Table 4 shows the similarity results for OD pairs during each peak period. The similarity

between communities in each peak period is over 50%. It is worth mentioning that the similar-

ity between peak3 and peak4 is slightly higher than in other periods because people’s travel

purposes are more similar in these two periods, that is, people are more willing to participate

in entertainment and social activities on weekends. Overall, traffic community structures are

relatively stable over different rush hours.

5 Discussion

5.1 Spatial community structure of taxi trips

Community detection through travel behavior is an effective strategy to discover the underly-

ing structure of cities [1], the formation of communities often signifies the emergence of com-

pact structures in urban areas. Past research ignored the travel flow of people [36] or only

stayed on the community structure layout [20]. We quantify the structure characteristics

through network theory to fill this gap. As aforementioned, TZs with numerous passengers

may have a limited connection with the community in which they are located, but there are a

Fig 11. TZs weighted degree distribution. a) peak1; b) peak2; c) peak3; d) peak4.

https://doi.org/10.1371/journal.pone.0259694.g011
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few exceptions that some of them in the community still have close internal connections (Fig

12). The latter is encouraging because the structure of the traffic community at its period fits

very well with the travel within the community, which is more conducive to the formation of

compact development urban areas. Some studies have found that the city’s polycentric [37, 38]

and compact development [39] is an effective strategy for reducing traffic congestion. Diverse

land use in areas ensures that people travel shorter distances and no longer congregate in spe-

cific areas of the city [39]. Through the interaction index in communities, we can quickly cap-

ture the level of regional interaction of travel flow in key locations and provide some practical

insights for the development of compact cities and alleviation of traffic congestion. On the

contrary, as the importance of TZs increases, most TZs’ interaction intensity with other com-

munities decreases rapidly until it approaches zero (Fig 12). This is because the modularity

changes in the Fast unfolding algorithm are often insensitive to OD pairs with small edge

weights. It also indicates that most people prefer to travel within the communities.

Fig 12. TZs interaction intensity between communities. a) peak1; b) peak2; c) peak3; d) peak4.

https://doi.org/10.1371/journal.pone.0259694.g012

Table 4. Community structures similarity.

Period peak1 peak2 peak3 peak4
peak1 1 0.521 0.531 0.532

peak2 - 1 0.545 0.524

peak3 - - 1 0.571

peak4 - - - 1

https://doi.org/10.1371/journal.pone.0259694.t004
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A well-divided traffic community often has very little external contact. However, the

boundary between community 1 and community 2 is often not very clear, that is, the TZs of

high importance in community 1 also undertake most of the travel in community 2 and vice

versa. According to Fig 10, community 1 is located in southern Manhattan, while community

2 is located in northern and central Manhattan, even in the Bronx. They are very close and

without large geographical separation. Moreover, it can be seen that most of the trips in NYC

take place inside Manhattan according to Figs 6 and 7. Although they finally meet the algo-

rithm termination in the community dividing process, it is also the main factor that inhibits

the increase in modularity. Sun et al. illustrated that the smaller the modularity, the more con-

gested the traffic network [40]. Therefore, in the actual planning of urban traffic and the com-

pact design of the city, we need to focus on this traffic characteristic. It prevents the better

division of communities, likely due to the lack of a specific land-use function within the com-

munity. The unique land-use function simultaneously attracts trips between multiple commu-

nities, leading to a large gathering of vehicles and people.

5.2 Relationship among hotspots, communities and their characteristics

The hotspots of a city can be reflected by the traffic demand, and they globally reveal the criti-

cal areas of the entire city. In NYC, they present a cluster distribution layout (Figs 8 and 9).

Through the global and local Moran’s I, we can discover the statistically significant autocorre-

lation of traffic hotspots and find the potential geographical location. The presented results are

highly consistent with the hotspots found by KDE, which validates the approach in spatial

analysis from the taxi mobility network.

Even if there is only one acknowledged central area in NYC (Manhattan), taxi trips at dif-

ferent periods still form an obvious community structure in space (Fig 10). They are relatively

stable over time, with nodes within a community generally adjacent geographically. According

to the analysis of this study, hotspots in urban areas are often a requirement for the formation

of traffic communities (Fig 11). While their interaction within the community is limited, it is

more likely to prevent the formation of a better community structure. As for a polycentric and

compact urban development, it seems the best approach is to disperse the hotspots and inte-

grate various land functions.

5.3 Potential applications of the framework

Taxi companies may find that the framework of this study is valuable for the identification and

prediction of where passengers depart and arrive. It mainly reveals two kinds of information:

First, hotspots detection finds the specific location of passengers to ride in different rush hours

and identifies the travel destination of people. Capturing the hotspots for passengers in time

can provide considerable benefits to taxi companies. Second, the spatial statistical methods

reveal the areas where the traffic demand continues to be concentrated, as well as the geo-

graphical boundaries with unpopular districts. These hotspots should be given higher priority

during the taxi passenger search period.

Urban planners can also get helpful insights from the results. People tend to travel for short

distances, so community structure may be formed at any period, while is not ideal enough

sometimes. According to the analysis of this study, the reason for preventing a well-division of

a community is that some important TZs attract a large number of passengers from other com-

munities, which seems to be due to a lack of required land functions in other communities.

Moreover, important TZs can be more decisive in the formation of a community. As a result, a

compact and polycentric urban development seems to disperse these key TZs geographically

and is equipped with perfect urban functions to alleviate the traffic congestion caused by
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passenger gathering. The interaction intensity can be used to assess the level of compaction of

a city. For example, urban planners can capture the key areas that inhibit the compact develop-

ment in the city by judging their interaction intensity between the communities and plan for

better urban areas by exploiting the land use functions.

6 Conclusion

This study proposed an analytical framework aims at revealing the travel hotspots, their spatial

autocorrelation, and the community structure characteristics through the graph-based

approach and complex network theory. The main conclusions are as follows.

1. Penn Station and Grand Central Terminal are hotspots for taxis at any peak times of the

day. When traveling for commuting, the destinations for passengers in the morning rush

hours are concentrated in many financial and commercial areas of Manhattan, while are

widely distributed in more diverse places in the evening. When traveling for entertainment,

the hotspots for taxi rides during the daytime are concentrated in large department stores,

parks, and churches, whereas people are more willing to arrive at theaters at night. Travel

demand in NYC shows a strong positive spatial autocorrelation during multiple peak times.

In the meanwhile, taxis are more inclined to carry passengers in central Manhattan and

transport passengers to peripheral areas.

2. Over different rush hours, the movement of taxis will form a relatively stable, geographically

clustered community structure. After empirical analysis of NYC through weighted distribu-

tion and interaction intensity, we found several interesting phenomena: a) Every commu-

nity exists a very small number of TZs are undertake a large amount of passenger travel

activities. Moreover, if the numerical interval is used for statistics, the weighted degree of

TZs in the community follows the power-law distribution. b) As the weighted degree of

TZs increases, the interaction intensity with the community where they are located first

strengthens, then stabilizes, and finally weakens, which is probably due to the lack of land

use functions in other neighboring communities. In other words, the formation of a com-

munity is determined by the key TZs with numerous passengers, but these TZs may have

limited connection with the community in which they are located.

Although taxis can reflect residents’ travel behavior, there is an inherent sampling devia-

tion, because not all urban residents choose taxis as their travel mode. Future work will

improve this problem and extend the analysis to a longer time span to understand the spatio-

temporal pattern and the mechanism of the community structure evolution. It can also be fur-

ther studied in combination with land use data to obtain more refined results.
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