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Meta-analysis of mucosal microbiota reveals universal microbial
signatures and dysbiosis in gastric carcinogenesis
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The consistency of the associations between gastric mucosal microbiome and gastric cancer across studies remained unexamined.
We aimed to identify universal microbial signatures in gastric carcinogenesis through a meta-analysis of gastric microbiome from
multiple studies. Compositional and ecological profiles of gastric microbes across stages of gastric carcinogenesis were significantly
altered. Meta-analysis revealed that opportunistic pathobionts Fusobacterium, Parvimonas, Veillonella, Prevotella and
Peptostreptococcus were enriched in GC, while commensals Bifidobacterium, Bacillus and Blautia were depleted in comparison to SG.
The co-occurring correlation strengths of GC-enriched bacteria were increased along disease progression while those of GC-
depleted bacteria were decreased. Eight bacterial taxa, including Veillonella, Dialister, Granulicatella, Herbaspirillum, Comamonas,
Chryseobacterium, Shewanella and Helicobacter, were newly identified by this study as universal biomarkers for robustly
discriminating GC from SG, with an area under the curve (AUC) of 0.85. Moreover, H. pylori-positive samples exhibited reduced
microbial diversity, altered microbiota community and weaker interactions among gastric microbes. Our meta-analysis
demonstrated comprehensive and generalizable gastric mucosa microbial features associated with histological stages of gastric
carcinogenesis, including GC associated bacteria, diagnostic biomarkers, bacterial network alteration and H. pylori influence.
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INTRODUCTION
Gastric cancer (GC) is the fifth most commonly diagnosed cancer,
the fourth leading cause of cancer death, and responsible for 7.7%
of all cancer-related deaths worldwide in 2020 [1]. It develops
through a series of stages including superficial gastritis (SG),
atrophic gastritis (AG), intestinal metaplasia (IM), dysplasia and
gastric carcinoma [2]. It has been well known that H. pylori
infection plays a primary role in gastric cancer development [3].
Infection with H. pylori is very prevalent, which has been estimated
that at least 50% of adults harbour such infection worldwide [4].
However, only 1% to 3% develop gastric adenocarcinoma among
infected individuals [5]. Moreover, successful eradication of H.
pylori does not guarantee the prevention of gastric cancer
development [6, 7]. Additionally, it is generally believed that H.
pylori prefers a healthy stomach environment and that H. pylori
colonization decreases at the later stages of carcinogenesis [8, 9].
These observations suggest that, besides H. pylori, other factors
also contribute to gastric tumorigenesis [10].
H. pylori infection causes a decreased secretion of stomach acid,

leading to the overgrowth of non-H. pylori microbes in the gastric
ecological niche. Furthermore, H. pylori can cause the formation of
bacterial biofilms, making it easier for oral bacteria to colonize in
the stomach [11]. The association of H. pylori and other microbes
in GC development was reported that gastric microbiota after H.
pylori eradication could restore to a similar status of negative
subjects [12]. Solid evidences have revealed the association

between gastric commensal microbes other than H. pylori and
the development of GC. Mice harboring a complex microbiota
with H. pylori infection developed gastric cancer much faster than
germ-free mice monocolonized with H. pylori [11]. Insulin–gastrin
(INS-GAS) mice with a combination of three bacteria species or
microbes complex could both result in gastritis, atrophy and
dysplasia independent of H. pylori infection [11]. Thus, non-H.
pylori commensals may contribute GC development, together with
or independent of H. pylori infection. The potential interactions
between H. pylori and gastric microbial communities, which may
contribute to gastric carcinogenesis need to be further elucidated.
Several independent studies characterised the human gastric

microbiota in gastric mucosa tissues from patients with GC and
precancerous lesions using next-generation sequencing (NGS) of the
bacteria 16 S rRNA gene [13–18]. However, the reproducibility and
predictive accuracy of these microbial signatures identified indepen-
dently in each study remain unclear. There is thus a need to perform a
comprehensive and multi-cohort analysis to provide an unbiased and
well-powered assessment of the link between gastric microbiota and
gastric carcinogenesis. In this study, we carried out a meta-analysis of
gastric microbiome in progressive stages of gastric tumorigenesis. We
integrated and re-analysed raw 16 S rRNA gene sequence data from
six independent studies across 825 gastric tissue biopsies. The
microbial compositions and taxonomic alterations across stages of GC
development were also examined. The robustness of the associations
between microbiome and disease progression was assessed through

Received: 7 March 2022 Revised: 27 May 2022 Accepted: 1 June 2022
Published online: 9 June 2022

1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen
Research Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China. 2Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
✉email: junyu@cuhk.edu.hk

www.nature.com/oncOncogene

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-022-02377-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-022-02377-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-022-02377-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-022-02377-9&domain=pdf
http://orcid.org/0000-0002-7740-6696
http://orcid.org/0000-0002-7740-6696
http://orcid.org/0000-0002-7740-6696
http://orcid.org/0000-0002-7740-6696
http://orcid.org/0000-0002-7740-6696
http://orcid.org/0000-0001-5008-2153
http://orcid.org/0000-0001-5008-2153
http://orcid.org/0000-0001-5008-2153
http://orcid.org/0000-0001-5008-2153
http://orcid.org/0000-0001-5008-2153
https://doi.org/10.1038/s41388-022-02377-9
mailto:junyu@cuhk.edu.hk
www.nature.com/onc


multi-cohort comparisons. The bacterial biomarkers for classifications
of different disease groups were identified and validated. We
investigated the interactions between bacteria and taxonomic
functions for each disease stage. In addition, we explored the effect
of H. pylori on microbial communities.

RESULTS
Mucosal microbiota differs across disease stages
To explore the global microbial signature associated with gastric
carcinogenesis, we collected and re-analysed 16 s rRNA sequencing
data of 825 gastric biopsy samples from six independent studies.
The dataset comprised patients from five ethnic groups in three
continents, covering all four stages of gastric cancer (predominantly
SG and GC). We first explored the overall microbial compositions
along the progression of gastric cancer. Five phyla, Proteobacteria,
Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria, domi-
nated the gastric microbiota in descending order of overall relative
abundance (Fig. 1A). The relative abundances of these phyla were
significantly altered among the four disease stages (p < 0.05; Fig.
S1A). At genus level, the gastric mucosal microbiota was dominated
by 10 genera, including Helicobacter, Halomonas, Pseudomonas,
Streptococcus, Lactobacillus, Shewanella, Prevotella, Acinetobacter,
Cryocola, and Staphylococcus (Fig. 1B). Similar to the dominant
phyla, the relative abundances of these 10 dominant genera were
also significantly different among disease progression (p < 0.0001;
Fig. S1B). The abundance of Helicobacter was significantly higher in
SG than in other disease stages (p < 2e−16; Fig. S1B). To assess the
alterations in the microbial communities among different disease
stages, we measured the alpha diversity (within samples) and beta
diversity (between samples). Through evaluating alpha diversity
using the Shannon index, we found that the gastric cancer group
had the lowest microbial diversity compared with SG, AG and IM (p
< 2.22e−16; Fig. 1C). Consistent results were observed using Chao1
(Fig. S2A) and Simpson indices (Fig. S2B). In addition, the microbial
diversities exhibited a descending trend along the disease
progression (Fig. 1C). Beta diversity was visualized by principal
coordinate analysis (PCoA) based on Bray-Curtis distance. The
diversity captured by the top two principal coordinates was around
60%. The microbial compositions of the four disease stages were
significantly different (p < 0.001; Fig. 1D). Consistent findings were
obtained using unweighted UniFrac (Fig. S2C) and weighted
UniFrac diatances (Fig. S2D).

Bacterial biomarkers for distinguishing GC from SG
To determine the significantly altered genera between GC and SG,
we built general linear models with study, age, gender and H.
pylori status adjusted using MaAsLin2. Among 52 bacterial genera
significantly different between the two stages, 35 genera were
enriched in GC compared with SG including Veillonella, Fusobac-
terium, Prevotella, Stenotrophomonas, Streptococcus and Lactoba-
cillus, whereas 17 were depleted including Shewanella, Halomonas,
Helicobacter, Bifidobacterium, Bacillus and Blautia (Fig. 2A). Most of
the identified bacterial genera belonged to the phylum Proteo-
bacteria. Since the sample sizes in the original studies were
unequal, we further investigated the impact of samples sizes on
the differential abundant analysis. By analyzing resampled
datasets with a matched sample size, the abundance of these
52 genera were found significantly altered between GC and SG in
almost all resampled datasets, suggesting the robustness of
differential abundant analysis (Fig. S3). We then assessed the
52 significantly altered bacterial genera for their potential as
diagnostic biomarkers for discriminating GC from SC. Six GC-
enriched (Veillonella, Dialister, Granulicatella, Herbaspirillum, Coma-
monas, Chryseobacterium) and two GC-depleted genera (Shewa-
nella and Helicobacter) were identified as potential biomarkers
using the backward stepwise selection algorithm. A logistic
regression model was built based on the eight biomarkers. To

evaluate the performance of the model, receiver operating
characteristic (ROC) analysis was conducted, yielding an area
under the curve (AUC) of 0.9109 for the training set (Fig. 2B) and
0.8533 for the test set (Fig. 2C) respectively. Additionally, we
explored the differences of relative abundances between GC and
SG for the eight diagnostic biomarkers in two different popula-
tions (Asian and European). Except for Veillonella, Herbaspirillum
and Shewanella, all the evaluated biomarkers were significantly
altered between GC and SG in both populations (Fig. 2D).

Bacterial biomarkers to distinguish other lesions
We further studied the differentially abundant bacterial genera and
diagnostic biomarkers for AG vs SG, IM vs SG, IM vs AG and GC vs
IM. The bacterial taxa significantly altered between AG and SG
included 28 AG-enriched genera and 7 AG-depleted genera (Fig.
S4A). Among these 35 taxa, nine genera were capable of
discriminating samples between AG and SG by achieving an AUC
of 0.8763 and 0.8611 on training (Fig. S4B) and test sets (Fig. S4C)
respectively. Similarly, 12 genera (5 enriched and 7 depleted in IM)
were found to be significantly altered between IM and SG. 5 genera
were enriched in IM, while 7 genera were IM-depleted (Fig. S4D).
We selected 10 genera to construct a classification model that was
capable of discriminating IM from SG, with an AUC of 0.7117 and
0.7075 in training (Fig. S4E) and test sets (Fig. S4F) respectively. For
AG vs SG, IM vs SG and GC vs SG, all the diagnostic biomarkers
were cross-validated with support vector machine (SVM) model
using the same training and test sets. The performance of these
two classification models was similar (Fig. S5). For IM vs SG, 4 IM-
enriched genera and 31 IM-depleted genera were significantly
altered (Fig. S6A). Four genera were capable of discriminating
samples between IM and SG by achieving an AUC of 0.8703 and
0.842 on training (Fig. S6B) and test sets (Fig. S6C) respectively. The
bacterial taxa were significantly altered between GC and IM
included 23 GC-enriched genera and 14 GC-depleted genera (Fig.
S6D). Four genera were capable of discriminating samples between
GC and IM by achieving an AUC of 0.8864 and 0.8766 on training
(Fig. S6E) and test sets (Fig. S6F) respectively. Similarly, the
diagnostic biomarkers for IM vs AG and GC vs IM were cross-
validated with support vector machine (SVM) models using the
same training and test sets, yielding the consistent performances
(Fig. S7). Moreover, 79 bacteria were collected by combining the
significantly altered genera for GC vs SG, AG vs SG, IM vs SG, IM vs
AG and GC vs IM. The heatmap for the 79 bacteria with differential
abundance at each disease stage was illustrated in Fig. S8.

Alteration of bacteria correlations along stages of GC
progression
To explore the interaction among diseases-associated bacteria (GC-
enriched and depleted genera) along the progression of gastric
cancer, we estimated their correlations using SparCC algorithm. We
found that the distributions of correlations were significantly
altered between GC and all three benign disease stages (p < 0.001,
Fig. S9). Moreover, the positive correlations among GC-enriched
bacteria strengthened progressively along disease progression,
especially the correlations of Fusobacterium with Prevotella,
Parvimonas, Peptostreptococcus and Streptococcus (Fig. 3). By
contrast, the co-occurring correlation (positive ones) strengths of
GC-depleted bacteria were steadily decreased along GC develop-
ment, including the correlations of Bifidobacterium with Bacillus
and Ruminococcus. Additionally, co-excluding correlations (nega-
tive ones) among GC-enriched and GC-depleted bacteria were
strengthened with disease progression, such as the interactions
between Blautia and Parvimonas or Peptostreptococcus.

Shift in microbial function across stages of gastric
carcinogenesis
We applied PICRUSt2 to infer the functional potential of the gastric
mucosal microbiome. Compared with SG, the most significant
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MetaCyc pathway enriched in GC was peptidoglycan maturation
(meso-diaminopimelate containing) of peptidoglycan biosynth-
esis. Moreover, the pathways related to purine nucleotide
biosynthesis, such as inosine-5’-phosphate biosynthesis and
5-aminoimidazole ribonucleotide biosynthesis, were also enriched
in GC. Other GC-enriched pathways are related to carbohydrate
degradation and biosynthesis, including starch degradation V,
galactose degradation I (Leloir pathway), and glycogen bio-
synthesis I (from ADP-D-Glucose) (Fig. 4A). Interestingly,
MetaCyc pathway involved in Helicobacter specific tricarboxylic
acid cycle (TCA cycle VIII) was the most depleted pathway in GC

(Fig. 4A and Table S1) as well as in AG (Fig. 4B and Table S2) in
comparison to SG. The pathway TCA cycle VIII (helicobacter)
was also significantly depleted in IM compared with SG (Fig. 4C
and Table S3). Additionally, we correlated the top altered
MetaCyc pathways with significantly altered microbes for GC vs
SG in each disease stage (Fig. S10). We further investigated the
significantly altered KEGG pathways between disease stages.
We found that the epithelial cell signaling pathway in H. pylori
infection (ko05120) was significantly depleted in AG, IM and GC
compared with SG (Fig. S11, Tables S4–S6). All the significantly
altered pathways were provided in Tables S1–S6.

p<0.001

A

B

C D

Fig. 1 Microbiome data profiles across stages of gastric carcinogenesis. A Compositional bar plot for the relative abundance of top
bacterial phyla across subjects in each stage. All the illustrated top 5 phyla with mean relative abundance >1%. B Compositional bar plot for
the relative abundance of top bacterial genera across subjects in each stage. All the illustrated top 10 genera with mean relative abundance
>1%. C Bacterial diversity (alpha diversity) estimated by Shannon index for patients in each group. The diamond symbols indicated the
corresponding mean value for each group. Pairwise comparisons were performed using Wilcoxon rank-sum test. D Principal coordinate
analysis (PCoA, beta diversity) for all the subjects. It was based on Bray-Curtis distance. p-value was estimated by permutational multivariate
analysis of variance (PERMANOVA).
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The influence of H. pylori on the microbial community
We further investigated the effect of H. pylori status on gastric
cancer microbiome structure. Overall, the alpha diversity eval-
uated based on Shannon index revealed that the gastric
microbiome in the H. pylori-negative patients had significantly
higher microbial diversity (p= 1.3e−08; Fig. 5A). Moreover, the

microbial compositions between H. pylori-negative and H. pylori-
positive groups were significantly different as reflected by beta
diversity based on Bray-Curtis distance (p < 0.001; Fig. 5B). We
then explored the influence of H. pylori on microbial interactions
using SparCC algorithm. The distribution of bacteria-bacteria
correlations between these two groups were significantly different
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(p < 0.0001; Fig. 5C). Higher numbers of strong co-excluding and
co-occurring interactions (|r| > 0.5, adjusted p-value < 0.05) among
bacteria were observed in H. pylori-negative group compared with
H. pylori-positive group (Fig. 5D).
We finally explored the effect of H. pylori in each disease stage.

The H. pylori-negative group exhibited a higher microbial diversity
in SG and IM. A similar trend was observed in AG and GC, though
it did not reach a significant level (Fig. S12A). The beta diversities
between the two groups were significantly altered in all four
disease stages (Fig. S12B). For the bacteria interactions - within
each disease group, significantly alterations of correlation
distributions were observed. Consistent with the global state,
the number of strong associations was higher in H. pylori-negative
group (Fig. S12C).

DISCUSSION
Gastric cancer is a multifactorial disease involving the interactions
among host, microbial and environmental factors, despite H. pylori
being recognized as the crucial risk factor. Microbiome dysbiosis
has been shown to associate with many gastrointestinal diseases
including cancers [19]. Our meta-analysis demonstrated that
gastric microbiota was dominated by the phyla Proteobacteria,
Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria, which is
consistent with previous findings [16, 17, 20]. The microbial
diversity and richness were significantly decreased in carcinoma
compared with precancerous stages, in accordance with some
previous studies [16, 18]. There are several conflicting reports
about the changes in the alpha diversity of the gastric microbiome
across GC cascade [13, 14, 21]. The inconsistency may be due to
limited sample size and the indices applied to evaluate the
diversity. Reduced microbial diversity has been recognized as a
characteristic of disease status, including inflammatory diseases
and cancers [19–21].
At the genus level, we identified some significant alterations of

bacteria abundance across disease stages. We found that more
than half of the GC-enriched bacteria were commonly identified in
the oral cavity compared with SG, including Prevotella, Strepto-
coccus, Fusobacterium, Veillonella, Peptostreptococcus and Parvimo-
nas. The enrichment of oral bacteria have been reported in several
diseases, such as inflammatory bowel diseases, colorectal cancer
and pancreatic cancer [21–26]. Periodontal diseases caused by oral
microbiota dysbiosis were linked to gastric carcinoma as
suggested by some studies [27, 28]. Fusobacterium species have
drawn a lot of attention due to their pro-inflammatory nature
[29, 30]. Particularly, a species of Fusobacterium has been shown to
potentiate intestinal tumorigenesis and modulate the tumor-
immune microenvironment, indicating a potential as a diagnostic
biomarkers for colorectal cancer [31, 32]. Some studies revealed
that Streptococcus species were associated with oesophageal
cancer through inducing inflammatory cytokines in oesophageal
epithelial cells [33, 34]. Veillonella species were found to be
increased in oral, lung and colorectal cancer patients [32–37],
suggesting its potential role in tumorigenesis of GC. The
overabundance of Prevotella species at mucosal sites was
suggested to be associated with some localized and systemic

diseases, including periodontitis, bacterial vaginosis, rheumatoid
arthritis and low-grade systemic inflammation [38]. Peptostrepto-
coccus stomatis and Parvimonas micra in feces have been found
related to colorectal cancer [32]. Multiple evidences suggest that
the GC-depleted taxa Bifidobacterium, Bacillus and Blautia might
be putative probiotics. Bifidobacterium longum was reported to
exhibit anti-proliferation and anti-angiogenesis effect against
gastric cancer by downregulating COX2 expression [39]. Moreover,
clinical trials were conducted using Bifidobacterium as probiotic
supplement with antibiotics and proton pump inhibitors to
eradicate H. pylori [40]. The antagonistic activity of Bacillus spp.
has been explored against large number of pathogens. One study
also reported the anti H. pylori activity of tested probiotic Bacillus
subtilis strains, which was attributed to the secretion of
aninocoumacin A antibiotic [41]. Anti-inflammatory effects was
also demonstrated for Blautia in gastrointestinal diseases, includ-
ing inflammatory bowel diseases and intestinal graft-versus-host
disease [42]. The putative pathogenic or probiotic functions of the
bacterial taxa identified in the meta-analysis were supported by
several studies [13, 14, 16, 18], therefore their functional roles in
GC tumorigenesis merit further investigation.
The most relevant genera that characterised each disease stage

identified by our meta-analysis allowed us to discover robust
diagnostic biomarkers, which showed excellent performance. The
8 bacterial biomarkers were shown to be efficient (AUC of 0.85) in
distinguishing GC from SG on a multi-cohort dataset, underlying
their implications in disease progressive as well as their clinical
applications. Besides, we found 9 and 10 bacterial biomarkers
capable of classifying AG from SG (AUC of 0.86) and IM from SG
(AUC of 0.71). The comparable AUC values obtained by different
classification models (logistic regression vs SVM) indicated that
the bacterial biomarkers were robust regardless of models used.
Changes in bacterial correlations could partially explain gastric

tumorigenesis and reflect disease-specific microenvironment. We
found that the sub-network formed by GC-enriched bacteria
included many opportunistic pathogens, including Stenotropho-
monas, Streptococcus, Fusobacterium, Parvimonas Peptostreptococ-
cus and Prevotella. By contrast, for the sub-network generated by
GC-depleted genera, there were some putative probiotics, such as
Bifidobacterium, Bacillus, and Blautia. We observed increasing
strengths of co-occurring correlations among GC-enriched bac-
teria implied that they could be more active in the later disease
stage and therefore contribute to gastric carcinogenesis. We also
observed decreasing strengths of co-occurring interactions among
GC-depleted bacteria along disease progression, suggesting that
they potentially play an essential role in maintaining the balanced
composition of gastric microbiota. Moreover, the increase of
negative correlation strengths between GC-enriched and GC-
depleted bacteria suggested the possibility of reciprocally
antagonistic effects between them. The alteration of network
structure for the gastric microbial community with GC develop-
ment was also reported by other researchers. One study found
that the correlation strengths of GC-enriched and GC-depleted
bacteria increased with disease progression [43]. Another study
showed that strong co-excluding interactions in gastric microbiota
between Helicobacter and Fusobacterium, Neisseria, Prevotella,

Fig. 2 Differentially abundant bacteria between GC and SG and the diagnostic genera markers. A Mirror bar plot (left panel) and heatmap
(right panel) for the significant differentially abundant genera between GC and SG. Numbers in the bar plot were the corresponding fold
changes of means of relative abundances for GC vs SG. The significantly altered genera were determined by MaAsLin2 with adjusting age,
gender and H. pylori status. Adjusted p-value <0.05 as the cut-off for significance. B Receiver operating characteristic (ROC) analysis for the 8
genera markers with logistic regression model discriminating GC from SG on training set. C Receiver operating characteristic analysis for the
same logistic regression model discriminating GC from SG in test set. The 8 genera markers were determined by backward stepwise selection
algorithm from the significantly altered genera. The ratio of sample size of training set to that of test set was 8:2. D Violin graph for the Log2
fold change of relative abundance of the 8 genera markers between GC and SG in different ethnic groups. Significance was obtained by
Wilcoxon rank-sum test (*p < 0.05, **p < 0.01, ***p < 0.001).
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Fig. 3 Correlation networks of gastric cancer associated bacteria with disease progression. Correlation strengths were estimated by
SparCC algorithm. Significant correlations with adjusted p-value < 0.05 were remained for visualization. Bacteria in the left circle were GC-
depleted compared with SG while those in the right circle were GC-enriched. The enriched bacteria compared with SG were labelled with red
colour while the depleted ones were labelled with blue colour in each disease stage. The sizes of nodes were proportional to the median of
relative abundance of corresponding genera in each stage respectively.
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Veillonella, Rothia were found only in patients with advanced
gastric lesions, and were absent in normal/superficial gastritis
group [43]. All the findings suggest that alteration in the gastric
microbial community may have implications in gastric
tumorigenesis.
We further addressed the functional features of gastric

microbiota across disease stages. Compared with SG, we observed

the most significant pathway enriched in GC was related to
peptidoglycan biosynthesis. Peptidoglycan plays an important role
in modulating host inflammatory response to H. pylori infection,
allowing the bacterium to persist and induce carcinogenic
consequences in the gastric niche [43]. Moreover, we found that
some pathways enriched in GC involve in purine nucleotide
biosynthesis. Studies showed that some enzymes involved in de

Fig. 4 Predicted microbiota functional changes between stages of gastric cancer in MetaCyc pathways. A Bar plot of the top
10 significantly altered MetaCyc pathways between GC and SG. B Bar plot of the top 10 significantly altered MetaCyc pathways between AG
and SG. C Bar plot of the top 10 significantly altered MetaCyc pathways between IM and SG. Significance was determined by Linear
discriminant analysis (LDA) effect size (LEfSe) method with cutoff LDA score >2 and p-value < 0.05.
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novo purine biosynthesis promote GC development [44, 45], such
as U2AF homology motif kinase 1 (UHMK1) and phosphoribosy-
laminoimidazole carboxylase, phosphoribosylaminoimidazole suc-
cinocarboxamide synthetase (PAICS). Interestingly, the second top
GC-enriched pathway compared with SG was related to inosine-5′-
monophosphate (IMP) biosynthesis, which also involves in purine
nucleotide biosynthesis. Inosine-5′-monophosphate dehydrogen-
ase (IMPDH) is a purine biosynthetic enzyme that catalyzes the
nicotinamide adenine dinucleotide (NAD+)-dependent oxidation
of inosine-5′-monophosphate to xanthosine monophosphate
(XMP), the first rate-limiting step towards the de novo biosynthesis
of guanine nucleotides from IMP. Guanine nucleotide synthesis is
essential for maintaining normal cell function and growth. IMPDH
expression is found to be upregulated in some tumour tissues and

cancer cell lines. Therefore, IMPDH has been addressed as a drug
target for cancer chemotherapy [46].
Furthermore, we explored the effects of H. pylori on the

diversity and interactions of microbial communities for all involved
subjects and each disease stage. We observed a decrease in
richness of microbiome in H. pylori-positive patients, which is
consistent with previous reports [18, 47]. This observation was still
held for disease stage SG and IM. As for beta diversity, the
significant difference was also demonstrated between these two
H. pylori status. Additionally, we observed the significant decrease
of interactions among bacteria in H. pylori-positive group in all
participants and each disease group. These findings were
supported by the previous study [18]. The dysbiosis may be
caused by H. pylori infection and colonization. During colonization,

Fig. 5 The influence of H. pylori in the microbiota community. A Bacterial diversity (Alpha diversity) estimated by Shannon index for patients
with different H. pylori status. p-value was obtained by Wilcoxon rank-sum test. B Principal coordinate analysis (PCoA, Beta diversity) for
subjects in different H. pylori status. It was based on Bray-Curtis distance. p-value was estimated by permutational multivariate analysis of
variance (PERMANOVA). C Histograms of the distributions of SparCC correlation strengths for abundant bacteria with different H. pylori status.
Genera with median of relative abundance >0.1% were considered as abundant bacteria. p-value was obtained by Kolmogorov-Smirnov test.
D Correlation networks of abundant bacteria with different H. pylori status. Correlation strengths were estimated by SparCC algorithm.
Significant correlations with adjusted p-value < 0.05 were remained for visualization. The sizes of nodes were proportional to the median of
relative abundance of corresponding genera in each H. pylori status.
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Table 1. Demographic and clinical details of subjects in each study.

Study Characteristics SG (n= 304) AG (n= 122) IM (n= 149) GC (n= 250) p-value

Coker_2018 (Chinese) Sample size (n= 311) 110 117 45 39

Age 49.6 (10.9) 53.9 (14.0) 54.4 (10.3) 59.9 (10.7) <0.001

Gender

Male 56 (50.9%) 62 (53.0%) 15 (33.3%) 28 (71.8%) 0.006

Female 54 (49.1%) 55 (47.0%) 30 (66.7%) 11 (28.2%)

H. pylori status

Positive 81 (73.6%) 82 (70.1%) 27 (60.0%) 27 (69.2%) 0.42

Negative 29 (26.4%) 35 (29.9%) 18 (40.0%) 12 (30.8%)

Sung_2019 (Chinese) Sample size (n= 202) 103 5 94 –

Age 52.1 (8.3) 52.6 (7.5) 52.6 (8.2) – 0.819

Gender

Male 53 (51.5%) 1 (20.0%) 51 (54.3%) – 0.359

Female 50 (48.5%) 4 (80.0%) 43 (45.7%) –

H. pylori status

Positive 103 (100%) 5 (100%) 94 (100%) – NA

Negative 0 (0%) 0 (0%) 0 (0%) –

Ferreira_2018 (Portuguese) Sample size (n= 135) 81 – – 54

Age 43.6 (7.0) – – 58.8 (13.2) <0.001

Gender

Male 79 (97.5%) – – 32 (59.3%) <0.001

Female 2 (2.5%) – – 22 (40.7%)

H. pylori status

Positive 80 (98.8%) – – 47 (87.0%) 0.007

Negative 1 (1.2%) – – 7 (13.0%)

Yu_2017 (Chinese: 80 Mexican: 54) Sample size (n= 134) 134

Age 61.8 (10.6) NA

Gender

Male – – – 92 (68.7%) NA

Female – – – 42 (31.3%)

H. pylori status

Positive – – – 80 (59.7%) NA

Negative – – – 54 (40.3%)

Eun_2014 (Korean) Sample size (n= 31) 10 – 10 11

Age 50.4 (11.5) – 57.5 (7.3) 65.7 (11.3) 0.019

Gender

Male 4 (40.0%) – 7 (70.0%) 6 (54.5%) 0.445

Female 6 (60.0%) – 3 (30.0%) 5 (45.5%)

H. pylori status

Positive 7 (70.0%) – 4 (40.0%) 7 (63.6%) 0.433

Negative 3 (30.0%) – 6 (60.0%) 4 (36.4%)

Castano- Rodriguez_ 2017 (Malaysian) Sample size (n= 12) – – – 12

Age – – – 62.1 (13.8) NA

Gender

Male – – – 4 (33.3%) NA

Female – – – 8 (66.7%)

H. pylori status

Positive – – – 11 (91.7%) NA

Negative – – – 1 (8.3%)

Age format: mean (standard deviation). Kruskal-Wallis test was performed on continuous factor age for getting the p-values. Fisher’s exact test was performed
on categorical factors gender and H. pylori status for obtaining the p-values.
SG superficial gastritis, AG atrophic gastritis, IM intestinal metaplasia, GC gastric cancer, NA not applicable.
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the adhesins produced and virulence factors delivered by H. pylori
may weaken the interactions among other bacteria. All these
indicate H. pylori with the capacity to alter gastric microbiota
community dramatically.
In conclusion, we assessed the gastric microbiome using multi-

cohort datasets and identified biomarkers capable of distinguishing
patients across disease stages. The increase in the abundance of
opportunistic pathogens (e.g. Veillonella and Parvimonas) concomi-
tant with the decrease in putative probiotics (e.g. Bifidobacterium)
was observed along the stages of disease progressive, as revealed
by corresponding ecological and functional shifts in bacterial
community. We found that the co-occurring correlation strengths
of GC-enriched bacteria were increased while those of GC-depleted
bacteria were decreased with GC progression. In the meanwhile,
co-excluding correlations among GC-enriched and GC-depleted
bacteria were strengthened. The top GC-enriched pathways were
related to peptidoglycan biosynthesis and purine nucleotide
biosynthesis. Additionally, we showed that H. pylori could modulate
gastric microbiota, leading to reduction in microbial diversity and
interactions among gastric microbes. Our meta-analysis provides
additional insight into the functional involvements and therapeutic
targets of the gastric bacteria other than H. pylori in contributing to
gastric tumorigenesis.

MATERIALS AND METHODS
Study sample inclusion and data acquisition
In this meta-analysis, raw 16 S rRNA gene sequence data of 825 gastric
tissue biopsies were integrated from six studies. The demographic and
clinical details of included subjects were showed in Table 1. For the study
Coker_2018 [18], 311 gastric biopsy samples of Chinese patients were
included after removing 37 adjacent non-cancerous samples. Among the
404 gastric biopsy samples of Chinese subjects obtained from the study
Sung_2019 [15], only 202 pre-treatment samples were used in our analysis.
For the study Ferreira_2018 [16], raw data of 135 gastric biopsy samples
from Portuguese patients was retrieved form Sequence Read Archive (SRA)
under accession PRJNA413125. For the study Yu_2017 [17], raw data of 80
gastric tumor samples from China and 54 from Mexico was downloaded
from SRA with identifier PRJNA310127. We included all the 31 gastric
biopsy samples collected in South Korea from the study Eun_2014 [14].
The raw sequence data was available in the SRA under accession
PRJNA239281. We fetched the raw data of gastric biopsy samples from
12 Malaysian patients with gastric cancer for the study Castano-
Rodriguez_2017 [13] from European Nucleotide Archive (ENA) under
accession PRJEB21497.

16 S rRNA gene sequence data analysis
The 16 S rRNA gene sequence analysis was conducted using QIIME 2
(version 2020.11.0) [48]. Raw paired-end reads were joined by vsearch join-
pairs. The joined sequences with more than 1 position (--p-quality-
window=1) with quality score <15 (--p-min-quality=15) were discarded
using quality-filter q-score command, and subsequently denoised using
Deblur workflow to reduce sequencing errors and remove chimera reads.
The resulting sequences were taxonomically assigned based on the
Greengenes database (version 13.8) using BLAST+ consensus taxonomy
classifier with default settings. Microbial community analysis was
conducted using vegan package in R. The richness and abundance of
species in each sample (alpha diversity) were estimated by Shannon’s
index. Dissimilarity of microbial communities among samples (beta
diversity) was measured by Bray-Curtis distance and visualized with
principal coordinate analysis (PCoA). Permutational multivariate analysis of
variance (PERMANOVA) using Bray-Curtis distance with 1000 permutations
was used to compare community dissimilarity of sample groups.

Determination of differentially abundant bacteria
The differentially abundant bacteria at genus level among different sample
groups were determined by MaAsLin2 (Microbiome Multivariable Associa-
tions with Linear Models, Maaslin2 R package) with study, age, gender and
H. pylori status adjusted according to clinical details of included subjects.
The significance criteria were adjusted p-value < 0.05, mean relative
abundance >0.1% and prevalence >20%.

Identification and validation of diagnostic biomarkers
For each disease stage (i.e. SG), data was randomly split into training and
test sets in a ratio of 8:2. The optimal biomarkers for discriminating any two
disease stages (i.e. GC vs SG) on training set were iteratively selected from
differentially abundant bacteria based on the Akaike Information Criteria
(AIC) using backward stepwise selection algorithm from MASS package in
R. Logistic regression models were built using the selected bacterial
biomarkers with the function “glm” from stats package, and their
performance was evaluated on the corresponding test set. In addition to
logistic regression model, we evaluated the selected bacteria biomarkers in
discriminating disease stages using support vector machine (SVM) model
on the same training set and test set as implemented in caret R package.
The receiver operating characteristic (ROC) analysis was performed to
illustrate the performances of classification models using pROC R package.

Microbial correlation network analysis
SparCC algorithm was used to estimate the correlations between taxa from
sparse compositional data. The empirical p-values of correlation coeffi-
cients were estimated based on 100 iterations. The correlation coefficients
with adjusted p-values < 0.05 were considered significant and visualized
with Cytoscape (version 3.7.2).

Prediction of metagenomic functions
Functional prediction was performed using PICRUSt2 [49]. Predicted
functional genes were categorised into MetaCyc metabolic pathways and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Significantly
altered pathways between disease stages were determined by linear
discriminant analysis (LDA) effect size (LEfSe) method [50] with a cutoff
LDA score > 2 and p-value < 0.05.

Statistical analyses
Pairwise comparison was performed using two-sided Wilcoxon rank-sum
test (Mann-Whitney U test). Kruskal-Wallis test was used to compare
multiple groups. Fisher’s exact test was performed on categorical variables
(gender and H. pylori status). Kolmogorov-Smirnov test was applied to
compare the distributions of correlation coefficients between bacteria for
different sample groups. Benjamini-Hochberg false discovery rate correc-
tion was applied to adjust p-value for multiple tests. All the related
statistical analyses were performed using R software (version 4.0.4).
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Raw sequence data for study Ferreira_2018 are available at Sequence Read Archive
(SRA) under accession number PRJNA413125. Raw sequence data for study Yu_2017
are available at SRA under accession number PRJNA310127. Raw sequence data for
study Eun_2014 are available at SRA under accession number PRJNA310127. Raw
sequence data for study Castano-Rodriguez_2017 are available at European
Nucleotide Archive (ENA) under accession number PRJEB21497. Raw sequence data
for study Coker_2018 and study Sung_2019 are available from the corresponding
author, Professor Jun Yu, upon reasonable request.
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