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ABSTRACT
We sequenced the chloroplast genome of Poterioochromonas malhamensis (Pringsheim) R.A.Andersen
strain SZCZR2049, which originates from Van Lake in Turkey. This genome is 133,923 bp long, and like
those currently available for six phototrophic chrysophytes, it displays a long, gene-rich inverted repeat
and a very short single-copy region. Compared to its chrysophyte counterparts, the P. malhamensis
inverted repeat differs noticeably in gene content and the whole genome is missing 11 protein-coding
genes. The maximum likelihood phylogeny inferred from concatenated protein-coding genes posi-
tioned P. malhamensis among the chrysophytes sensu lato as sister to the clade containing the
Synurales (Synurophyceae) and Chromulinales (Chrysophyceae).
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Poterioochromonas malhamensis (Pringsheim) R.A.Andersen
2017, formerly described as Ochromonas malhamensis
(Pringsheim 1952), is a mixotrophic flagellated chrysophyte
that belongs to the Ochromonadales (Synurophyceae).
Photosynthesis was lost multiple times in chrysophytes,
prompting studies of the molecular events underlying the
transition from phototrophy to heterotrophy (Graupner et al.
2018; Dorrell et al. 2019). Known for grazing on bacteria
(Holen 1999), P. malhamensis is also grazing on other micro-
algae (Zhang et al. 1996; Zhang and Watanabe 2001), an
attribute representing a major threat to massive outdoor pro-
duction of commercially important microalgae (Ma et al.
2017, 2018). P. malhamensis is a freshwater species but it can
adapt to different salinities (Kauss 1974). We isolated this
alga from a benthic sample of Van Lake, a saline lake from
Eastern Anatolia. Here, we describe the chloroplast genome
of this isolate and compare it to those previously reported
for six phototrophic chrysophytes: five members of the
Synurales (Synurophyceae, GenBank accessions MH795128-
MH795132) (Kim et al. 2019) and Ochromonas sp. CCMP1393
(Chromulinales, Chrysophyceae, GenBank accession KJ877675)
(�Sev�c�ıkov�a et al. 2015).

A benthic sample was collected at a latitude of 39� 560

7.99200 N; 42� 160 52.99300 E during the month of February
2020 and was used as inoculum to initiate growth of P. mal-
hamensis under illumination in F/2 medium based on natural
freshwater (20 ‰ salinity). A clonal culture of this alga was

established and is currently maintained in the Szczecin
Culture Collection (http://geocentrum.usz.edu.pl/en/szczecin-
diatom-culture-collection-szcz/, contact: Dr Przemysław
Dąbek, pdabek@usz.edu.pl) under the accession number
SZCZR2049. DNA was extracted following Doyle and Doyle
(1990) and sequenced on the DNBSEQ platform by the
Beijing Genomics Institute in Shenzhen. A sample of the DNA
preparation is kept at �20 �C at the University of Szczecin. A
total of 40-million paired-end reads were assembled using
SPAdes 3.14.0 (Bankevich et al. 2012). Following identification
of chloroplast contigs, the complete chloroplast genome
sequence was assembled using Consed (Gordon and Green
2013). Genes were identified as previously described (Turmel
et al. 2017).

The P. malhamensis chloroplast genome (GenBank acces-
sion MW175522) is 133,923 bp long and as previously docu-
mented for other photosynthetic chrysophytes (�Sev�c�ıkov�a et
al. 2015; Kim et al. 2019), it displays two identical copies of
long, gene-rich inverted repeat (IR) sequences that are sepa-
rated from one another by single-copy regions of vastly
unequal lengths. At 1,619 bp, the small single copy region
(SSC) contains only 5 conserved genes (psaD, rpl21, rpl27,
trnM, trnS) in addition to orf133 (divergent ycf54 sequence).
The long single-copy region (LSC) is 69,530 bp long and
codes for 87 conserved proteins, 3 hypothetical proteins, and
15 tRNAs. The IR is 31,387 bp long and contains 15 conserved
protein-coding genes, 5 ORFs, 3 rRNA genes and 7 tRNA
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genes. Although they were found in conserved gene contexts
in the IRs of all previously examined autotrophic chryso-
phytes, the psaM, petJ, and rpl34 genes appear to be entirely
missing from the P. malhamensis genome. On the other
hand, the P. malhamensis IR exhibits dnaK and a block of 4
contiguous genes (ilvB, rbcS, rbcL and rps4) that are located
in the LSC in the 6 compared chrysophytes. Note here that
blastn analysis of P. malhamensis SZCZR2049 rbcL revealed
100% identity with those previously reported for other strains
of P. malhamensis (GenBank: EF165169, MH643685 to
MH643690, MH643692). With respect to gene content, P. mal-
hamensis also differs from phototrophic chrysophytes by the
absence of a number of additional genes (acpP, atpE, ftrB,
psbW, rpl29, tsf, ycf12 and ycf36) and by the occurrence of
rpoC2 gene as two separate ORFs (the portion corresponding
to the 30 coding region is annotated as orf648). Breakup of
the chloroplast rpoC2 into two ORFs has also been reported
in green algae belonging to the core Trebouxiophyceae and
Chlorophyceae (Turmel and Lemieux 2018). The dnaB, syfB
and cemA genes, which were found to be specific to the
Synurophyceae (Kim et al. 2019), are missing from P.
malhamensis.

A maximum likelihood phylogeny was inferred from 107
chloroplast protein-coding genes of 9 taxa, including the two
representatives of the Eustigmatophyceae (Nanochloropsis
gaditana and Vischeria stellata) that were used as outgroup
(Figure 1). Sequence alignments were performed using
MAFFT (Katoh and Standley 2013) and variable regions were
removed with trimAl (Capella-Gutierrez et al. 2009). The
phylogenetic analysis was carried out using RAxML 8.0
(Stamatakis 2014) under the GTRþ IþG model, with the best
tree out of 100 being computed for 1000 bootstrap repli-
cates. In this tree, P. malhamensis represents the deepest
branching lineage in the strongly supported clade (100%
bootstrap support) containing the chrysophytes sensu lato.
The relationships observed for the Synurales and
Chromulinales are in agreement with the chloroplast phylo-
genomic analysis reported by Kim et al. (2019).
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Figure 1. Maximum likelihood phylogeny obtained from 107 concatenated chloroplast protein-coding genes from Poterioochromonas malhamensis and 8 other taxa
representing Chrysophyceae and Eustigmatophyceae. The best-scoring RAxML tree (log likelihood ¼ �495241.595123) is presented.
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