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Abstract: Mammalian carboxylesterases (CESs) comprise a multigene family whose gene 
products play important roles in biotransformation of ester- or amide-type prodrugs. They 
are members of an α,β-hydrolase-fold family and are found in various mammals. It has been 
suggested that CESs can be classified into five major groups denominated CES1-CES5, 
according to the homology of the amino acid sequence, and the majority of CESs that have 
been identified belong to the CES1 or CES2 family. The substrate specificities of CES1 and 
CES2 are significantly different. The CES1 isozyme mainly hydrolyzes a substrate with a 
small alcohol group and large acyl group, but its wide active pocket sometimes allows it to 
act on structurally distinct compounds of either a large or small alcohol moiety. In contrast, 
the CES2 isozyme recognizes a substrate with a large alcohol group and small acyl group, 
and its substrate specificity may be restricted by the capability of acyl-enzyme conjugate 
formation due to the presence of conformational interference in the active pocket. Since 
pharmacokinetic and pharmacological data for prodrugs obtained from preclinical 
experiments using various animals are generally used as references for human studies, it is 
important to clarify the biochemical properties of CES isozymes. Further experimentation 
for an understanding of detailed substrate specificity of prodrugs for CES isozymes and its 
hydrolysates will help us to design the ideal prodrugs. 
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Introduction  
 
Mammalian carboxylesterases (CESs, EC 3.1.1.1) comprise a multi-gene family whose gene 

products are localized in the endoplasmic reticulum (ER) of many tissues. These enzymes efficiently 
catalyze the hydrolysis of a variety of ester- and amide-containing chemicals as well as drugs (including 
prodrugs) to the respective free acids. They are involved in detoxification or metabolic activation of 
various drugs, environmental toxicants and carcinogens. CESs also catalyze the hydrolysis of 
endogenous compounds such as short- and long-chain acyl-glycerols, long-chain acyl-carnitine, and 
long-chain acyl-CoA esters [1-9]. We have reviewed the characteristics of CESs in relation to the 
metabolism of xenobiotics [10-12].  Multiple isozymes of hepatic microsomal CES exist in various 
animal species [3, 13, 14], and some of these isozymes are involved in the metabolic activation of 
certain carcinogens as well as being associated with hepato-carcinogenesis [6].   

Mammalian CES are members of an α,β-hydrolase-fold family and are found in various mammal 
spp.  [3, 15-25]. It has been suggested that CESs can be classified into five major groups denominated 
CES1-CES5, according to the homology of the amino acid sequence [10-12], and the majority of CESs 
that have been identified belong to the CES1 or CES2 family. It has also been shown that striking 
species differences exist [3, 13, 26]. For example, Inoue et al. [27] showed that esterase activity in the 
dog intestine is very weak and produced no appreciable active band in a disc electrophoresis coupled 
with staining of esterase activity. On the other hand, esterase activities were observed in the intestines of 
other species (human, rat, mouse, guinea pig and rabbit) [12, 26, 28-30] and found to produce a few 
active bands in an electrophoretic assay. Since pharmacokinetic and pharmacological data for 
ester-prodrugs obtained from preclinical experiments using various animals are generally used as 
references for human studies, it is important to clarify the biochemical properties of each CES isozyme 
such as substrate specificity, tissue distribution and transcriptional regulation.  

CESs show ubiquitous tissue expression profiles with the highest levels of CES activity present in 
liver microsomes in many mammals [1, 6, 8, 31-38]. Drug-metabolizing enzymes that are present 
predominantly in the liver are involved in biotransformation of both endogenous and exogenous 
compounds to polar products to facilitate their elimination. These reactions are categorized into phase I 
and phase II reactions. CESs are categorized as phase-I drug-metabolizing enzymes that can hydrolyze a 
variety of ester-containing drugs and prodrugs, such as angiotensin-converting enzyme inhibitors 
(temocapril, cilazapril, quinapril, and imidapril) [1, 39-41], anti-tumor drugs (CPT-11 and Capecitabin) 
[42-49] and narcotics (cocaine, heroin and meperidine) [16, 50, 51]. In this regard, it is thought that 
CESs are one of the major determinants for pharmacokinetics and pharmacodynamics of ester-drugs or 
ester prodrugs (Figure 1). Actually, it has been shown that the dog CES1 isozyme was involved in a 
pulmonary first-pass effect in the disposition of a propranolol ester prodrug [28, 52]. It has also been 
shown that the expression level of the human CES isozyme was correlated with the conversion ratio of 
CPT-11 to SN-38, the active metabolite, which is thought to be a key step for the chemotherapeutic 
action of this anti-tumor drug [47, 53-55]. 

This review focuses on the molecular characteristics of CES isozymes, the different structure-activity 
relationship of substrates with each CES families and genomic structure and regulation of CES genes. 
This information is important in the design and the development of the prodrugs.    
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Important role of CES in drug metabolism with other related enzymse or transporters 
 

Since many drug metabolizing enzymes, such as cytochrome P450(CYP), CES, UDP-glucuronosyl- 
ntransferase (UGT) and sulfotransferase, and transporters, such as P-glycoprotein (P-GP), multidrug 
resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), were co-expressed 
in liver and small inteisine, the hydrolase activity in the liver and small intestine is contribute to drug 
metabolism and drug transport with phase II drug metabolizing enzyme or drug transporter. The CESs 
and the UGT family, the catalytic domains of which are localized in the luminal sides of the 
endoplasmic reticulum (ER) membrane, are two major enzyme groups responsible for phase I and II 
reactions (Figure 2). Products hydrolyzed by CESs, such as SN-38 from CPT-11, are also good 
substrates for UGT. Thus, we speculated that CES-UGT interaction in the luminal side of the ER 
membrane is important for drug metabolism. As shown in Figure 1, two hydrolyzed products from 
ester-substrate are formed by CES: alcohol or phenol, which are substrates for UGT, and organic anions, 
which are substrates for organic anion transporter such as MRP2 or BCRP. In this regard, we thought 
that CES is major drug-metabolizing enzymes for enzyme-enzyme interaction or enzyme-transporter 
interaction. 
 

Figure 1. CES-UGT interaction in the luminal side of the ER membrane and CES- 
transporter interaction in the cell.  Two hydrolyzed products from ester-substrate are 
formed by CES; alcohol or phenol, which are substrates for UGT, and organic anions, 
which are substrates for organic anion transporter such as multidrug resistance-associated 
protein 2 (MRP2) or breast cancer resistance protein (BCRP). 
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Figure 2.  Phylogenic tree and nomenclature of CES families. CES isozymes are classified 
into five families, CES1, CES2, CES3, CES4 and CES5. Each families also divided into 
subfamilies.  
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amides and esters. A single esterolytic reaction is frequently mediated by several kinds of enzyme. 
Recent studies on esterases as well as other enzymes, such as acetylcholine esterase, butyrylcholine 
esterase, cholesterol esterase, triacylglycerol lipase and CES, involved in xenobiotic metabolism have 
provided evidence of multiple forms.  It seems almost impossible to classify these CES isozymes based 
on their substrate specificity along the lines of the International Union of Biochemistry (I.U.B.) 
Classification because the individual hydrolases exhibit properties of CES, lipase or both. Mentlein et 
al. [37] proposed classification of these hydrolases as "unidentified CESs” (EC 3.1.99.1 to 3.1.99.x). 
Based on amino acid sequence alignment of the encoding genes, we tried to classify CES isozymes into 
five families, CES 1, CES 2, CES 3, CES4 and CES 5 (Figure 2) [11, 12].  The CES 1 family includes 
the major forms of CES isozymes (more than 60% homology of human CES1A1). Thus, they could 
divide into eight subfamilies. Most of all CES1 family, except CES1G, are mainly expressed in liver. 
The CES 1A subfamily includes the major forms of human, monkey and rabbit CES, and the CES1B 
includes the major isoforms of rat, mouse and hamster CES, and CES1C includes the major isoforms of 
dog, cat and pig CES [1, 4, 5, 23, 40, 46, 57-60]. The CES 1H subfamily includes CES RL1 (CES1H4), 
mouse ES 4(Ces1H1) and Hydrolase B (CES1H3) and C (CES1H2), which catalyze long-chain 
acyl-CoA hydrolysis [3, 4, 10, 22, 25, 61].  Members of the CES 1G family are not retain in ER, which 
CES isozymes are secrete to blood from liver [24, 58].  It is interested that CES1G family isozymes only 
found in rats and mice, not found in human. Although high level of hydrolase activity can be detected in 
the blood of the rats and mice, no such activity is detected in the blood of humans. On the other hand, the 
CES2 family includes human intestinal CES (CES2A1) [28, 30, 44, 62, 63], rCES2 (CES2A10) [64], rat 
intestinal CES, mCES2 (Ces2A6) [2], rabbit form2 [65] and hamster AT51 (CES2A11) [66], which are 
mainly expressed in small intestines. The CES3 family includes ES-male (CES3A2) and human CES3 
(CES3A1) [67, 68].  Human CES3 (CES3A1) has about 40% amino acid sequence identity with both 
CEA1A1 and CES2A1, and is expressed in the liver and gastrointestinal tract at an extremely low level 
in comparison with CES1A1 and CES2A1 [68]. The CES4 family includes carboxylesterase-like 
urinary excreted protein (CAUXIN) (CES4A2), which is excrete as a major urinary protein in cat urine 
[69, 70]. The CES 5 family includes 46.5-kDa CES isozymes [71, 72], which have a different structure 
from the structures of isozyme in other CES families. ES 46.5-kDa from mouse liver [38] and amide 
hydrolase of monkey liver [19] probably belong to this family. These groupings are similar to the results 
of phylogenic analysis (Figure 2). 
 
Structure and Catalytic Mechanism of CES Isozymes 

 
It has been shown that several proteins of the ER lumen have a common carboxy-terminal sequence, 

KDEL-COOH, and that the structural motif is essential for retention of the protein in the luminal side of 
the ER through the KDEL receptor bound to the ER membrane [73-75].  Korza and Ozols [76] and 
Ozols [65] have established the primary structures of two microsomal esterases purified from rabbit 
liver and designated them 60-kDa esterase forms 1 and form 2, respectively.  These two forms of CES 
have the consensus sequence for the ER retention tetra-peptide (HTEL or HIEL in the one-letter code). 
The HXEL-COOH motif is also essential for retention of the protein in the luminal side of the ER 
through the KDEL receptor bound to ER membrane [73-75].  Robbi et al. [60] reported cDNA cloning 
of rat liver CES1B4 (ES-10).  That was the first report to show that cDNA of liver CES has the 
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consensus sequence of the ER retention tetrapeptide (HVEL-COOH).  Later, Robbi and Beaufay [77] 
isolated a cDNA clone of another rat liver CES1D2 (ES-3) which encode the consensus sequence of the 
ER retention tetrapeptide (HTEL-COOH).  The other clone encoded egasyn, an accessory protein of 
β-glucuronidase in the liver microsomes [78].  Egasyn is identical to CES, and it binds β-glucuronidase 
via its CES active site.  In the case of mouse rat and mouse, the carboxyl terminal amino acid sequence 
of clone rat CES60KDa(CES1G1) and mouse Es-N (Ces1G2) is HTEHK-COOH, which could not 
bound to KDEL-receptor, and these isozymes are secreted to blood [58].   

CES have a signal peptide of 17 to 22 amino acid residues of N-terminal amino acid, including 
hydrophobic amino acid. In CES1 family, exon1 encode a signal peptide [79, 80]. In a case of CES1 
family, a bulky aromatic residue (Trp) followed by a small neutral residue (Gly) directly precedes the 
cleavage site [81].   

CES have four Cys residues that may be involved in specific disulfide bonds.  Among them, Cys98 
is the most highly conserved residue in many CES isozymes. Cygler et al. [82] reported an important 
alignment of a collection of related amino acid sequences of esterase, lipase and related proteins based 
on X-ray structures of Torpedo californica acetylcholinesterase and Geotrichum candidum lipase.  
According to these authors, Ser203, Glu336 and His450 form a catalytic triad, and Gly124-Gly125 may be 
part of an oxyanion hole. These residues are also highly conserved among CES isozymes. As a result we 
have started mutation analysis [11]. Site-specific mutation of Ser203 to Thr203, Glu336 to Ala336, or His450 
to Ala 450 greatly reduced the CES activity towards substrates. Therefore, the mutagenesis confirmed a 
role of Glu336 and His450 in forming a putative charge relay system with active site Ser203 [11].   

Frey et al. [83] reported that the formation of low barrier hydrogen bonds between His and Asp (Glu 
for CES) facilitates nucleophilic attack by the β-OH group of Ser on the acyl carbonyl group of peptide 
in chymotrypsin.  The catalytic triad in the tetrahedral addition intermediate is stabilized by the low 
barrier hydrogen bonds. According to their theory, we speculated that the low barrier hydrogen bond 
between Glu336 and His 450 facilitates nucleophilic attack by the β-OH group of Ser203 on the carbonyl 
group of the substrate in CES (Figure 3). The mechanism of CES could thus be divided into next steps. 
1) The enzyme substrate complex form, positioning the substrate in the correct orientation for reaction.  
2) Hydrolysis of the ester bond starts with an attack by the oxygen atom of the hydroxy group of Ser203 
on the carbonyl carbon atom of the ester bond. 3) The hydrogen bonds between the negatively charged 
oxygen of the tetrahedral intermediate and the N-H group of Gly123 and Gly124 stabilize the negatively 
charged oxygen (O-). This configuration, in which negatively charged carboxyl oxygen is hydrogen 
bonded to two N-H group, is called oxyanion hole. In the general acid-catalyzed step, the ester bond 
breaks, and the leaving group picks up a proton from the imidazolium ion of His450. The acyl portion of 
the original ester bond remains bound to the enzyme as an acyl-enzyme intermediate. The alcohol 
component (R’-OH) diffused away, completing the acylation stage of the hydrolytic reaction. 4) A water 
molecule attacks the acyl-enzyme intermediate to give a second tetrahedral intermediate. 5) His450 then 
donates the proton to the oxygen atom of Ser203, which then releases the acid component of the substrate. 
The acid component diffused away and the enzyme is ready for catalysis. The tetrahedral transition state 
is stabilized by the formation of low barrier hydrogen bonds between His450 and Glu336. The low barrier 
hydrogen bonds facilitated mechanism includes weak hydrogen bonds between the oxyanion (O-) and 
peptide N-H bonds contributed by Gly123 and Gly124, which stabilize the tetrahedral adduct on the 
substrate side of the transition state (Figure 3).  Formation of the acyl-enzyme complex in the next step 
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requires removal of a proton from His450, so that the tetrahedral intermediate is disrupted in the 
acyl-enzyme intermediate.  When the unbound portion of the alcohol group of the first product of the 
substrate has diffused away, a second step which the deacylation step is essentially the reverse of the 
acylation step occurs, with a water molecule substituting for the alcohol group of the original substrate 
(Figure 3).   
 

Figure 3. Proposed mechanism for the action of CES. Conformation of the Ser-His-Glu 
catalytic triad in CES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Ser, Ser203; His, His450; Glu, Glu336; Gly, Gly123 or Gly124 
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conserved.  This is a common structure of α,β-hydrolase-fold families, which are responsible for the 
hydrolysis of endogenous and exogenous compounds. 

Furthermore, these elements are strongly conserved among orthologous CESs of the mouse, rat, 
rabbit, monkey and human. A three-dimensional model for human CES has been proposed on the basis 
of crystal structure coordinates of acetylcholine esterase and overlapping active sites with pancreatic 
lipase and CES [84]. The modeled structure shares the overall folding and topology of the proteins 
identified in the recently published crystal structures of the rabbit [85] and human CES [86, 87]. CES 
has a three-dimensional α,β-hydrolase-fold structure, which is a structural feature of all lipases [88]. In 
general, the structure of CES may be viewed as comprising a central catalytic domain surrounded by 
α−β and regulatory domains [85-87]. In essence, the α,β-hydrolase-fold consists of a central β-sheet 
surrounded by a variable number of α-helices and accommodates a catalytic triad composed of Ser, His 
and a carboxylic acid. This suggests that the catalytic function of these proteins is conserved across 
species. The catalytic triad is located at the bottom of about 25 Å deep active site cleft, approximately in 
the center of the molecule and comprises a large flexible pocket on one side of Ser203 and a small rigid 
pocket on the opposite side [86]. The orientation and location of the active site provides an ideal 
hydrophobic environment for the hydrolysis of a wide variety of hydrophobic substrates [86]. The small 
rigid active site pocket is adjacent to the oxyanion hole formed by Gly123-124 and is lined by several 
hydrophobic residues [86]. Short acyl chains would be easily accommodated within the small rigid 
pocket. The larger flexible active site pocket is lined by several non-polar residues and could 
accommodate larger or polycyclic molecules such as cholesterol. The large pocket is adjacent to a side 
door secondary pore that would permit small molecules (substrates and reaction products) to enter and 
exit the active site [86]. Longer acyl chains may be oriented for catalysis in such a way that they extend 
through the side door. Indeed, the presence of a hydrophobic residue at position 423 in mice Ces1B2 and 
425 in humans CES1A1 is necessary for efficient hydrolysis of hydrophobic substrates, as mutation of 
Met present in position 423 of the related rat lung CES (CES1B4) to Ile increased the CES activity 
towards a more hydrophobic substrate without affecting activity towards short-chain esters [89].  

Most CES isozymes are glycoproteins, and the carbohydrate chain is required for the enzyme 
activity of CESs [10, 18, 86, 90, 91]. Human CES2A1 contains a glycosylation site at two different 
positions (Asn103 and Asn267), while CES1A1 contains only one glycosylation site at Asn79. This 
glycosylation site is modified by a carbohydrate chain with first N-acetylglucosamine and terminal 
sialic acid and appears to be involved in the stabilization of the CES1A1 trimer by packing into the 
adjacent monomer in its crystal structure [86]. According to the X-ray crystal structure of human CES1, 
this residue lines the flexible pocket adjacent to the side door [86]. Given the wide range of substrates 
that CESs are known to hydrolyze, the large flexible pocket confers the ability to hydrolyze many 
structurally distinct compounds, whereas the rigid pocket is much more selective with regard to the 
substrates that may be accommodated.  
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Table 1. Structure-activity relationship of substrates with CES1 and CES2 families. 

Substrate Alcohol Substituent Acyl Substituent Substrate 
Specficity
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Table 1. Cont. 

 
Structure-activity Relationships of Substrates with CES1 and CES2 Families                             

  
Recent studies have shown that there are some differences between these families in terms of 

substrate specificity, tissue distribution, immunological properties, and gene regulation [10]. For 
example, the preferential substrates for CES1A1, a human CES1 family isozyme, are thought to be 
compounds esterified by small alcohols, while those for CES2A1, a human CES2 family isozyme, are 
thought to be compounds esterified by relatively large alcohols (Table 1). CES1A1, but not CES2A1, 
hydrolyzed the methyl ester of cocaine and the ethyl esters of temocapril, meperidine and delapril [1, 40, 
41, 54, 92]. More recently, Sun et al. [93] reported that CES1A1 has a high catalytic efficiency for both 
d- and l-enantiomers of methylphenidate. No catalytic activity was detected with CES2 and CES3 for 
either enantiomer. The catalytic efficiency of CES1A1 for l-methylphenidate (kcat/Km= 7.7 
mM-1min-1) is greater than that for d-methylphenidate (kcat/Km= 1.3-2.1 mM-1min-1). Hence, the 
catalytic efficiency of CES1A1 for methylphenidate enantiomers agrees with stereoselective clearance 
of methylphenidate reported in human subjects. Both enantiomers of methylphenidate can fit into the 
three-dimensional model of CES1A1 to form productive complexes in the active site [93]. Oseltamivir 
as an anti-influenza viral agent is an ester prodrug, and its antiviral activity is achieved by its hydrolytic 
metabolite: oseltamivir carboxylate. Shi et al. [94] reported that human liver microsomes rapidly 
hydrolyzed oseltamivir, but no hydrolysis was detected with intestinal microsomes or plasma. 
Recombinant CES1A1, but not CES2A1, hydrolyzed oseltamivir and produced similar kinetic 
parameters as the liver microsomes [94]. We also reported that mouse mCES1(CES MH1), a mouse 
CES1 family isozyme, hydrolyzed temocapril, which esterified a small alcohol, similar to human CES1 
isozyme [1]. 

In contrast to the specificity of CES1 for the methyl ester of cocaine, only CES2 hydrolyzed the 
benzoyl ester of cocaine [54, 92]. For the remaining substrates that could be hydrolyzed by both 
enzymes, CES2 exhibited higher catalytic efficiency than did CES1 for heroin; enzymatic conversion of 
6-acetylmorphine to morphine was not known before the isolation and characterization of CES2 [50]. 
CPT-11 and  heroin bearing a small acyl moiety and a bulky alcohol group are good substrates for the 
CES2 isozyme (Table 1). On the other hand, we also reported that rat rCES2 (also called CES RL4), a rat 
CES2 family isozyme, hydrolyzed methylprednisolone hemisuccinate, which esterified a large alcohol 
as did the human CES2 family [64]. It has been suggested that although these two CES families exhibit 
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broad substrate specificity for ester, carbamate, or amide hydrolysis, these CES isozymes do exhibit 
distinct catalytic efficiencies that correlate with the relative size of the substrate substituents versus that 
of the enzyme active sites.  

Tissue specific expression of CES1 and CES2 was examined by northern blots, RT-PCR and real 
time PCR analysis. As shown in Table 2, human CES1A was highly expressed in liver and lung, human 
CES2A was highly expressed in small intestine and kidney. Knowledge of these substrate 
structure-activity relationships and the tissue distribution of CES isozymes is critical for predicting the 
metabolism and the pharmacokinetics and pharamcodynamics of ester drugs or prodrugs. 

 
Table 2. Tissue-specific expression profile of CES1 and CES2 isozymes in mammals and humans. 

-, undetectable, +, weakly expressed, ++, moderately expressed, +++, strongly expressed, NT, not tested 
 
Gene Structure and Regulation of CES Isozymes 

 
Both the murine [10] and human [80, 95] CES1 genes span about 30 kb and contain 14 small exons. 
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introns and restriction sites within the murine and human CES genes are consistent with their respective 
genes sequenced by the mouse and human genome projects. Therefore, the organization of the CES gene 
is evolutionarily conserved in mice and humans. In previous studies, the human CES gene have been 
mapped to chromosome 16 at 16q13–q22.1 [18, 57]. This region is syntenic to a region of mouse 
chromosome 8 at 8C5 [57]. The murine CES Es22 [79] and Es-N [58] have been previously mapped to 
chromosome 8. The completion of the mouse genome sequencing project unambiguously demonstrated 
that the murine CES gene was located on the minus strand of chromosome 8 at 8C5 in a cluster of six 
CES genes that spans 260.6 kb in total. These six CES genes are presumed to have originated from 
repeated gene duplications of a common ancestral gene that encoded a CES [80], and subsequent 
evolutionary divergence occurred. 
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Recently, we have identified a mouse liver microsomal acylcarnitine hydrolase, mCES2, as a 
member of the CES 2 family [2]. It has been revealed that this enzyme is significantly induced by 
di(2-ethylhexyl)phthalate and shows medium- and long-chain acylcarnitine hydrolase activity [2]. In 
addition, we have found that mCES2 is expressed in various tissues with higher levels of expression in 
the liver, kidney and small intestine. It was shown that three transcription factors, specificity protein 
(Sp) 1, Sp3 and upstream stimulatory factor 1, could bind to the promoter region of the mCES2 gene, 
leading to a synergistic transactivation of the promoter [96]. Although this mechanism may explain the 
ubiquitous tissue expression profiles of mCES2, it is unlikely to contribute to the higher levels of 
mCES2 expression in the liver, kidney and small intestine. Therefore, it is thought that there exists 
another mechanism controlling this tissue-specific transcription of the mCES2 gene [96]. More recently, 
we have shown that hepatocyte nuclear factor-4 alpha (HNF-4α) can strongly enhance mCES2 gene 
transcription and that the involvement of HNF-4α accounts for the high expression level of mCES2 in 
the liver [97]. These findings are notable when physiological roles of mCES2 are studied, since HNF-4α 
is involved in various hepatic functions, such as glucose and cholesterol metabolism and drug 
metabolism. In addition, we found that bile acid can repress mCES2 gene transcription by repressing 
HNF-4α-mediated transactivation [97].  

We have also isolated and characterized two genes encoding the human CES1A1 (AB119997) and 
CES 1A2 (AB119998), and we also cloned and sequenced the 5' flanking region of each gene in order to 
elucidate the structure of the promoter [98]. It is noteworthy that both the CES1A1 and CES1A2 genes 
are located on chromosome 16q13-q22 with a tail-to-tail structure. A comparison of the nucleotide 
sequences of CES1A1 and CES 1A2 genes revealed about 98% homology in 30 Kbp. There are only six 
nucleotide differences resulting in four amino acid differences in the open reading frame, and all of the 
differences existed in exon 1. Gene duplication has generally been viewed as a necessary source of 
material for the origin of evolutionary novelties, and duplicate genes evolve new functions. The 
majority of gene duplicates are silenced within a few million years, with the small number of survivors 
subsequently being subjected to strong purifying selection. Although duplicate genes may only rarely 
evolve new functions, the stochastic silencing of such genes may play a significant role in the passive 
origin of new species. Since exon 1 of the CES1 gene encodes a signal peptide region, intracellular 
localization of the CES1 gene product was preliminary investigated using a signal peptide/EYFP-ER 
chimera protein-expressing system. It was interesting that the CES1A1 signal peptide/EYFP-ER 
chimera protein was localized to the endoplasmic reticulum, whereas the CES1A2 signal 
peptide/EYFP-ER chimera protein was distributed in the endoplasmic reticulum and cytosol. On the 
other hand, CES1A2 mRNA was found to be expressed only in human adult liver, although CES1A1 is 
expressed in human adult liver and fetal liver (Hosokawa et al. submitted for publication). These results 
suggested that CES1A1 and CES1A2 have different intracellular localizations and different expression 
profiles in liver differentiation. We investigated the transcriptional regulation of these two CES genes. 
Reporter gene assays and electrophoretic mobility shift assays demonstrated that Sp1 and C/EBPα could 
bind to each responsive element of the CES1A1 promoter but that Sp1 and C/EBP could not bind to the 
responsive element of the CES1A2 promoter (Figure 4) [98].  

The expression level of CES1A1 mRNA is much higher than that of CES1A2 mRNA in the liver 
[98]. Since CES1A1 is highly variable in the individual liver [33], it was thought that these result 
provide information on individual variation of human CES1.  



Molecules 2008, 13                            
 

 

424

Figure 4.  Structure of the 5’ flanking region of CES 1A1 and CES 1A2 genes.  Sp1 and 
C/EBPα could bind to each responsive element of the CES1A1 promoter but that Sp1 and 
C/EBP could not bind to the 5’ flanking region of the CES1A2 promoter. NF-Y, nuclear 
factor Y, CBF, CCAAT-binding factor 

 
 
 

Conclusions 
 

Multiple CES play an important role in the hydrolytic biotransformation of a vast number of 
structurally diverse drugs. These enzymes are major determinants of the pharmacokinetic behavior of 
most therapeutic agents containing an ester or amide bond.  There are several factors that influence CES 
activity, either directly or at the level of enzyme regulation. In the clinical field, drug elimination is 
decreased and the incidence of drug-drug interactions increases when two or more drugs compete for 
hydrolysis by the same CES isozyme. Exposure to environmental pollutants or to lipophilic drugs can 
result in induction of CES activity.  Several drug-metabolizing enzymes, such as CYP, UGT and SULT, 
have been extensively studied to clarify the substrate specificity using molecular cloning and cell 
expression systems.  In the present review also described the structure and substrate specificity of CES 
isozymes, and tissue-specific expression profile of CES isozymes.  Therefore, successful design of 
ester-containing drugs will be greatly improved by further detailed analysis for the mechanism of action 
and substrate recognition site of human CES isozymes.  Further experimentation for an understanding of 
detailed substrate specificity of prodrugs for CES isozymes and its hydrolysates will help us to design 
ideal prodrugs. 
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