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Oscillations of a soft viscoelastic drop
Saiful I. Tamim 1 and Joshua B. Bostwick 1✉

A soft viscoelastic drop has dynamics governed by the balance between surface tension, viscosity, and elasticity, with the material
rheology often being frequency dependent, which are utilized in bioprinting technologies for tissue engineering and drop-
deposition processes for splash suppression. We study the free and forced oscillations of a soft viscoelastic drop deriving (1) the
dispersion relationship for free oscillations, and (2) the frequency response for forced oscillations, of a soft material with arbitrary
rheology. We then restrict our analysis to the classical cases of a Kelvin–Voigt and Maxwell model, which are relevant to soft gels
and polymer fluids, respectively. We compute the complex frequencies, which are characterized by an oscillation frequency and
decay rate, as they depend upon the dimensionless elastocapillary and Deborah numbers and map the boundary between regions
of underdamped and overdamped motions. We conclude by illustrating how our theoretical predictions for the frequency-response
diagram could be used in conjunction with drop-oscillation experiments as a “drop vibration rheometer”, suggesting future
experiments using either ultrasonic levitation or a microgravity environment.
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INTRODUCTION
There is a long history of experimental studies of drop oscillations
in ultrasonic levitation1 and microgravity2,3. These oscillations are
governed by the length and timescales of the drop that
correspond to the different forces like capillarity, viscosity, and
elasticity. The choice of scales where these effects dominate is
limited in most cases due to the additional gravitational effect
being present in experiments. The advantages of the microgravity
environment are the large length and timescales not accessible
under terrestrial conditions, as well as the high degree of drop
sphericity that can be achieved. This allows for a direct
comparison to the classical theory of Lord Rayleigh4 who showed
that an inviscid spherical drop of radius R will oscillate about its
equilibrium shape with characteristic frequency,

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl � 1Þðl þ 2Þ σ

ρR3

r
; (1)

and mode shape given by the spherical harmonic Ym
l . Here, ω is

angular frequency in rad/s, ρ is the liquid density, σ the liquid/gas
surface tension, l the polar mode number, and m the azimuthal
mode number. Note that the Rayleigh spectrum (1) is degenerate
with respect to the azimuthal mode number m. Extensions to this
basic model include, but are not limited to, the effect of
viscosity5, large-amplitude deformation6, and wetting7. Relatively
fewer models have been proposed to study the viscoelastic
effects8,9. In this paper, we fill this critical gap in the literature by
developing a comprehensive theory of the oscillations of a soft
viscoelastic drop.
Dynamic drop response of viscous Newtonian fluids is seen in

applications such as inkjet printing10 and spray cooling11. Adding
a polymer to a simple viscous fluid can induce a non-Newtonian
viscoelastic response that can greatly affect the dynamics of, e.g.,
pinch-off, surface impact, spreading, and bouncing12–14. Viscoe-
lastic fluid droplets, in particular, are prominent in inkjet
printing15,16, drop deposition17, and spray atomization18. Similar
viscoelastic effects are seen in soft solids like hydrogels, which
have cross-linked polymer networks with tunable elasticity19,20,
and are widely used as biocompatible materials in rapid

prototyping technologies21,22 and drug-delivery systems23.
Both polymer fluids and soft gels are viscoelastic materials
with both a viscosity and elasticity, both of which can have a
complex dependence on frequency defining the rheology
of the material through a storage (elasticity) and loss (viscosity)
modulus.
The role of viscosity in free drop oscillations is to (1) decrease

the natural frequency and (2) introduce a nontrivial decay rate24,25.
Recently, the inviscid Rayleigh drop theory was extended to
account for the nontrivial elasticity found in many soft hydrogels
through a linear elastic model26. The dynamics of soft gels
are described by the elastocapillary number Γ= σ/μR, which is the
balance between the capillary tc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3=σ

p
and elastic te ¼ffiffiffiffiffiffiffiffiffiffiffiffi

ρR2=μ
p

time scales27. Here, μ is the shear modulus that is a
constant property of linear elastic materials. Elastocapillary
effects have been observed in many of the classical interfacial
instabilities of hydrodynamics, but at soft solid interfaces28–31. Soft
materials with a complex rheology exhibit an additional viscoe-
lastic timescale τ over which viscous dissipation occurs. For fluids,
this refers to the relaxation time under constant stress, and for
solids to the creep time under constant strain. The balance
of τ with either tc or te gives rise to the Deborah number32. Prior
work has focused on limiting values of τ, but here we
focus more deeply on the effect of the viscoelastic timescale
on the oscillation of drops with complex rheologies. In particular,
we focus on the Kelvin–Voigt model as a proxy for
viscoelastic “solids” and the Maxwell model as a proxy for
viscoelastic “fluids”.
Previous studies on surface waves in viscoelastic materials have

predicted complex eigenfrequencies with the real part correspond-
ing to the oscillation frequency and imaginary part the decay rate
of oscillation33–35. Naturally, the purely elastic limit has no decay
rate. Pioneering works by Trinh et al.1 have shown the potential
of acoustic levitation to create a low-gravity environment for a free
viscous drop, from which oscillations can occur and the viscosity
can be inferred from the experimentally observed dynamics. The
main advantage of this approach is that it is containerless
and avoids the effect of wetting, as seen in the oscillations of a
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sessile drop36,37. Recent works have utilized drop oscillations to
measure the material properties of viscoelastic materials38,39.
Unfortunately, to use these techniques to more accurately measure
material properties requires the development of more sophisti-
cated theoretical models that account for viscoelastic effects for an
arbitrary material rheology.
In this paper, we derive the dispersion relationship and

frequency-response function for an oscillating viscoelastic drop
with arbitrary rheology. We illustrate the utility of our solution using
the classical rheological models of Kelvin–Voigt and Maxwell, which
are relevant to soft gels and polymer fluids, respectively. These
simple models are based on an exponential temporal response
characterized by a single viscous timescale, which when non-
dimensionalized, gives rise to a Deborah number that defines the
viscoelastic time scale. Many industrial soft materials such as
biopolymers and foods exhibit a more complex power-law
response40–43, which we also investigate using fractional variants
of the Kelvin–Voigt and Maxwell models44–46. In general, the
motions can be underdamped or overdamped, depending upon
the Deborah number, and we map out these regions in the
parameter space. We conclude with a discussion of how our
theoretical model could be used in conjunction with experiments
as a “drop vibration rheometer” to measure the material proper-
ties of soft viscoelastic materials.

METHODS
Field equations
Consider the spherical drop with equilibrium radius R shown in
Fig. 1a. The drop is incompressible and has material properties
defined by the density ρ, complex modulus μ, and surface tension
σ. The displacement field is expressed in three-dimensional
spherical coordinates,

U ¼ Urðr; θ;φ; tÞêr þ Uθðr; θ;φ; tÞêθ þ Uφðr; θ;φ; tÞêφ: (2)

The drop is assumed to behave as a linear viscoelastic material
in which the stress field T(x, t) is related to the strain field ε(x, t)
through the following relationship47:

TðtÞ ¼ �pIþ 2
Z t

�1
Gðt � t0Þ ∂εðt

0Þ
∂t0

dt0; (3)

Here, G(t) is the relaxation function and p is the pressure. The
strain field εij(x, t) is related to the displacement U(x, t),

ε ¼ 1
2

∇Uþ ∇UT
� �

; (4)

which satisfies the dynamic equilibrium and incompressibility
equations,

∇ � T ¼ ρ
∂2U
∂t2

; (5a)

∇ � U ¼ 0: (5b)

Frequency domain
Normal modes U(x, t)= u(x)eiωt are assumed with frequency ω
and the field equations are transformed into the frequency
domain ω by the Fourier transform,

~f ðωÞ ¼
Z 1

�1
f ðtÞeiωt: (6)

This results in the following time-independent field equation,

�∇pþ ~μ∇2u ¼ �ρω2u; (7)

Fig. 1 Definition sketch and material rheologies. a Shape of the
deformed drop with rheology defined by the frequency-dependent
complex modulus μðωÞ ¼ μ0ðωÞ þ iμ00ðωÞ. Storage modulus μ0 (solid
line) and loss modulus μ″ (dashed line) are shown for b Kelvin–Voigt
(KV) and c Maxwell (M) models with their respective fractional
counterparts.
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subject to the following boundary conditions at the drop
interface r= R:

Trr ¼ σ

R2
∇2

jj þ 2
� �

urðRÞ; (8)

Trθ ¼ 0; (9)

Trφ ¼ 0; (10)

which correspond to continuity of stress. Note that Eq. (8) is the
Young–Laplace equation with ∇2

jj the surface Laplacian.
Here we define the frequency-dependent complex modulus,

~μðωÞ ¼ iω
Z 1

0
GðtÞe�iωtdt; (11)

which can be written as ~μðωÞ ¼ μ0ðωÞ þ iμ00ðωÞ with μ0ðωÞ the
storage modulus and μ″(ω) the loss modulus. The form of the
complex modulus ~μðωÞ depends on the particular rheology of
the material. We illustrate our solution method on two classic
rheological models of viscoelasticity, the Kelvin–Voigt model and
the Maxwell model. These models are the limiting cases of their
fractional variants that are relevant to soft polymeric materials.
This is shown in Table 1 and plotted in Fig. 1b. Here, the
Kelvin–Voigt (KV) models have nonzero shear modulus μo at zero
frequency and therefore are more representative of “solid-like”
materials like gels. The Maxwell (M) models have zero-loss
modulus at high frequency and are applicable to “fluid-like”
materials, such as polymer solutions. Both models have a material
response modeled as a combination of a single spring and
dashpot, and therefore are characterized by a single viscoelastic
timescale, τs and τf for Kelvin–Voigt and Maxwell, respectively.

Displacement potentials
We construct a solution for the displacement field as a
combination of scalar potentials (Φ,Q, S),

u ¼ ∇Φþ ∇ ´ ðrQêrÞ þ ∇ ´∇ ´ ðrSêrÞ: (12)

This decomposition yields the pressure field p= ρω2Φ+ Po(t),
where Po is a harmonic function of time, which can refer to an
external pressure, which we will discuss shortly. Applying (12) to
(7) results in a set of decoupled wave equations,

∇2Φ ¼ 0; ∇2Qþ β2Q ¼ 0; ∇2Sþ β2S ¼ 0; (13)

with β ¼ ωr
ffiffi
ρ
~μ

q
. The resulting motions can be further decomposed

into shape change (Φ, S) and torsional (Q) modes, similar to the
case of the purely elastic sphere48. The general solution for the
displacement potentials can be expressed using a series expan-
sion with spherical harmonic basis Ym

l ðθ;ϕÞ,
Φ ¼ P

l;m
AlmrlYm

l ðθ;ϕÞ; Q ¼ P
l;m

BlmjlðβrÞYm
l ðθ;ϕÞ

S ¼ P
l;m

ClmjlðβrÞYm
l ðθ;ϕÞ:

(14)

Here, jl is the spherical Bessel function, l= 0,⋯ ,∞ the polar mode
number, and m=− l,⋯ , l the azimuthal mode number. The

unknown constants A, B, and C are determined from the boundary
conditions Eqs. (8)–(10), and are given in the Supplementary Note.

Dispersion relationship
In the absence of an external pressure field Po= 0, the drop
undergoes free oscillations with characteristic frequency deter-
mined from the dispersion relationship that results from the
solvability condition of Eqs. (8)–(10). Here the dispersion relation-
ship for the torsional modes results from Eq. (10) and the
dispersion relationship for the shape-change modes from Eqs. (8)
and (9). Our focus is on the shape-change modes with dispersion
relationship given by

ξ
ffiffiffi
~Γ

p
2þ ξ2~Γþ 2l � 4l2 � ~Γlðl2 þ l � 2Þ� �

jlðξ
ffiffiffi
~Γ

p
Þ

�2 ξ2~Γþ lð~Γþ 2Þðl2 þ l � 2Þ� �
jlþ1ðξ

ffiffiffi
~Γ

p
Þ ¼ 0:

(15)

Here, ξ ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3=σ

p
is the scaled eigenfrequency and ~Γ ¼ σ=~μR

the elastocapillary number. The dispersion relation for the
torsional modes is given in the supplementary Note.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS
Any of the rheological models given in Table 1 can be applied to
Eq. (15) from which we can compute the complex eigenfrequen-
cies ξ, where the real part of ξ gives the oscillation frequency and
the imaginary part of ξ gives the decay rate. We note the absence
of the azimuthal wavenumber m from Eq. (15) implying that the
frequency spectrum is degenerate with respect to m for any
rheological model, like the Rayleigh drop. For this reason, we will
restrict ourselves to the axisymmetric (m= 0) modes. Unlike the
Rayleigh drop, Eq. (15) is a nonlinear dispersion equation, which
admits an infinity of roots for the same polar mode l, which
defines the radial mode number s. That is, each motion is defined
by the mode-number pair (l, s). For any l, the interface shape is
identical, but the internal flow field is distinguished by s, as
discussed by Tamim & Bostwick26 for a purely elastic drop.

Kelvin–Voigt model (soft solids)
We begin with the simplest case of a soft viscoelastic solid, as
relevant to gels, the Kelvin–Voigt model. Here, scaling the
viscoelastic timescale τs with the elastic wave timescale gives rise
to the solid Deborah number ζ s ¼ τs

ffiffiffiffiffiffiffiffiffiffiffiffi
μ=ρR2

p
with limiting cases

corresponding to ζs= 0 the purely elastic limit and ζs=∞ the
purely viscous limit. In addition, we define the static elastocapillary
number Γ ¼ σ

μoR
, where μo is the equilibrium shear modulus.

Figure 2 plots the complex frequency ξ for l= 2 mode against ζs
for the first three radial modes s. In the small ζs region, the motion
is underdamped and characterized by an oscillation frequency
Re½ξ� that is essentially constant with a decay rate Im½ξ� that
increases with ζs. As ζs increases, the motion becomes over-
damped Re½ξ� ¼ 0 at a critical value of ζs, where a bifurcation
occurs and beyond which no oscillation is observed. Modes with
higher radial mode number s become overdamped at lower
values of ζs.
The least-damped mode is the one with the smallest decay rate

Im½ξ� and largest critical Deborah number ζcs and this is the one
most likely to be observed during experiment. For the conditions
shown in Fig. 2, this is the s= 1 mode, but this is not always the
case. Figure 3a plots the critical solid Deborah number ζcs where all
the roots of the dispersion relation (15) are purely imaginary, i.e.,
overdamped, against the elastocapillary number Γ. Here ζcs
increases with Γ for all polar mode numbers l. This shows that

Table 1. Complex modulus ~μðωÞ for the cases studied here with
corresponding high and low frequency limits.

Model ~μ Viscous limit Elastic limit

KV μo(1+ iωτs) ω=∞ ω= 0

M μe
iωτf

1þiωτf
ω= 0 ω=∞

FKV μo 1þ ðiωτsÞnð Þ ω=∞ ω= 0

FM μe
ðiωτf Þn

1þðiωτf Þn ω= 0 ω=∞

S.I. Tamim and J.B. Bostwick
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when surface-tension effects on the drop are increased, higher
magnitude of viscoelasticity is required to cause critical damping.
Figure 3b plots the least-damped mode sm for a given polar mode
l against Γ. For small surface-tension effects Γ≪ 1, the s= 1 mode
is the least-damped mode for all l. However, for larger Γ, surface
tension becomes significant and higher radial mode numbers s
begin to show the least amount of damping. These motions are
differentiated by their internal flow fields, as shown as insets to
Fig. 3b. Higher s corresponds to a larger number of vortices in the
internal flow fields. This means that increased effect of capillarity
causes higher frequency roots to have less damping and be more
dominant. This is also consistent with the analysis of Tamim and
Bostwick26, which shows higher capillary effect causes higher
frequency in a given vibration mode.
The fractional Kelvin–Voigt model is characterized by the

power-law exponent n with limiting case n= 1 corresponding to
Kelvin–Voigt model. For n < 1, there is not always a transition from
underdamped to overdamped motion with increasing ζs. Here, the
fractional damping does not produce purely imaginary roots or
overdamped motions49. Figure 4 plots the complex frequency ξ
against ζs for the (2, 1) mode with n= 0.9. Here both the real and
imaginary parts of ξ are nonzero for all ζs, implying that there are
always underdamped oscillations. This implies that the fractional
Kelvin–Voigt model does not predict any overdamped motion.
Rossikhin and Shitikova50 have also shown that aperiodic modes
of decay do not appear in the fractional Kelvin–Voigt model with
n < 1. Also shown in Fig. 4 is that Im½ξ� monotonically increases
with ζs, whereas Re½ξ� shows a more complex dependence. Here
the oscillation frequency Re½ξ� begins to decrease, indicative of

Fig. 3 Elastocapillary effects for Kelvin–Voigt material. Plots
show a critical Deborah number for overdamped motion ζcs of the
least-damped mode sm, as it depends upon l, and b the radial
mode number s for the least-damped mode with ζs = 0.01,
against Γ. The internal flow field for a few modes (l, s) is shown as
an inset.

Fig. 4 Complex frequency against Deborah number for fractional
Kelvin–Voigt material. Re[ξ] and Im[ξ] plotted against solid
Deborah number ζs with Γ= 1. The red cross refers to the point
where the resonance peak in forced vibration has disappeared.

Fig. 2 Complex frequency for a Kelvin–Voigt material. a
Frequency Re½ξ� and b decay rate Im½ξ� plotted against the solid
Deborah number ζs, as it depends upon the radial mode number s,
for l= 2, Γ= 1.
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the approach to overdamped motion, but instead then increases.
Even though the complex frequency predicts free underdamped
oscillations, we show later in the forced-oscillation problem that
the corresponding resonance peak in the frequency-response
diagram can disappear for this mode at a particular value of ζs. The
reason that fractional Kelvin model does not predict purely
aperiodic modes is due to the fact that this model is characterized
by a so-called “springpot” instead of an ideal dashpot to account
for the viscoelastic effect46. This springpot shows behavior that is
intermediate between a spring and a dashpot, and therefore it
always predicts a nonzero oscillation frequency.

Maxwell model (polymer fluids)
Polymeric fluids are well described by the Maxwell model. Here,
scaling the relaxation timescale τf with the capillary timescale
gives rise to the fluid Deborah number ζ f ¼ τf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=ρR3

p
, from

which ζf= 0 corresponds to viscous fluids and ζf=∞ to purely
elastic solids. Figure 5 plots the complex frequency ξ against ζf for
the (2, s) mode. Here in the low ζf region, there is only one mode
with nontrivial oscillation frequency, which corresponds to that of
the Rayleigh drop4, ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðl � 1Þðl þ 2Þp ¼ 2:828. In the small ζf
region, there are many overdamped modes Re½ξ� and similar to
the Kelvin model, these overdamped modes have two rates of
decay for the same Deborah number, as shown in Fig. 5b. Here,
we find that the s= 1 root shows the least amount of damping
when compared with the higher-order roots. Similar to the Kelvin
model, the order of the least-damped mode in the Maxwell model

can also be a function of elastocapillary number Γ. This means that
higher Γ will cause higher-order roots to be more dominant. The
critical Deborah number ζf where this bifurcation occurs marks the
boundary between overdamped and underdamped motions for
these modes and Re½ξ� plateaus to a constant value marking an
underdamped motion. The least-damped s= 1 mode also
plateaus to a higher frequency in the underdamped region. This
is because in the underdamped region, elasticity dominates
viscous damping and adds a positive contribution to the
oscillation frequency.
Similar to the fractional Kelvin model, the fractional Maxwell

model also does not predict a critical Deborah number where the
frequency transitions between overdamped and underdamped
motion. This is shown in Fig. 6, which plots the imaginary part of
the frequency Im½ξ� as a function of ζf as it depends upon the
power-law exponent n. Here there is a sharp peak in the decay
rate for the limiting case of the Maxwell model n= 1, which
corresponds to the critical Deborah number ζf. This demarcation
between underdamped and overdamped motions disappears for
n < 1 and the curves show a maximum that decreases with a further
decrease in power-law exponent n. This behavior of the fractional
Maxwell model was previously observed in the response of the one-
dimensional system using a fractional calculus approach51.

Forced oscillations
It is straightforward to adapt our analysis to the forced-
oscillation problem in which the drop is driven by an oscillatory
pressure with magnitude Pd. Here the pressure on the drop
becomes p= ρω2Φ+ Pdeiωt and the analysis is identical to the
free-oscillation case. Applying the general solutions in Eq. (14) to
the boundary equations in Eqs. (8, 9) yields an expression for the
radial displacement at the drop surface ur(R). We can scale the
displacement x ¼ urðRÞ~μ=PdR and driving frequency
Ω ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3=σ

p
, and define η ¼ Ω

ffiffiffi
~Γ

p
. In this case, the scaled

displacement is given by

x ¼ P1
l¼0

Pl
m¼�l

ð2jlþ1ðηÞ � lðηjlðηÞÞ � Ym
l ðθ;ϕÞÞ=

ηjlðηÞðη2 þ 2� 4l2 þ 2l � l~Γðl2 þ l � 2ÞÞ
�2jlþ1ðηÞðη2 � lð~Γþ 2Þðl2 þ l � 2ÞÞ:

(16)

For a given rheology ~μ, Eq. (16) gives a complex radial displacement
whose magnitude ∣x∣ provides the amplitude of drop motion for a
given driving frequency. A typical frequency-response diagram is
shown in Fig. 7, which plots the amplitude ∣x∣ against driving
frequency Ω for the Kelvin–Voigt model, as it depends upon ζs. Each
local maximum corresponds to a resonance peak where the driving

Fig. 5 Complex frequency against Deborah number for Maxwell
material. a plots the frequency Re½ξ� and b plots the decay rate
Im½ξ�, as it depends upon the radial mode number s, for l= 2, Γ= 1.

Fig. 6 Decay rate against Deborah number for fractional Maxwell
model. Im[ξ] plotted against Deborah number ζf with Γ= 0.1 as it
depends upon the power-law exponent n.
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frequency is the same as the natural frequency of the drop, i.e., Ω= ξ.
As ζs increases, the amplitude of the resonance peaks decreases
consistent with viscous damping. Higher-order modes are damped at
a higher rate and for ζs= 0.1, the resonance peaks for the l > 2
modes have nearly disappeared. This has been previously observed
in the oscillation of sessile gel drops52. Recall in Fig. 4 that this
disappearance of the resonance peak at a critical ζs was shown for a
fractional Kelvin model. Comparing Fig. 4 with our analysis here on
forced vibration shows that beyond the critical ζs pointed out by the
red cross, oscillations predicted by the fractional model do not result
in a physically observable resonance peak.
In general, the drop response is complex and admits a real and

imaginary part. As such, one can define a phase angle as

α ¼ arctan
Im ½x�
Re ½x�

����
����: (17)

That is, the motion can be completely determined from
knowledge of the frequency response and phase angle. This is
shown in Fig. 8a for the l= 2 mode of a fractional Maxwell
material. The storage and loss moduli for these frequencies are
shown as scaled with μe in Fig. 8b.

Drop-vibration rheometer. The experimentally observed fre-
quency response of a drop has been used to infer both the
surface tension and viscosity of Newtonian fluids with most prior
work done with the l= 2 fundamental mode. We briefly describe
the approach of Hosseinzadeh and Holt53, who have used the
generic frequency response for a damped oscillator,

x
xo

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω

ωn

� �2
� 	2

þ 2Δfω2

ω3
n

s ;
(18)

to fit to their experimental data with ωn, Δf fitting parameters.
Here xo is the driving amplitude, ωn is the resonance frequency
related to Re½ξ�, and Δf related to the bandwidth of the resonance
peak and effectively the decay rate Im½ξ�. For a Newtonian fluid,
the resonance frequency has been given by4

ω2
n ¼

8σ

ρR3
; (19)

and the spectral width by24,25

Δf ¼ 5ν

R2
; (20)

with ν the kinematic viscosity. Shao et al.35 have taken a
similar approach for gel drops but included the added effect of
elasticity.

Unfortunately, this approach only works for materials with
frequency-independent material properties, i.e., not for viscoelas-
tic materials. To be more specific, Eq. (20) can not be used to fit to
the response diagram to measure viscosity accurately for
viscoelastic materials. This is illustrated in Fig. 9a, where we find
the resonance peak ξ and spectral width Δξ for a fractional
Maxwell material (n= 0.8) as it depends upon ζf. Since we are
using a known rheology, the values of μ0 and μ″ are known and we
compare this with Eq. (20) by taking μ″= ν/ω, as shown in Fig. 9b.
Here we see that the predicted values are different from the
known rheology, suggesting that it is not possible to use this
particular approach to infer material properties. However, given
that our model is applicable for any rheology, we expect that it
would be possible to infer the rheology of a forced viscoelastic
drop from its frequency response and phase angle over the
appropriate range of driving frequencies. This would allow one to
measure μ0 and μ″ as two fitting parameters for these two sets of
data. For example, if we know the frequency and amplitude
diagram over a frequency spectrum as shown in Fig. 8a, it would
be possible to extract μ0 and μ″ at each frequency Ω in Fig. 8b. This
would be done by using the values of ∣x∣ and α in the real and
imaginary parts of Eq. (16) and solve them as two equations with
unknown variables μ0 and μ″ at each different frequencies.
Recently, Temperton et al.38 have used a modified version of

Eq. (20) to measure the storage and loss modulus at the resonance
frequency. This model assumes a flat, semi-infinite surface

Fig. 8 Drop response and complex modulus, as functions of
driving frequency, for fractional Maxwell material. a Amplitude
ratio jxj

jxn j and phase angle 2α/π against driving frequency Ω with
Γ= 0.1, ζf= 0.01. Here ∣xn∣ is the amplitude at the resonance

frequency. b Dimensionless storage μ0
μe

� �
and loss μ

00

μe

� �
moduli for

the same parameters.

Fig. 7 Frequency-response diagram for Kelving–Voigt material.
The plot shows the amplitude of drop motion ∣x∣ against the driving
frequency Ω as it depends upon ζs, with Γ= 1. Resonance peaks for
the (l, s)=(2, 1),(3, 1),(3, 2), and (4, 1) modes are shown.
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ignoring the surface curvature inherent in a sphere33. This method
is developed without needing to know the phase angle and
enables measurement of the rheology, which differs slightly
from that obtained with a traditional cone-plate rheometer. We
note that our model could be used to improve on this particular
method.

DISCUSSION
We have performed a theoretical analysis of the free and forced
oscillations of a soft viscoelastic drop, deriving the dispersion
relationship for a soft viscoelastic material with arbitrary rheology.
We illustrate the utility of our solution by computing (1) the
natural frequencies for the free-oscillation case and (2) the
frequency-response diagram for the forced-oscillation case, for
the classical Kelvin–Voigt and Maxwell models of viscoelasticity, as
well as their fractional variants. For these materials, the oscillations
depend upon two dimensionless quantities: (1) the elastocapillary
number and (2) the Deborah number. For both Kelvin–Voigt and
Maxwell models, the motion changes from underdamped to
overdamped as viscosity increases and we map out this boundary
in the parameter space. However, for the fractional models, we
find that although viscosity still reduces oscillation, no over-
damped motions exist, i.e., there is always a nonzero oscillation
frequency associated with the large viscous decay rates.

Our analysis of the forced-oscillation problem could be used as
a “drop vibration rheometer” by combining theoretical predictions
with experimental observations. This is in a similar spirit to other
work on Newtonian fluids54 and soft purely elastic gels39,55. Such a
drop-vibration rheometer could be a particularly useful noncon-
tact method for rheological measurement that has implications in
monitoring blood-clot and blood-cell diseases53,54. Last, we note
that our current analysis is limited to small-amplitude oscillation of
viscoelastic drops. Large deformations in soft viscoelastic materials
can often give rise to nonlinear behaviors such as strain stiffening
and shear thickening. Diagnostic methods for such materials have
been the focus of recent studies56,57. To the best of our
knowledge, no attempts have yet been made to probe the
nonlinear response of viscoelastic drops. Future works could focus
on developing a theoretical basis for nonlinearities in drop
oscillation, as well as investigating other non-Newtonian fluids,
e.g., yield-stress fluids.
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