
Pablo Mier is a postdoctoral researcher interested in the development of Web tools and databases related to protein evolution and low-complexity regions.
He works in the Faculty of Biology at Johannes Gutenberg University Mainz.
Lisanna Paladin is a PhD student of Biomedical Sciences Department at University of Padova. Her research focuses on tools and databases development
for the description of non-globular proteins structure and function.
Stella Tamana is a PhD candidate at the Department of Biological Sciences, University of Cyprus, where she studies bioinformatics. She is interested in the
study of compositionally biased regions in protein sequences, the elucidation of their structural and functional properties and their handling in automated
comparative genomics pipelines.
Sophia Petrosian was a final-year student at the Biological Computation and Process Laboratory, Thessalonica, Greece.
Borbála Hajdu-Soltész is a PhD student at the Eötvös Loránd University, Budapest, Hungary. She is a computational biologist interested in protein disorder
and questions such as how do disorder properties contribute to cancer development. In keywords, her work is related to disordered proteins, cancer
genome databases, somatic mutations in cancer, protein–protein interactions and short linear motifs.
Annika Urbanek is a postdoctoral researcher at the Centre de Biochimie Structurale in Montpellier (France) where she is developing tools to study highly
disordered proteins with low-complexity regions experimentally.
Aleksandra Gruca is an assistant professor in the Institute of Informatics at the Silesian University of Technology in Gliwice, Poland. She is a member
of the Board of the Polish Bioinformatics Society. Her research interests are focused on application of data mining and machine learning methods for
automated functional interpretation of high-throughput biological experiments.
Dariusz Plewczynski is a professor at University of Warsaw in Center of New Technologies (Warsaw, Poland) and the head of Laboratory of Functional and
Structural Genomics. His main expertise covers computational genomics, biostatistics and bioinformatics.
Marcin Grynberg is an assistant professor in the Department of Biophysics at The Institute of Biochemistry and Biophysics PAS, Warsaw, Poland. His main
focus is on the protein world, especially on rare sequences, like low complexity regions. He is also working in the field of microbial proteomic analyses.
Pau Bernadó is a researcher at the Centre de Biochimie Structurale in Montpellier (France). His group is interested in establishing connections between
the structure and function of highly disordered proteins and low complexity regions.
Zoltán Gáspári is an associate professor at the Faculty of Information Technology and Bionics at Pázmány Péter Catholic University, Budapest, Hungary.
His group investigates the role of internal dynamics in protein function using computational and experimental approaches and their combination.
Christos A. Ouzounis is the Director of Research at Centre for Research & Technology Hellas (Thessalonica, Greece), where he directs the Biological
Computation and Process Laboratory of the Chemical Process & Energy Resources Institute. His interests revolve around genome structure, function and
evolution, biological sequence comparison and synthetic biology. Some of his best known contributions include the discovery of genomic context methods
and the definition of the last universal common ancestor.
Vasilis J. Promponas is an assistant professor at the Department of Biological Sciences, University of Cyprus, heading the Bioinformatics Research
Laboratory. He is interested in theoretical and practical aspects of sequence comparison and in developing methods for predicting features of protein
structure and function from amino acid sequences. In particular, he studies different phenomena related to non-globular proteins and, recently, focuses
on conserved eukaryotic processes, including nucleocytoplasmic transport and macroautophagy.
Andrey V. Kajava is the Director of Research at CNRS, Montpellier. His group (‘Structural Bioinformatics and Molecular Modelling’) uses computational
methods to understand the principles of protein structure and biomolecular interactions.

Submitted: 12 November 2018; Received (in revised form): 19 December 2018

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

458

Briefings in Bioinformatics, 21(2), 2020, 458–472

doi: 10.1093/bib/bbz007
Advance Access Publication Date: 30 January 2019
Review article

Disentangling the complexity of low complexity
proteins

Pablo Mier , Lisanna Paladin, Stella Tamana, Sophia Petrosian,
Borbála Hajdu-Soltész, Annika Urbanek, Aleksandra Gruca,
Dariusz Plewczynski, Marcin Grynberg, Pau Bernadó, Zoltán Gáspári,
Christos A. Ouzounis, Vasilis J. Promponas, Andrey V. Kajava,
John M. Hancock, Silvio C. E. Tosatto , Zsuzsanna Dosztanyi and
Miguel A. Andrade-Navarro

Corresponding author: Pablo Mier, Faculty of Biology, Johannes Gutenberg University Mainz Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
Tel.: +49-6131-39-21580; E-mail: munoz@uni-mainz.de

http://www.oxfordjournals.org/


Disentangling of low complexity proteins 459

John M. Hancock is the Communities and Services Coordinator at ELIXIR. He has worked on repetitive sequences in DNA and proteins
and led the development of SIMPLE method for over 30 years.
Silvio C. E. Tosatto is a full professor at the Department of Biomedical Sciences, University of Padua. His group develops tools and
databases for the study of non-globular proteins in biomedicine and biotechnology.
Zsuzsanna Dosztanyi is a senior research scientist working as a group leader at the Biochemistry Department of the Eötvös Loránd
University, Budapest. She is interested in understanding the structural and functional properties of intrinsically disordered proteins
and their involvement in various diseases.
Miguel A. Andrade-Navarro is a professor of Faculty of Biology, at the Johannes Gutenberg University of Mainz. His group is interested
in exploring gene function using computational techniques including algorithms and databases.

Abstract

There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering
LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be
defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of
LCRs and their connection with structure. We present statistics and methodological approaches that measure low
complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats,
while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, and more generally the
overlaps between different properties related to LCRs, using examples. We argue that statistical measures alone cannot
capture all structural aspects of LCRs and recommend the combined usage of a variety of predictive tools and
measurements. While the methodologies available to study LCRs are already very advanced, we foresee that a more
comprehensive annotation of sequences in the databases will enable the improvement of predictions and a better
understanding of the evolution and the connection between structure and function of LCRs. This will require the use of
standards for the generation and exchange of data describing all aspects of LCRs.

Short abstract
There are multiple definitions for low complexity regions (LCRs) in protein sequences. In this critical review, we focus on the definition
of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that
measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats,
while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, plus overlaps between different
properties related to LCRs, using examples.
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Introduction

The traditional notion that protein sequences fold into a
structure that dictates their function, while generally correct, is
being increasingly challenged by the discovery of many proteins
with complex biological roles despite a lack of permanent
secondary or tertiary structure [1, 2]. Many of these proteins
contain low complexity regions (LCRs), where the frequency
distribution of amino acids deviates from the common amino
acid usage. Residues in LCRs have been estimated to represent
20% and 8% of all known sequences of eukaryotes and
non-eukaryotes, respectively [3]. The functional importance
of LCRs and their involvement in disease has also been
extensively discussed—e.g. [4–7]. Overcoming early reluctance
to consider these regions for biological studies, mainly due to
their unknown properties and ‘annoying’ statistical features,
there is an intensification of research on LCRs—e.g. [8–10],
reminiscent of the paradigm shift that brought non-coding
RNAs to the forefront of genomics research in the recent
past.

In the definition of LCRs, multiple concepts related to
sequence composition, periodicity and structure have been used
(Table 1). Regarding amino acid composition, while there is a
general notion that LCRs in proteins should have an excess of

one or a few types of amino acid residues, there is no consensus
about which metrics are the most appropriate. Additionally, the
concept of LCR is intermingled with the concept of sequence
repeats. Repeats are inevitably associated with LCRs, since
shorter repeats result in regions with lower amino acid diversity.
An extreme case of minimal complexity is represented by tracts
of a single repeated residue, known as homorepeats.

Regarding protein structure, LCRs mostly have a disordered
conformation. Factors such as the sequence context (features
present in the flanking regions) and the molecular context of
the protein (e.g. interacting proteins, cell tissue or state when it is
expressed) can influence their structural state. This landscape is
complemented by emerging concepts such as intrinsic disorder
and protein phase separation, formalized in the literature (see
e.g. [11–13]).

The many shades of complexity
To illustrate the overlap between the three levels described above
(i.e. amino acid composition, periodicity and structure), we use
a 2D diagram where we can compare proteins (or regions) of
various degrees of complexity from intermediate to unbiased
(‘normal’) sequences according to their compositional bias
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Table 1. Overview of complexity terms and their definitions

Term Definition References

Definition based on amino acid composition

LCR Regions with a skewed amino acid composition [27, 79–85]
Compositionally biased region [27, 79–81, 86–88]
X-rich region Region with a high proportion of a specific amino

acid, where X is the abundant residue
—

Definition based on amino acid periodicity

Repeat motif Reiteration of residues: (...)n —

Homorepeat (polyX) Consecutive runs of a single residue: (X)n [39]
Direpeat Consecutive runs of two ordered different

residues: (XY)n
—

Tandem repeat Pattern of residues which are directly adjacent to
each other: (XYZ . . . )n

[14]

Cryptic repeat Scrambled arrangements of repetitive motifs [28]

Imperfect repeat Regions in which the repeat units are not the
same

[89]

Definition based on structure

Intrinsically disordered protein Protein that lacks a fixed or ordered 3D-structure [90]
Coiled coil Structural motif characterized by a seven-residue

sequence repeat in which alpha-helices are coiled
together to form an extended rope-like structure:
(a-b-c-d-e-f-g)n

[91, 92]

(Charged) single alpha-helix A segment forming stable monomeric alpha-helix
in aqueous solution, typically rich in Arg/Lys/Glu
forming an alternating pattern of short runs of
oppositely charged residues

[93]

Protein flexibility Ability of a protein to fold into multiple stable
3D-structures

[94]

Amyloid fibrils Stable insoluble protein assemblies composed
predominantly of β-sheet structures in a cross-β
conformation

[95]

and repetitiveness (Figure 1). This diagram applies ideally to
sequence regions with lengths in the range of 10 to 50 residues,
for the sake of simplicity (considering that long structural
repeats have a length of about 50 residues [14] and fragments
of less than 10 residues would suffer from low-count statistical
effects). Suppose that we compute for such region two simplified
measurements of complexity: one reflecting variability of
amino acid usage (compositional bias) and the other indicating
periodicity. For example, AEEAEAAEEA and a perfect direpeat
like AEAEAEAEAE have the same amino acid composition (50%
A and 50% E) but different periodicities.

As a simplified measurement of amino acid variation, we
can take the percentage of the most frequent amino acid in
the region (see [15] for another measure of repeat perfection).
For example, given the 10-amino acid sequence ACDEFEGEIE,
the most abundant amino acid is E, at 40%. To measure repeti-
tiveness, we could calculate how distant this sequence is from
a sequence with perfect repeats. A simple measure for that
distance is how many residues we need to mutate to convert
the query sequence to a perfect repeat. The simplest instance
of a repeat is the homorepeat; any sequence with n% for the
most frequent amino acid can be converted to a homorepeat
by changing the other residues to the most frequent residue, i.e.
100% − n%. For our example sequence, ACDEFEGEFE, we would
have to change 6 residues to E, 60%, to have 10 E residues. This
sets the upper limit to this value. But if a less trivial repeat
can be found using fewer mutations, this second value will be

necessarily lower. In this case, we can change ACDEFEGEFE to
FEFEFEFEFE with only 40% of changes.

Using these metrics, we can conceptually position in the
diagram (Figure 1) the examples of regions of variable degrees
of complexity (y-axis) and repetition (x-axis). All perfect repeats
are placed at x = 0, and homorepeats have y = 100%. Direpeats
have y = 50%, AABAAB repeats have y = 66%, ABCABC repeats
have y = 33% and so forth.

Proteins without repeats are placed in the trivial diagonal,
with a y value for the most frequent amino acid and x = 100% − y.
A protein composition with all 20 amino acids equally abundant
sets 5% as the lower limit for y. Rather, most proteins will
have unbiased compositions where the most abundant amino
acid forms around 10% of the sequence (e.g. aspartate 10.7% or
glutamate 9.9% in [16]).

Then, unbiased proteins, far from repeats and with the
expected amino acid variation, will populate the bottom-right
corner of the diagram. We can imagine intermediate situations,
which can be constructed by adding mutations from regions
with perfect repeats. In this manuscript, we will discuss the
hypothesis that there is a border between LCRs influenced by
periodicity (i.e. repetitiveness), so that given two LCRs with the
same amino acid composition, the one with more repetitiveness
might be prone to form a structure, whereas the other one would
have a stronger tendency to be disordered. This would give a
slant to the low complexity (LC) border (line separating the ‘Low
complexity’ area, Figure 1). Not all repeats are LCRs, but LCRs
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Figure 1. The LC diagram: sequence complexity composition versus periodicity.

The diagram illustrates where several types of sequences would be placed in

relation to two measures related to sequence complexity.

tend to be close to short repeat sequences, since groups of short
repeats have necessarily a limited number of amino acids, and
thus can be considered a LC unit. In other words, LC can only be
compositionally biased, while compositional bias can be of low
or high complexity.

In order to explore how the different measurements of com-
plexity and repetition relate to this graphical representation in
reality, we will take a few proteins with LCRs, repeats of various
types and a range of structures, measure their complexity using
available methods and locate these regions in the model graph.
Note that parts of these proteins will have an expected composi-
tion, which will populate the point of unbiased proteins, where
most globular proteins reside. This will constitute a contrast to
which we can compare their LCRs.

Detection of low complexity sequences
We collected a set of 21 protein sequences to illustrate the phe-
nomena involved in LCRs (Table 2). This dataset is a collection
of examples of what is commonly defined as a composition-
ally biased protein. It includes enzymes (serine tRNA ligase,
P34945—UniProt accession number), transcription factors (tran-
scriptional repressor CTCF, P49711), membrane channels (outer
membrane protein TolC, P02930), transporters (autotransporter
adhesin SadA, Q8ZL64), structural proteins (collagen alpha-1
chain, P02452), proteins that respond to changes of physical
states (glycine-rich antifreeze protein, Q38PT6), typical disor-
dered proteins (cellular tumor antigen p53, P04637) and proteins
related to diseases (huntingtin, P42858). With this selection, we
aim at relating the concept of compositional bias in proteins
to a variety of cellular processes, compartments and structural
states. We note that associating function to LCRs is not our goal
here; rather, the functional variety in the set of proteins chosen
to highlight the diversity of biological situations where LC plays
a relevant role.

In the following sections, a series of methods that are widely
used to detect LC in protein sequences are introduced and
applied to the dataset of the selected 21 proteins. The methods
are presented in chronological order, to facilitate the under-
standing of the historical context within which each method was
developed. In each section, we discuss the features and possible
functions of detected LCRs, to illustrate the current knowledge

on those regions and directions to obtain further insights about
them. Related structural aspects and methods that take them
into account are discussed after this part.

We provide a list of 100 proteins from the human genome
annotated as per their amino acid type bias for further studies
(Suppl. File S1). This collection of proteins with compositionally
biased regions (CBRs) should remain stable for the foreseeable
future and can form the basis for additional research toward
the deeper understanding of the structure and function of LC
proteins.

SEG (1993): detection of LCRs

SEG was the first algorithm developed to specifically detect
LCRs within protein sequences [17], as masking of LCRs has
been found to improve the detection of homology (e.g. [18]).
This method is based on the concept of local complexity of
a subsequence defined for a window of length L. Such subse-
quences can be represented in the form of a state complexity
vector, where each position represents the number of amino acid
occurrences in that window. For any state complexity vector, its
compositional complexity and probability of occurrence of the
particular complexity state can be computed. Based on these
values any subsequence can be classified as a low or high
complexity subsequence. Here we applied SEG to the collected
set of proteins (Table 2) to characterize their LCRs and putative
function based on their sequence homology with other non-
related proteins. As proposed in [19], we used the SEG algo-
rithm with intermediary parameters (these are window length
W = 15, trigger complexity k1 = 1.9 and extension complexity
k2 = 2.5).

We found that 12 proteins from the dataset contain a total of
46 LCRs, with the longest having 760 residues (dentin sialophos-
phoprotein, DSPP) (Suppl. Table S1). Moreover, both elastin and
Collagen alpha-1(I) chain have 11 LCRs each. On average, the 12
LCR-containing proteins have 3.8 LCRs with an average length of
67 residues.

Similarity between LCRs in different proteins can be used to
propose hypotheses about the function of the similar proteins.
However, many caveats apply, i.e. in the case of LC sequences,
matching hits do not guarantee evolutionary relationship even
with statistically significant scores. We illustrate this with one
of our example proteins: DSPP, which contains the longest
LCR of all the examples. We used the NCBI BLAST search
engine with default options to find other proteins with similar
LCRs.

DSPP (UniProt:Q9NZW4) is cleaved into two chains: dentin
phosphophoryn (DPP; amino acids 16-462) and dentin sialo-
protein (DSP; amino acids 463-1301). A very long LCR was
detected in DSP covering most of the sequence (amino acids
511-1270). DSP is an extracellular matrix protein synthesized by
odontoblasts. It is highly acidic, and the phosphorylated protein
possesses a strong affinity for calcium ions. Therefore, DSP in
the extracellular matrix can promote hydroxyapatite nucleation
and can regulate the size of the growing crystal [20–22]. Apart
from its calcium binding property, DSP can initiate signaling
functions from the extracellular matrix [23–26]. We found a
high degree of similarity of the DSP fragment of DSPP to two
hypothetical proteins, BCR41DRAFT 427036 (NCBI Reference
Sequence AC: XP 021875136.1) from Lobosporangium transversale
(a fungus) and JF76 17750 (GenBank AC: KJY54264) from
Lactobacillus kullabergensis (a bacterium). Both are highly acidic
sequences, rich in serine and aspartic acid. The bacterial protein
possesses three MucBP domains, which are characteristic for

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
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Table 2. Illustrative set of proteins with LCRs, ordered by the length of the protein

AC ID Description Length (aa) Organism

Q38PT6 Q38PT6 9HEXA 6.5 kDa glycine-rich
antifreeze protein

103 Hypogastrura harveyi

P35226 BMI1 HUMAN Polycomb complex
protein BMI-1

326 Homo sapiens

P20226 TBP HUMAN TATA-box-binding protein 339 H. sapiens
P04637 P53 HUMAN Cellular tumor antigen

p53
393 H. sapiens

P32583 SRP40 YEAST Suppressor protein SRP40 406 Saccharomyces cerevisiae
P34945 SYS THET2 Serine-tRNA ligase 421 Thermus thermophilus
P0C2W0 YADA2 YEREN Adhesin YadA 422 Yersinia enterocolitica
P02930 TOLC ECOLI Outer membrane protein

TolC
493 Escherichia coli (s. K12)

P35637 FUS HUMAN RNA-binding protein 526 H. sapiens
P49711 CTCF HUMAN Transcriptional repressor

CTCF
727 H. sapiens

P15502 ELN HUMAN Elastin 786 H. sapiens
P42566 EPS15 HUMAN Epidermal growth factor

receptor substrate 15
896 H. sapiens

Q9BVN2 RUSC1 HUMAN RUN and SH3
domain-containing
protein 1

902 H. sapiens

P10275 ANDR HUMAN Androgen receptor 920 H. sapiens
Q8WVM7 STAG1 HUMAN Cohesin subunit SA-1 1258 H. sapiens
Q9NZW4 DSPP HUMAN DSPP 1301 H. sapiens
Q8ZL64 SADA SALTY Autotransporter adhesin

SadA
1461 Salmonella typhimurium

P02452 CO1A1 HUMAN Collagen alpha-1(I) chain 1464 H. sapiens
A3M3H0 ATA ACIBT Adhesin Ata

autotransporter
1873 Acinetobacter baumannii

P24928 RPB1 HUMAN DNA-directed RNA
polymerase II subunit
RPB1

1970 H. sapiens

P42858 HD HUMAN Huntingtin 3142 H. sapiens

peptidoglycan binding proteins; the presence of these domains
suggests a function outside of the cell, probably in adhesion.

CAST (2000): detection of CBRs

A next logical step following the detection of LCRs with SEG is
to focus on CBRs. While the usage of the terms LCR and CBR
has been interchangeable in many contexts (Table 1), as they
overlap significantly, the use of one term or the other depends
on the focus of the method used for their detection, i.e. sequence
variability or amino acid composition, respectively. Indeed, the
terms LCR and CBR are somehow imprinted by the fields of
computer science and biology, respectively.

CAST was developed based on the idea that CBRs are enriched
in at least one amino acid type [27]. In brief, CAST detects (and
scores) CBRs using comparisons of a query sequence against a
database of 20 degenerate homopolymeric sequences based on
each of the 20 amino acid types. Overlapping CBRs of different
type (residue) may be detected in the same sequence tract.

Here we applied the CAST algorithm to our dataset with
default parameters (BLOSUM62 substitution matrix and a detec-
tion threshold value of 40). All 21 proteins from the dataset
were detected to contain at least one CBR, with 54 CBRs in
total (mean, 2.6; median, 2; SD, 1.5 CBRs/sequence; Table 3 and
Suppl. Table S1). The number of CBRs per protein vary between 1
(n = 7 proteins) and 5 (n = 3 proteins). CBRs vary considerably in

length, with the shortest one being just 10 residues long (a P-rich
region in the androgen receptor) and the longest being an S-rich
region extending over 1436 residues covering almost the entirety
of the autotransporter adhesin SadA. It is worth mentioning that
in our dataset CAST did not detect half of the possible CBR types,
namely CBRs enriched in R, C, H, I, L, M, F, W, Y and V residues.
Some of these CBR types are indeed rare in the overall sequence
database (Table 3).

Our analysis stresses the fact that composition bias is related
to LC (as discussed in the complexity diagram) but is more
widely spread and commonly found in many proteins. Along
these lines, of the 54 CBRs detected in this dataset using CAST,
only 12 instances correspond to sequences with high sequence
complexity values (k2 > 2.5), illustrating that the majority of CBRs
in this dataset are also LCRs. Interestingly, these 12 CBRs with
high complexity values correspond to relatively long regions
(often spanning along hundreds of residues) and, nevertheless,
dominated by serine-rich tracts (9 out of 12).

Importantly, CAST offers the possibility to explore another
dimension of LCRs, which is the residue type characterizing each
region. In addition, when plotting the CAST score normalized by
the sequence length for each detected CBR against the Shannon
entropy (Figure 2), we observe a correlation sorted in a trian-
gle with many points crowding the bottom-right corner (high
entropy and low normalized CAST score), which is reminiscent
of the LC diagram (Figure 1).

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
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Table 3. CBRs detected by CAST. A single protein sequence may contain one or more CBRs of the same or even different residue types. The last
two columns refer to UniProt/Swiss-Prot entries (release 2014 05) as retrieved from LCR-eXXXplorer

CBR type No. CBRs No. CBRP CBRPs, % No. CBRPs in UniProt CBRPs in UniProt, %

A 4 4 19.0 19465 19.5
D 1 1 4.8 5293 5.3
E 8 7 33.3 25438 25.5
G 7 5 23.8 8771 8.8
K 2 1 4.8 14936 15.0
N 2 2 9.5 5428 5.4
P 9 8 38.1 12000 12.0
Q 5 5 23.8 9149 9.2
S 14 13 61.9 25081 25.1
T 2 2 9.5 4216 4.2
R 0 0 0 3768 3.8
C 0 0 0 1083 1.1
H 0 0 0 2584 2.6
I 0 0 0 2178 2.2
L 0 0 0 2422 2.4
M 0 0 0 766 0.8
F 0 0 0 756 0.8
W 0 0 0 274 0.3
Y 0 0 0 562 0.6
V 0 0 0 1487 1.5

CBRP, CBR protein.

Figure 2. Shannon entropy value for each detected CBR against the CAST score

normalized by the sequence length.

SIMPLE (2002): detection of tandem and cryptic repeats

The tool SIMPLE was first developed in 1986 to quantify the
amount of simple sequences in DNA [28]. A version for proteins
was developed in 2002 [29]. The original aim of SIMPLE was
to identify genomic sequences with a propensity to undergo
replication slippage and to quantify the concept of cryptic sim-

plicity, which corresponds to one or more short sequence motifs
within a sequence region, above a baseline, random concentra-
tion. The 2002 implementation extends this original concept to
detect comparably cryptic sequences at the amino acid sequence
level.

To provide a rich overview of the repeat landscape of the
21 proteins in our dataset, we analyzed them using an updated
version of the SIMPLE tool [30]. Significant repeat motifs of length
1 to 10 were identified at a per-analysis probability cutoff of 0.99
(aggregate cutoff probability 0.9) by awarding a score of 1 for
the selected length and 0 for all other lengths. Analyses were
carried out using an 11-residue moving window. Sixteen of the
sequences analyzed using the SIMPLE method contained signif-
icant repeat motifs to some degree (Table 4 and Suppl. Table S1).

SIMPLE analysis provides two types of motif information:
motif identity and motif hit frequency information—defined as
the frequency with which a given motif is detected as being
significantly repeated within a given sequence. As examples,
three of the proteins in the test set (huntingtin, TATA-binding
protein and androgen receptor) contained significantly repeated
motifs of all possible Qn motifs (from n = 1 to n = 10), character-
istic of a simple polyQ repeat. However, the most prominently
repetitive protein in the set was dentin, which, as described
before, contained numerous highly repeated motifs with serine
as the primary repeated amino acid.

Examining the list of motifs detected in the most repetitive
proteins in the dataset reveals many similar or closely related
motifs. To portray these relationships, the motifs can be repre-
sented graphically. As an example, Figure 3 shows a motif graph
for Collagen alpha-1(I) chain. The representation links different
motifs identified in the sequence with their sequence overlap.
The example in Figure 3 shows a closely knit set of motifs
linked to the submotifs PGP and GPP alongside others linked to
PGA. Some motifs in this example (and in other sets) are less
connected than others—the extreme example in P02452 being
PAG, which, although related to others by circular permutation,
does not overlap with them.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1


464 P. Mier et al.

Table 4. Numbers and major classes of repeats identified by SIMPLE analysis

ID No. repeats identified Characteristic repeat(s) (frequency)

Q38PT6 9HEXA 23 G (19)
TBP HUMAN 336 Q (41)
P53 HUMAN 11 AP (6)
SRP40 YEAST 794 S (168)
FUS HUMAN 175 G (60)
CTCF HUMAN 1 EP (1)
ELN HUMAN 350 A (30), GV (28)
EPS15 HUMAN 11 DPF (6)
RUSC1 HUMAN 6 PP (3)
ANDR HUMAN 351 Q (25), G (23)
DSPP HUMAN 3082 S (459)
SADA SALTY 3 NTT (2)
CO1A1 HUMAN 113 GP (17)
ATA ACIBT 21 NTK, TKTEL (3)
RPB1 HUMAN 948 SP (96)
HD HUMAN 211 P (27)

Figure 3. Motif graph based on SIMPLE analysis of CO1A1 HUMAN.

Correlation between low complexity and disorder

LC and compositionally biased sequences often overlap with
protein disorder [31]. However, their precise relation largely
depends on the applied methods used for their quantification.
Here the IUPred method was used to characterize protein
disorder and to calculate the overlap with the various features
determined with the methods SEG, CAST and SIMPLE described
earlier. IUPred captures the basic biophysical properties of
ordered and disordered sequences by relying on an energy
estimation scheme. According to this, sequences composed
of amino acids that cannot form enough favorable intrachain
interactions would be disordered and can be recognized from
the amino acid sequence by their less favorable estimated
energies [32].

All the 21 sequences in our dataset contained at least one
disordered segment, and nearly 45% of residues were predicted
as disordered (see details in Suppl. Table S1). This was lower
compared to the average residues predicted by CAST, but higher
than those predicted by SEG (15%). Table 5 and Figure 4 describe

the overlap between the various methods. The matrix of overlaps
is non-symmetrical (Table 5(A)), as the overlap is computed on
the percentage of residues with a given feature. For example, 81%
of SEG LC residues are predicted to be in disordered regions by
IUPred. However, only 27% of residues predicted to be disordered
by IUPred are found in a SEG detected region. Overall, there is a
fairly good agreement between the methods that detect LC and
the disordered regions detected by IUPred. Between the methods
that detect LC, the largest agreement (relative to random overlap)
was observed in the case of SEG and SIMPLE, likely because both
produce relatively conservative predictions (Table 5(B)). Interest-
ingly, by this metrics, the overlap between IUPred and the LC
methods was not much lower as the overlap between CAST and
the other methods.

The low complexity diagram: a proof of principle

The LC diagram described before (Figure 1) allows us to situate
and compare protein sequences in a framework that reflects two

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
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Table 5. (A) Fraction of residues predicted by one method (columns) that are predicted by another method (rows). (B) Enrichment ratio of
overlapping residues between two methods compared to random overlap

A % residues predicted by

% residues predicted by IUPred SEG CAST SIMPLE
Total 44.89 15.04 50.16 18.51
IUPred 100.00 27.07 78.66 32.03
SEG 80.78 100.00 98.41 90.32
CAST 70.40 29.51 100.00 35.27
SIMPLE 77.69 73.42 95.89 100.00

B Enrichment of overlap

Enrichment of overlap IUPred SEG CAST SIMPLE
IUPred 1.00 1.80 1.57 1.73
SEG 1.80 1.00 1.96 4.88
CAST 1.57 1.96 1.00 1.91
SIMPLE 1.73 4.88 1.91 1.00

simple properties that are intimately associated to LC: compo-
sitional bias and repeats. These two features are measured by
computing the abundance of the most frequent amino acid in
the tract and by the fraction of residues that needs to be mutated
to have a perfectly repeated tract.

We calculated the properties that define the two axes of
the LC diagram for a dataset of globular monomeric proteins
(globular) and a dataset of disordered proteins (IUP) [33]
and for fragments of our own protein dataset (Table 2) deter-
mined to be of LC by the SEG, CAST, and SIMPLE methods
(with a minimum length of 10 residues; Figure 5). To place
them in the LC diagram, the percentage of the most common
amino acid in each sequence was determined as a function
of the percentage of the mutations to form perfect repeats.
The latter quantity was calculated in a brute force way by
considering all potential fragments of the sequence of lengths
between 1 and 30. From these fragments, an artificial sequence
of perfect repeats was generated by iterating these elements
to be long enough to cover the original sequence region. At
least three repeats were required; therefore, only fragments
no longer than a third of the sequence were considered. The
minimum number of mutations between the original and these
artificial sequences was calculated and normalized by the
sequence length. This approach cannot consider insertions
and deletions. Thus, the x values calculated represent an
estimate, and the real values (if different) can only be closer
to zero.

The regions from globular proteins are distributed as a com-
pact cloud (yellow points) that edges on the point described as
globular in Figure 1 (bottom-right corner; Figure 5). An inferior
limit around 10% of top amino acid agrees with the estimation
published in 1966 [16]. The globular cloud overlaps with the
disorder cloud (red points) outside the immediate vicinity of
‘regular’ proteins and extends into the realm of LC (orange, blue
and green points). The separation between the globular cloud
and the LC cloud described by SEG is very strong: the clouds
touch each other but they do not overlap. Disordered regions
overlap with both globular proteins and LCRs, as expected.

The disorder cloud overlaps with the globular cloud but does
not touch the extreme, indicating that a globular sequence can
transition to disorder both by gaining a biased sequence but also
via slight repetitions. In this respect, however, it is interesting
to note that the disorder cloud overlaps very little with the
repeat cloud, confirming that long perfect repeats are predicted
to confer order. This is a structural aspect that we address in the
next section.

Structural properties of LCRs
The experimental determination of protein structure is much
more challenging for LCRs than for globular and fibrous proteins
[34], and only few cases have been studied experimentally. This
is due to various reasons that we will explain in this section.

To guide our tour from the sequence to the structural
aspects of LCRs, we will continue our strategy to illustrate
LC with the set of 21 examples, taking into consideration the
previously obtained information for these sequences. There are
prediction tools specialized for the study of the structural
properties of proteins, which we will apply to the selected
proteins with LCR. It should be noted that for many of them
there is experimentally known 3D structure covering parts of
the sequence, but these generally do not overlap with LCRs. For
example, the recently solved structure of huntingtin [35] does
not resolve the N-terminal 90 amino acids, which contains a
CBR including the polyQ whose expansion causes Huntington’s
disease, and the 2622-2660 fragment, both of which practically
overlap to the regions identified as LCRs in our SEG analysis
(Suppl. Table S1).

Analysis of the structural properties of low
complexity sequences
The structural properties of LCRs can be predicted with sev-
eral bioinformatics methods. To classify the incidence of dif-
ferent phenomena in the dataset, we used FELLS, a predictor
that aggregates sequence and structural propensity predictions
in a single view [36]; this includes secondary structure, LCR,
disorder and aggregation predictions displayed along sequence
positions. We focused on four predictions: LCRs (SEG), disorder
(ESpritz-NMR), aggregation propensity (Pasta 2.0 [37]) and sec-
ondary structure (FESS). We classified each protein in the dataset
as belonging to one category (LC, disordered, aggregating and
structured) if more than the 30% of its sequence is predicted
to be in that state. The results are shown in a Venn diagram
(Figure 6). In our dataset, focused on LCRs, only one protein falls
outside the LCR and/or disorder categories. This is huntingtin,
the longest of the 21 proteins (3142 amino acids) known to har-
bor homorepeats, alpha-solenoid repeats and globular domains
[35, 38].

In agreement with the sequence analyses presented before,
we observe a large overlap between LCR and disorder (13 of 21
proteins), including proteins such as the Glycine-rich antifreeze

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
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Figure 4. Comparison of positions detected to be of LC in the 21 proteins of our dataset. Methods SEG (in orange), CAST (in red), SIMPLE (in brown) and IUPred (in purple)

were used. ANCHOR (in light blue), which includes structural aspects, is also compared.

protein (Q38PT6 9HEXA), dentin (DSPP HUMAN) and human
RNA binding protein FUS (FUS HUMAN).

Regarding aggregation, while three of the six proteins classi-
fied as aggregating are also in the LCR category (TBP HUMAN,
RPB1 HUMAN and Q38PT6 9HEXA), we need to look at the
sequence level. For example, for both TBP HUMAN and
RPB1 HUMAN the regions with aggregation propensity do
not overlap with the LCRs. Even in FUS, a largely disordered
protein with generally low sequence complexity, its few regions
presenting aggregation propensity are localized in the small
ordered part of the protein. A possible explanation of this is
that LCRs and aggregation prone regions have different amino
acid frequencies. Hydrophobic residues inducing aggregation
are probably less abundant in LCRs. This was the case in our
dataset (see Table 3 for CBRs).

Therefore, our small dataset supports the previous associa-
tion between LCR and disorder but not to aggregation propensity.
However, TBP leads to another turn in our story, by bringing
another player relating LCR, structure and aggregation: homore-

peats. TBP’s LCR is a large stretch of consecutive glutamines
(positions 55–95), which is interestingly predicted both in helical
conformation and as a disordered region. These contradictory
predictions are most probably due to the lack of detailed under-
standing of the conformational preferences adopted by homore-
peats. In the next section, we discuss the challenges posed by
homorepeat structure prediction and determination, and the
strategies that have been proposed for their study.

Deciphering the structural basis of
homorepeat function
Homorepeats are an extreme case of LC, and in this respect, they
can help us to illustrate the origin of the difficulties in relating
sequence and structure in LCRs. In homorepeats, the presence of
multiple copies of a single amino acid in a protein region confers
very specific physicochemical properties to the hosting protein
and enables it to perform specialized biological tasks (see, for
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Figure 5. LC diagram for various sequence datasets. The percentage of the

top amino acid as a function of the percentage of mutations to perfect repeats

calculated for a dataset of globular (GLOB), disordered (IUP) sequences as well as

fragments of our protein dataset with LC character according to the SEG, CAST

and SIMPLE methods.

example, [39]). Despite their relevance, the connection between
amino acid sequence, 3D structure and biological function in
homorepeats remains poorly understood due to the challenges
they pose to structural biology.

Homorepeats and short repeats are found in disordered
regions, a property that typically precludes their crystallization.
In the case of polyQ, there are, however, examples that have
been crystallized in the presence of fusion proteins [40, 41]
or specific antibodies [42, 43]. These studies yield contradic-
tory results regarding the secondary structural preferences
of polyQ tracts. This observed structural variability most
likely originates from the inherent conformational plasticity
of the homorepeat regions, which cannot be captured in
crystallographic studies. Nuclear magnetic resonance (NMR), a
high resolution structural technique in solution, seems more
adapted to study homorepeats. However, the similarity of
the nuclear resonance frequencies within homorepeats has
hampered these studies. Some pioneering NMR studies of polyQ
homorepeats in huntingtin [44, 45], and the androgen receptor
[46] have shown these studies are possible. These examples
show that the N-terminal flanking region of the polyQ adopts an
α-helical conformation that extends toward the homorepeat. In
the absence of this structured flanking region, polyQ adopts a
random coil conformation [46, 47].

Homorepeats are frequent in our LCR-focused set of 21
proteins (Suppl. Table S1). Using a relatively lax cutoff of four
residues of the same type in a window of six (which was
identified as already inducing structural effects for polyQ
[48]), only TOLC ECOLI has no homorepeat region (as detected
with dAPE [49]), hinting at the large overlap of LCRs with
homorepeats. While there is a variety of homorepeat types,
we can observe preferences in particular sequences, like polyS
in SRP40 YEAST, DSPP HUMAN and RPB1 HUMAN, polyP in
CO1A1 HUMAN or polyG in FUS HUMAN. Elastin has many
polyA and polyG tracts, since these residues participate in motifs
discussed above that surround and support functional lysines
and prolines. PolyQ is present once in TBP HUMAN (followed
by polyA), EPS15 HUMAN, HD HUMAN, and three times in
ANDR HUMAN. All overlap the predicted regions by CAST (which
identifies the Q-rich region) and IUPred (indicating disorder).

While there was no overlap with FELLS (PASTA 2.0) indicating
aggregation, the aggregation propensity regions predicted by
ArchCandy ([50]; Suppl. Table S1) do overlap with the three
regions (in TBP, HD and ANDR) that are involved in polyQ
repeat expansions causing disease [51]. This result suggests
that ArchCandy detects aggregation of the type involved in
CAG/CAA triplet expansions. The ArchCandy analysis of our
dataset identifies aggregation regions in a subset of the proteins
identified by PASTA 2.0, suggesting that distinct methods for
detection of aggregation have different sensitivity depending on
the sequence.

Analysis of repeating patterns of charged
regions/residues
As discussed above, repetition within LCRs can result in struc-
ture and function. Another type of repetition that can occur
within LCRs, beyond homorepeats, are those with alternating
blocks of oppositely charged residues. To our knowledge, the
only such motif that has been characterized in detail is the
Charged single alpha-helix (CSAH), also often referred to simply
as single alpha-helix (SAH). In these regions, generally three
to four negatively charged residues are followed by three to
four positively charged ones, although only few of such repeats
are perfect. The structure of these segments is an alpha-helix
that is stable in water as a monomer. CSAH segments can act
as rigid linkers, rulers or lever arms in various proteins [52–
54] and may also behave as constant force springs [55]. CSAHs
are very rare in protein sequences and, in a number of cases,
are adjacent to coiled coil segments. One of the most well-
characterized segments is found in myosin 6, where it forms
the extended lever arm [52]. There are currently three methods
for detecting CSAHs in protein sequences, Waggawagga [56],
FT CHARGE and SCAN4CSAH, which are generally used together
for consensus predictions [57]. Of these, FT CHARGE identifies
repeating charge patterns of any frequency, not just those char-
acteristic of CSAHs.

We applied the FT CHARGE method [57] allowing all repeat
frequencies to our dataset of 21 proteins (Suppl. Table S1).
In agreement with their known low frequency, we only
found CSAHs in two of the 21 proteins: a short region in
huntingtin (HD HUMAN, residues 2633–2664), and a 120 amino
acid segment in the human transcriptional repressor CTCF
(CTCF HUMAN, residues 557–673). The first 20 residues of the
CTCF region largely match the 11th, atypical Zinc-finger motif
of the protein as annotated in UniProt (positions 555–577). The
structural information available for this protein suggests that its
C-terminal part is intrinsically unstructured [58]. However, this
is typically found for CSAHs because, due to their highly charged
nature, they are almost always predicted to be intrinsically
disordered for most of their length [59]. However, CSAHs can
adopt a stable conformation as monomers (e.g. [52]).

The notion that several structural motifs formed by LCRs are
predicted to be intrinsically disordered is often found in the lit-
erature [60–63]. Most notably, there are many segments that are
predicted to form alpha-helical coiled coils and also to be intrin-
sically disordered. In the case of coiled coils this can be justified
on the basis that coiled coil forming regions are generally viewed
as disordered in their monomeric state and they adopt helical
conformation upon dimerization/multimerization [64]. Collagen
triple-helical motifs are another example of similar behavior,
providing a case of folding upon binding/multimerization [65].
In the next section, we study the overlaps of these structural
predictions to LCRs.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz007/-/DC1
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Figure 6. Structural features of LC proteins. Venn diagram representing the FELLS prediction of dataset proteins, in four categories: secondary structure (SS), LCRs,

disorder and aggregation. Each protein is assigned to a category if more than 30% of the residues in its sequence are predicted in that state.

Overlap of structural predictions and LCRs

Our previous analyses suggest that LCRs tend to lie in regions
without much structure. However, there are LCRs with repeti-
tions that seem to provide structure, even multiple structures
influenced by interactions with protein partners. To illustrate
the overlaps of different structural predictions and LCRs, we
use again our protein dataset. Overlaps of predictions were
computed in three steps. First, we applied IUPred [32], VSL2B
[66], ncoils [67], Paircoil2 [68] and hmmsearch [69] using Colla-
gen.hmm (Pfam family PF01391), all with default parameters.
Then, using in-house scripts, we computed (i) the consensus of
the two disorder predicting methods, IUPred and VSL2B (only
regions with a minimum of 30 residues predicted by both meth-
ods were considered), and (ii) the consensus of the coiled coil
predicting methods, ncoils and Paircoil2 (only regions with a
minimum of 21 residues predicted by both methods were con-
sidered). Finally, we computed the number of residues predicted
to be disordered, located in coiled coil regions or in polyproline

II-like helices (PPLLH; according to their similarity to collagen
evaluated with hmmsearch). No residue was predicted to be
both in a PPLLH and in a coiled coil: such overlap is unrealistic

because of the incompatible structural preferences of amino
acids (both Gly and Pro, abundant in PPLLH, are very rare in
alpha-helical regions). PPLLH and coiled coils were predicted
for two and four proteins, respectively (Table 6). Full overlap to
disorder was found for the PPLLH predicted for Q38PT6 9HEXA

(glycine-rich antifreeze protein) and partially for the coiled coils
in EPS15 HUMAN (epidermal growth factor receptor substrate
15) and ATA ACIBT (adhesin autotransporter).

While these overlaps might reflect reality in terms of
dynamic rearrangements of the segments, the general wisdom
could be that the more specific prediction should usually be
considered, meaning that coiled coil and collagen predictions

have prevalence over disorder predictions. In this respect,
disorder detection is regarded as a method to recognize non-
globular sequences that might either form fibrillar structures or
be disordered in their functional form, depending, among others,
on their repetitiveness.

Our knowledge about the sequence/structure relationship
for disordered proteins is certainly less advanced compared
to globular proteins, perhaps precluding initiatives on protein
design. This can be extended to disordered LCRs that rep-
resent a huge challenge for structural biology. Some studies
have engineered LC proteins to decipher the role of specific
amino acid types or sequence patterning with biological

function. For instance, the effect on the overall structure
of the charge distribution within isolated disordered chains
[70] and when tethered to globular domains [71] have been
addressed from a theoretical perspective. Moreover, in the
recent years, liquid–liquid phase separation (LLPS) has emerged

as a general phenomenon that is involved in fundamental
biological processes [72]. It has been demonstrated that
many LCRs experience LLPS under specific experimental
conditions. This demixing phenomenon depends on the
balance of intramolecular, intermolecular, protein–solvent
and solvent–solvent interaction strengths [73]. Despite the

growing interest in LLPS, the relationship between amino
acid composition and patterning within the chain is poorly
understood, and it is the matter of an intense research
including the design of synthetic LC sequences with enhanced
or reduced demixing properties [74, 75]. In general, LCRs
inducing phase separation can be classified as polar with a
strong compositional bias for serine, glycine, asparagine and
glutamine. The remaining amino acids are variable, although
low fractions of regularly spaced charged and/or aromatic
amino acids are observed [73]. The relevance of aromatic
residues has been demonstrated in FUS protein where the
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Table 6. Number of residues predicted to be in different structural states

ID Disordered Only
disordered

Disordered + cc Disordered + polyproline
II-like helices

cc Only cc Polyproline
II-like helices

Only
polyproline
II-like helices

Q38PT6 9HEXA 0 0 0 0 0 0 48 48
SYS THET2 0 0 0 0 63 63 0 0
EPS15 HUMAN 287 228 59 0 161 102 0 0
STAG1 HUMAN 202 202 0 0 31 31 0 0
CO1A1 HUMAN 1168 390 0 778 0 0 778 0
ATA ACIBT 546 450 96 0 96 0 0 0

replacement of tyrosines by phenylalanines, serines or leucines
reduces or impedes the phase separation capacity of the protein
[76, 77].

Multimerization: a final variable adding
complexity to the study of LCRs
As discussed above, structural variability and folding upon
binding are properties that can characterize some LCRs. Thus,
the structural behavior of LCRs is context dependent. The
interactions of LCRs with additional copies of either the same
molecule (homomultimers) or other proteins/(macro)molecules
(heteromeric complexes) is a key factor and largely influences
the ability of the sequence to adopt a specific structure or inter-
change between conformations. Current methods are typically
able to predict either the structure of the ‘isolated’ molecule
or the propensity to form specific structures, which typically
stem from the underlying repeated sequence. The limitation
of such methods is that they usually predict homomultimeric
structures, because it is impractical to consider the sequence
information of all possible interaction partners. However, there
are efforts to identify interaction motifs that might fold upon
partner interaction (e.g. ANCHOR [78]). Indeed, application of
this method to our protein dataset indicates some cases where
this property applies (Figure 4), and while there is a general
overlap of folding propensity overlapping LCRs, there are also
examples of striking complementarity (e.g. DSPP HUMAN).

Conclusions
In this critical review, we have focused on the description of
several features of LCRs by using computational methods. We
chose a set of 21 proteins with a variety of functions and types
of LCRs to test these methods and their overlapping predictions.
At the strict level of sequence, LC is related to composition bias
and repeats. At the level of structure, there is a direct, yet not
fully understood, relation to disorder, aggregation and flexibility.
While some connections have been established previously, we
demonstrate the difficulty of defining general rules connecting
sequence features and structural properties.

We hypothesize that the problem lies in the strong non-
linearities of the connections between the sequence/structure
relationships in LC sequences. Some stem from the fact that
variables used to measure sequence order cannot capture all
the effects of amino acid combinations at the structural level,
which for example depend crucially on the amino acid side
chains. The second reason for this non-linearity is the flexibility
of disordered regions and their possibilities to adopt ordered
structures in the context of flanking sequences or interacting
molecules, which complicates any standalone predictions.

We have tried a pragmatic approach with two sides. On the
one hand, a diagram of sequence properties that allows one to
explore the overlaps in three variables (repeat perfection, com-
position bias and LC; Figure 1), which complements our intellec-
tual discussion on these variables with actual distributions of
real protein fragments (Figure 5). Along this exemplary path, we
have chosen a small dataset to submit it to a variety of analyses
and illustrate their potential overlaps.

The structural aspects were discussed separately, yet in con-
junction with the above. The main conclusion from this latter
section in light of sequence analysis is that LC manifests itself
in apparently opposite effects: while disorder and flexibility
seem to be common features of LCRs, repetition/periodicity in
sequence at multiple levels can induce structure. Back to the LC
diagram (Figure 1), this is reflected in two situations: between
disordered and globular and between disordered to flexible.
In evolutionary terms, this might imply that a disordered (LC)
sequence can ‘escape’ disorder by either gaining a richer (higher
complexity) composition maintaining aperiodicity (lower y for a
given x), or by attaining a highly periodic structure (lower x for a
given y).

We have demonstrated the intricacies of analyzing LC in
protein sequences: even methods that are supposed to study
the same properties (LC, sequence bias or aggregation) might not
share similar assumptions. Our recommendation for researchers
investigating a particular protein is to use several of these meth-
ods together. It must be noted that since sequence context
might be influencing the structure adopted by a LCR, there is
an additional advantage in having these multiple outputs. For
instance, one could discover that a predicted disordered region
is proximal to features involved in protein interaction (a repeat
or a coiled coil region) or to an aggregation prone region that
is also disordered and probably exposed. In this respect, joint
bioinformatics research and development efforts to make the
outputs of these methods compatible and consistent are highly
desirable. We expect that ongoing efforts to annotate LC related
features in as many protein sequences and structures as possible
will eventually lead to the detection of additional features, or
combinations thereof, and to a more specific classification of
LCRs. This should allow accurate associations of LCRs with pro-
tein modifications, motifs, dynamic behaviors and interactors,
thus gaining the ability to predict function for large parts of
protein sequences that currently remain a mystery.

Key Points
• LC can only be compositionally biased, while composi-

tional bias can be of low or high complexity.
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• Repetition within LCRs can result in structure and func-
tion.

• Statistical measures alone cannot capture all structural
aspects of LCRs.

• Factors such as the sequence context and the molecular
context of the protein can influence the structural state
of LCRs.
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