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Abstract: Traumatic brain injury (TBI) remains the main cause of disability and a major
public health problem worldwide. This review focuses on the neurophysiology of TBI, and the
rationale and current state of evidence of clinical application of brain stimulation to promote
TBI recovery, particularly on consciousness, cognitive function, motor impairments, and
psychiatric conditions. We discuss the mechanisms of different brain stimulation techniques
including major noninvasive and invasive stimulations. Thus far, most noninvasive brain stimu-
lation interventions have been nontargeted and focused on the chronic phase of recovery after
TBI. In the acute stages, there is limited available evidence of the efficacy and safety of brain
stimulation to improve functional outcomes. Comparing the studies across different techniques,
transcranial direct current stimulation is the intervention that currently has the higher number
of properly designed clinical trials, though total number is still small. We recognize the need
for larger studies with target neuroplasticity modulation to fully explore the benefits of brain
stimulation to effect TBI recovery during different stages of recovery.
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Introduction

Traumatic brain injury (TBI) is one of the leading causes of disabilities and death of
young adults. It is estimated that 1.7 million cases occur each year in the United States,
in which nearly 80% are treated and released from an emergency department.' Cogni-
tive impairment and neuropsychiatric disorders are the main disabilities,>* followed by
motor deficits.’ To date, there is no optimal pharmaceutical treatment for acute TBL?
and brain stimulation techniques appear promising as treatment options to improve
neuropsychiatric conditions and motor deficits.” Our review presents the underlying
neuroplasticity mechanisms and maladaptive plasticity involved in stages of recovery
of TBI. It focuses on the primary and secondary injury phases. To better understand the
mechanism, rationale, and current clinical evidence of noninvasive and invasive brain
stimulation, we will provide a comprehensive review on how stimulation techniques
modulate brain activity, promote recovery, and prevent further damage after TBI.

The effect of neuroplasticity on TBI

Considerable evidence has shown that the brain has an extensive ability of
reorganization after damage. Better understanding of neuroplasticity mechanisms
permits more appropriate selection of neuromodulation techniques for the treatment
of TBI. Neuroplasticity is defined as an intrinsic property of the human nervous sys-
tem and occurs in adaptation to environmental stress, physiological changes, and life
experiences.® Neuroplasticity plays a role in neural development, homeostasis,’ and in
the dynamic recovery process after injury. In TBI, neuroplasticity can be regarded as
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an adaptation and reorganization to compensate for the initial
insult and to attempt to restore function. We will describe
the pathophysiological changes and neuroplasticity in the
primary and secondary phases of TBI.

The primary injury phase in TBI

Depending on the mechanism of the trauma, the immediate
insult to the brain might be focal (subdural, subarachnoid, or
epidural hematoma/hemorrhage/contusion), diffuse (wide-
spread disruption of neuronal circuitry/axonal injury), or
mixed (diffuse axonal injury with intracerebral hemorrhage).
The initial neuronal injury occurs instantly'® and oftentimes
causes irreversible damage to the central nervous system, due
to impairment of neuronal cell functions or cell death.!! Irre-
versible damage occurs due to the impact of a traumatic event
at the origin of acceleration—deceleration shearing, or pen-
etrating injury to the tissues and structures of the brain. Initial
shearing of axons and blood vessels can cause intracerebral
bleeding, which leads to parenchymal hemorrhage resulting
in mass effect!® to the brain tissue. In diffuse axonal injury'®
there is deformation to complete disruption of the axons. This
disruption/deformation causes loss of connectivity between
different areas of the brain, and can negatively impact neural
regeneration, leading to dysfunctional interactions. Thus,
even a relatively local lesion can lead to extensive functional
damage of other areas of the brain.'?

The secondary injury phase in TBI

As a result of an early reduction of cerebral vascular auto-
regulation and loss of blood-brain barrier integrity, gradual
diffuse microvascular damage occurs.!® This diffuse damage
increases the risk of ischemic injury and leads to cellular
death.!! Other changes include release of neurotransmitters,
decreased glucose utilization, lactic acid accumulation, reduced
activity of adenosine triphosphate (ATP)-reliant ion pumps,
increased release of glutamate, Ca?*-induced depolarization,
and excitotoxicity. All of these changes may cause anatomical
and functional modifications of synaptic transmission.'* The
modulation of the series of actions on a synaptic transmission
is an important way to promote brain plasticity.

In the first few weeks after brain injury, brain plasticity
and functional recovery involve resolution of edema and
inflammation.' After this initial period, neuroplasticity and
remyelination are the most important alterations occurring
within the first 3 months after injury.' It is in the acute and
subacute stages that there is greatest potential for modifica-
tion of neural networks, leading to the formation of new
anatomical neural connections.'®

Therefore, the improvement of function after TBI needs
to be targeted at different points in time. In the acute phase,
inhibition of glutamatergic neural activity may reduce
neurologic injury.'” In the subacute phase, modulation of
gamma aminobutyric acid (GABA)ergic suppression may
be crucial to minimize the insult and promote recovery.
In the chronic phase, modulation of neuroplasticity is
desirable to inhibit maladaptive changes and to promote
neural network connections. Ultimately, the final outcome
in any stage of injury is to maximize functional recovery.
A comprehensive review of the neuroplasticity of TBI can
be found in Villamar et al.'* In the following “Methods”
section, we will discuss the mechanism, rationale, and cur-
rent evidence of noninvasive and invasive brain stimulation
techniques.

Methods

We searched PubMed (1960-2015), CINAHL (1984-2015),
ClinicalKey (2012-2015), EMBASE (1974-2015), and OVID
databases (1946-2015). As search term keywords, we used:
“Transcranial Magnetic Stimulation (TMS)”, “Transcranial
Direct Current Stimulation (tDCS)”, “Transcranial Low-Level
Light/Laser Therapy (LLLT)”, “Transcranial Light-Emitting
Diode (LED)”, “Deep Brain Stimulation (DBS)”, “Disorders
of Consciousness (DOC)”, and “Traumatic Brain Injury
(TBI)”. Based on our search, 37 clinical studies were included
in this review.

Noninvasive brain stimulation

Noninvasive brain stimulation (NIBS) has the ability to
modulate neuron firing. It increases synaptic strength,
modulates neurotransmitters and excitotoxicity, and modi-
fies neural network connections, and is therefore a promising
therapeutic intervention for TBI. The NIBS methods used
to modulate brain plasticity discussed in this article include
TMS, tDCS, LLLT, and LED.

TMS

TMS is a NIBS instrument that induces electrical currents
via Faraday’s principle of electromagnetic induction. Since
its first clinical use in 1985 by Barker et al'® the variety
of neuropsychiatric conditions being treated by TMS has
increased tremendously.'® The coil placed on the scalp gener-
ates a magnetic field that induces a flow of an electric current
to neural tissue. This type of stimulation can depolarize/
hyperpolarize targeted stimulated areas. For this purpose,
there are several protocols of single-pulse and paired-pulse
TMS. Thus, TMS may be used as a diagnostic tool to
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evaluate the integrity of the corticospinal tract, spinal cord,
and peripheral nerves.

If TMS is used repetitively, ongoing changes in neuronal
excitability can be facilitated or inhibited. Those effects are
dependent on stimulation parameters. Low-frequency repeti-
tive TMS (rTMS; 1 Hz) is known to reduce the neural activity
in the direct stimulated cortical areas, while high-frequency
(>5 Hz) TMS generally increases the neural activity. Repeti-
tive rTMS can modulate the activity of the functionally con-
nected brain regions, reorganizing the neuronal network after
injury.?® Theta burst stimulation (TBS) —a mode of patterned
r'TMS — can modulate cortical excitability.?! This stimulation
can be given continuously (cTBS) or intermittently (iTBS).
When given continuously, it decreases cortical excitability
and given intermittently, it facilitates cortical excitability.

The short effects of TMS on brain activity are partially
induced by changes in flow of ionic concentration affecting
the synaptic activity in the stimulated area.'* The modulatory
effects of TMS can outlast the duration of its application.
The after-effect duration is influenced by the magnitude
and frequency of stimulation.® Long-term effects are the
result of long-term potentiation (LTP)/long-term depres-
sion (LTD), which are mechanisms involved in learning.
Therefore improvements in cognitive performance are the
result of long lasting changes in synaptic strength induced
by cumulative effects of consecutive sessions of rTTMS. TMS
can also mediate release of glutamate or GABA, which may
be the reason for its therapeutic effects.'

Clinical results

Our review of the literature yielded seven clinical studies in
which, five studies*' > are case reports, one is an open label
study,?® and one is a cross-sectional survey.?’ None of the
studies addressed use of TMS in the acute phase. Details are
included in Table 1.

Case reports using TMS addressed neurobehavioral
improvements in chronic TBI patients. The aims of these stud-
ies were to reduce music hallucinations, promote tinnitus
relief, and decrease depression symptoms?? by using low-
frequency rTMS. High-frequency rTMS* and cTBS?' were
used to improve consciousness®**’ and visuospatial neglect,?!
respectively. After the stimulation, the outcomes were reduc-
tion of depressive symptoms,? visuospatial neglect,”! and
tinnitus.* In regards to improvement of consciousness* and
music hallucinations,* there were only short-term effects
observed.

The number of treatment sessions in these studies varied
from 10 to 30 sessions. Targeted areas involved the dorsolateral

prefrontal cortex (DLPFC),>?*% and the temporal**?* and
posterior parietal cortex.?! Only two cases used target neuro-
navigated rTMS.?2%

The largest TMS study was an open label study with
15 mild TBI patients; however, only 12 patients completed
the protocol.?® In this study, patients received 20 sessions
of high frequency rTMS (10 Hz) at 110% motor threshold
over the left DLPFC. The aim of the study was to alleviate
post-concussion syndrome (PCS) symptoms, with positive
results observed. Reported side effects included headache
and sleep disturbances.?

These studies showed potential benefits of TMS in
improving neural conductivity by means of recruitment of
neurons, axons, and/or dendritic circuits. Thus far, studies
with TMS have included highly variable parameters of
stimulation (frequency, number of sessions, treatment dura-
tion) and targeted areas. As a consequence of the variability,
it is still unclear which TMS protocol is more effective. An
important issue that deserves attention is the safety of the
method. In the reviewed studies, the side effects were tran-
sient and no seizures were reported. A major limitation of
these studies is that they were all case reports or case series
without sham rTMS to verify the findings.

tDCS

Current modulation of human brain function was first
described over 200 years ago,?® and the description was
further developed in the animal model in the 1950s and
1960s.%33 tDCS has been used as a NIBS technique,
by means of two comparatively large rubber electrodes
(25-35 cm?) placed on the scalp. This allows a weak cur-
rent (1 mA—2 mA) to stream from the anode to the cathode.
This stimulation is generally applied for 10-20 minutes.
Even though the brain scalp absorbs most of the current,
the electrical current that reaches the cerebral cortex has
sufficient intensity to modify the resting membrane potential
and to modulate the activity level of spontaneous excitatory
neurons. Therefore, tDCS is regarded as a neuromodulatory
NIBS technique.*

Short-term effects of tDCS may be induced by non-
synaptic mechanisms due to neuronal resting membrane
depolarization. Such changes may alter the transmembrane
proteins and electrolysis-related hydrogen ions.** It has been
reported that a 13-minute, single session of tDCS can lead to
a 90-minute period of cortical excitability post-stimulation.*
Consecutive sessions of tDCS can prolong those effects for
weeks.?” Long-term effects may be associated with LTP and
LTD mechanisms.*® Such long-term effects are dependent
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on modulation of N-Methyl-D-aspartate (NMDA) recep-
tor activation, as well as neuronal hyperpolarization and
depolarization. Previous studies*’ showed that anodal
tDCS increases the excitability of the cerebral cortex, and
that cathodal stimulation decreases it. On a behavioral
level, anodal tDCS may improve motor task performance,
language, and memory. In contrast, cathodal tDCS may also
increase performance by decreasing over-activation in an
area of maladaptive plasticity.

Clinical results
Due to steady maturation of the technology, relatively low
cost, and the ease of use there is increased interest in the
potential application of tDCS for treatment of TBI. Our liter-
ature review yielded no clinical research on tDCS during the
acute phase of TBI. Table 2 details seven tDCS studies.>**
Six clinical studies were found in the chronic phase of TBI,
and there was only one study?’ in the subacute phase. In con-
trast to TMS studies, most tDCS studies were randomized
controlled trials or crossover studies. Outcome measures in
most of the studies were changes in consciousness and cog-
nitive performance.** The first pilot study was designed to
assess whether anodal tDCS applied to left DLPFC could
improve attention in patients with chronic TBI compared
to sham stimulation.*® Nine patients received anodal tDCS
(2 mA for 20 minutes) or sham stimulation (2 mA for
1 minute), in a double-blind, crossover manner with inter-
vals of at least 48 hours.*’ It was found that anodal tDCS
applied to left DLPFC can significantly shorten reaction
times when compared to sham. Two randomized controlled
trials have explored whether successive applications of
anodal tDCS (15 or 10 sessions of 1 mA for 10 minutes)
placed over the left DLPFC would promote changes in
attention control and memory track formation in severe
TBL*# Those trials revealed no significant improvement
in cognitive outcome measures.*>*! However, in one study
there were changes in electroencephalography (EEG)
recordings associated with an LTP-like mechanism in
neural networks, and this method was more likely to be
sensitive enough to detect cortical changes than attention/
working memory performance.* One double-blind sham-
controlled crossover study provided Class II evidence that
short-duration tDCS over the left DLPF cortex transiently
improves consciousness as measured by Coma Recovery
Scale — Revised (CRS-R) assessment in patients with mini-
mally conscious state (MCS).*#

The variance of results of all trials is likely to be related
to the differences on number of sessions and timing of

application during TBI recovery (chronic vs subacute).
In conclusion, the potential application of tDCS as a neu-
romodulatory tool for blocking or suppressing maladaptive
plasticity is still unknown.

In regards to motor function recovery after TBI, we
found one study that included chronic TBI participants
among stroke patients. All patients received bihemispheric
tDCS over M1 paired with standard upper extremity
physical therapy (24 sessions of 40 minutes, three times
per week). They monitored lasting motor function improve-
ment* and reported positive results 6 months after tDCS
stimulation.

LLLT and transcranial light-emitting diode

LLLT is a NIBS technique used to stimulate biological
reactions*® typically used in the recovery of neuropsychi-
atric conditions.’*® LLLT uses low-powered laser light at
wavelengths from 632—1,064 nm, ranging from 1-1,000 mW.
In acute phase after TBI, a decrease in energy transduc-
tion and ATP levels occur due to excessive calcium in the
mitochondria within nerve cells impairing the oxidative
phosphorylation process. The mechanisms involved in
LLLT include the modulation of neurobiological function
by improving mitochondrial function, promoting increased
ATP and release of nitric oxide locally. This process enhances
regional cerebral blood flow and brain oxygen, thereby
augmenting metabolic capacity.*>° Light-modulated cell
adhesion and proliferation can be increased or decreased
depending on wavelengths used and radiation dose.”!
Recently, light-emitting diodes (LEDs) have been used as
an alternative light source for LLLT.3"*

Rojas et al>* were the first to record LLLT transcranial
tissue response in vivo. They observed brain metabolic
and antioxidant beneficial effects measured by increases in
cytochrome oxidase expression in neuronal cultures. LLLT-
induced up-regulation of cytochrome oxidase in the cortex
plays a key role in neuronal physiology, serving as an
interface between oxidative energy metabolism and cell
survival signaling pathways.>*> In addition, LLLT partially
restores enzyme activity obstructed by potassium cyanide —
a cytochrome oxidase inhibitor — reducing neuronal cell
death caused by this mitochondrial toxin.>? This enzymatic
restoration improves cellular activity of brain tissue that has
been damaged by TBL.* Thereby, transcranial LLLT may
become a novel therapy to enhance cognitive performance;
emotional functions; and neurological conditions*’*¢ linked
to mitochondrial dysfunction,*” a ubiquitous finding in brain
injury due to TBIL.
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Animal studies showed benefits in laser phototherapy in
damaged TBI cerebral tissue. Those benefits were smaller
lesions,*” improved motor behavior performance,® increased
neurogenesis,*® and changes in biochemical levels.*!

Clinical results

To the best of our knowledge, there are only three clinical
studies*®"2 published using light therapy (LLLT and LED)
in patients with TBI. Table 3 details the manuscripts that
evaluated those clinical findings. They were either case
reports or open label studies. Nawashiro et al®* studied bilat-
eral transcranial LED irradiation in a patient with persistent
vegetative state (VS) following severe TBI. They applied the
technique to the forehead of the patient to quantify changes
in cerebral blood flow. Single-photon emission comput-
erized tomography (SPECT) analysis showed unilateral
increase in cerebral blood flow after 30 minutes of LED
therapy applied twice a day. Stimulation on left DLPFC
was felt to be responsible for improved akinesia in this
patient. Naeser et al’! described two cases of chronic mild
TBI. The first case was a patient with chronic attentional
problems after 7 years of injury. After 8 weeks of LED treat-
ment applications, there was an improvement of attention.
This improvement was observed to gradually decline with
interruption of treatment for 2 weeks. The second case was
a patient treated after multiple concussions who stopped
working due to cognitive dysfunction. After 4 months
of LED treatment, the patient reportedly returned to full-
time work.

Naeser et al*® examined the effect of two identical LED
console units placed over the frontal, parietal, and temporal
areas in eleven chronic mild traumatic brain injury patients
in an open-protocol study. Their study suggested a reduction

Table 3 LLLT/LED use in TBI

in post-traumatic stress symptoms and an improvement in
working memory and executive functions after treatment
application. Those improvements were still reported at
2-month follow-up.

DBS for TBI
In contrast to noninvasive methods, deep brain stimulation
(DBS) is a neurosurgical technique that consists of electri-
cal stimulation through electrodes surgically implanted to
subcortical areas. In some neurological conditions, DBS is
one of the main procedures in functional neurosurgery.**%
In patients refractory to drug treatment, DBS is the gold
standard for the treatment of motor symptoms of Parkinson’s
disease.**% This surgery involves the implantation of elec-
trodes through electrical conductors in the basal ganglia
in both hemispheres.®** The areas usually targeted are
the thalamus, subthalamic nuclei, and the globus pallidus.
Those areas are subjected to electrical signals that stimulate
or inhibit neuronal activity on these nuclei and associated
circuitry.%¢” The electrodes uses high-frequency stimulation
0f 70—-185 Hz and amplitudes of 0.75-4 V.°"0This technique
has greater potential for serious complications and psychiatric
and cognitive side effects due to the current spread into brain
structures surrounding the electrode. Accordingly to Wolz et
al’! the side effects may be due to electrode malposition.
Therefore, in patients with TBI,>7 clinical application
of DBS has been less investigated. This technique has been
approved by the US Food and Drug Administration (FDA)
for the treatment of disabling symptoms of essential tremor
and advanced Parkinson’s disease, and is also approved for
dystonia and obsessive compulsive disorder.”! In Europe, in
addition to these indications, it is used in epilepsy.’ Research
has indicated potential positive outcomes for chronic pain,

Authorl/year Type of study (n) TBI type LLLT and LED protocol Results Side effects
Naeser et al*' Case report (2) Chronic mild TBI 1215 mW per diode, total Transient cognitive No negative
2011 power 500 mW; bilateral and and neurobehavioral side effects
middle sagittal areas using LED improvement
cluster heads
Nawashiro et al®? Case report (I) Chronic severe L-light, 23 diodes; peak Improved neurological N/A
2012 TBIl in persistent wavelength, 850 nm; total condition and cerebral
vegetative state power, 299 mW; L-light on the blood flow
left and right forehead areas
Naeser et al*® Open label (11) Chronic mild TBI LED cluster head (500 mW, Transient cognitive N/A
2014 22.2 mW/cm? for 10 min) midline and neurobehavioral
from front-to-back hairline; and improvement
bilaterally on frontal, parietal, and
temporal areas
Note: L-light (SUN-MECHATRONICS, Tokyo, Japan).
Abbreviations: TBI, traumatic brain injury; LED, light-emitting diode; N/A, not applicable; LLLT, low-level light/laser therapy; min, minutes.
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affective disorders, and a small cohort of patients in minimum
state of consciousness.”

Despite application for symptomatic post-traumatic dis-
eases such as tremor,”>7¢ Parkinsonism,’” and hemidystonia,®
there is expectation that the use of DBS might be also ben-
eficial to improve cognitive and consciousness deficits in
TBI patients.”>”’

Clinical results
We found 20 studies® 773772 testing DBS in chronic TBI
patients. Table 4 details those studies. There were 13 case
reports,®8-70.75.78-8085-87.899192 tyo case series,””#! and five open
label studies.??-348% Tsubokawa et al®! reported significant
improvements in a series of eight patients, but the interven-
tion was performed early, within less than a year after TBI.
Yamamoto et al®*#38 studied series reports of VS and MCS*
caused by various kinds of brain damage. One of these studies®
described that eight of the 21 patients emerged from the VS
and became able to obey verbal commands. The criticism of
this study arises from the inclusion of patients 4-8 months
following injury during a period of spontaneous recovery.
Clinical improvements observed in these studies were based
on small series or case reports. There are many variables
in which functional and biological aspects warrant further
investigation. The precise targets in patients with important
anatomical injuries need to be defined before DBS can take a
therapeutic role in clinical practice in patients with TBI.
Some studies were related to improvement of movement
disorders, 7075779899192 yain 7086 and self-mutilation.®” The main
targets of those studies were the internal globus pallidus and the
ventralis intermedius nucleus. The target for self-mutilation
symptoms was the posterior hypothalamus. Some studies
reported delayed complications, particularly infarction and
infection.®77"® Animal studies showed that vagus nerve stimula-
tion, another type of invasive stimulation,”® could improve the
prognosis of TBI. Since this technology has not been used in
clinical studies, it was not included in this review.

Discussion
We discuss our findings in four separate sections: 1) the
“Brain stimulation and biomarkers” section; 2) the “Clini-
cal outcomes and recovery” section; 3) the “Comparison of
techniques: which one is better for TBI?” section; and 4) the
“Safety” section.

Brain stimulation and biomarkers
There are specific types of biomarkers that assist with find-
ing a prognosis, response to treatment, and extent of TBI.

Although their utility is clear, there are limited data regard-
ing their reliability as a clinical tool and what the optimal
biomarker is in TBI. We discuss a few biomarkers that are
currently being tested.

Commonly tested biomarkers are either proteomic, genetic,
or observed changes in brain metabolism.* Changes in motor-
evoked potential via single or paired pulse stimulation and
effects of rTMS measured by changes in metabolic activity
or cerebral oxygen levels using neuroimaging techniques®
can be considered neurophysiologic biomarkers.

EEG is another potential biomarker. It provides variation
in brain activity during stimulation via tDCS or rTMS. There
is a suggestion that changes on EEG frequencies, particularly
decrease in delta and increase in alpha, can be a biological
marker for response of anodal tDCS reflecting increased corti-
cal activity.®

The technique that has been more studied with biomarkers
in TBI is DBS. Unlike NIBS techniques, DBS enables more
precise access to target structures. It uses electrophysiological
effects on feedback control as a biomarker to establish the
timing and intensity of stimulation. In addition to changes
in brain signals, functional magnetic resonance imaging
(fMRI) has also been used to assess cerebral activity related
to post-traumatic Parkinsonism symptoms.”®

In summary, EEG and neuroimaging are reliable meth-
ods to reflect the effects of brain stimulation and could be
suitable biomarkers. These markers indicate correlations
between structural lesions, metabolic dysfunction, and corti-
cal activity.

Clinical outcomes and recovery

Numerous studies have implied a relationship between
clinical severity measures (eg, the Glasgow Coma Scale
[GCS] and duration of post-traumatic amnesia [PTA]) and
various types of functional outcome measures at differ-
ent times after brain injury.”” All protocols in this review
addressed the subacute or chronic phase of recovery and
used different outcome measures, varying from clinical to
functional scores.

While neuroimaging as an assessment tool can provide
insights into potential relationships between the GCS, PTA,
cognitive function, and outcome after TBI,”® it does increase
cost. Only four TMS studies assessed functional recovery
assisted with neuroimaging technologies, such as positron
emission tomography (PET) and resting fMRI.?!222426 The
clinical endpoints in those studies were related to clinical neu-
robehavioral improvements and also other clinical outcomes,
such as transitory reduction of music hallucinations.

submit your manuscript

1580

Dove

Neuropsychiatric Disease and Treatment 2015:1 |


www.dovepress.com
www.dovepress.com
www.dovepress.com

Traumatic brain injury and utility of brain stimulation modalities

Dove

(panunuo))

paiodau 10N

suoned|jdwod oN

suopedljdwod oN

suopedljdwod oN

suoned||dwod oN

suopedljdwod oN
suopnedljdwod oN

suoned|jdwod oN

suonedi|dwod oN|

191€] SYIUOW M3} B UO[ID3JUI
payidadsun wouy palp syuaned om |

syauow 7| Jaye
Jol94 aunssaud dosp pue ‘ssaulaeay
pue ured Suluinq uj Juswaoadwi pji
1092 0qgade|d JuedyIusis

{s9p0.123|2 om] jo uoneiuejdwi

Wouy 319342 AWOIOWE[BYIOIDIW

10 UOISI||0d pauleIsns pue

JuedYIUSIS DWID JSAO SANE|NWND
2J49Mm Sg dY3 JO 109D Y|

pouiad dn-mojjoy

yauow-Q | & Sulnp uonipuod sauaned
ay2 ul sadueyd Ou BJaM B3y |

SSWOY UMO 113y Ul S9A]| Jiay3 Aolus
01 9|qe 2.9M pUE ‘93BIS USPPLIPAQ 33
wouy pasgaws susned §H| G/ 9sed
auo .0} 3dedxa 93e3S USPPLIPaq € Ul
paurewa. Aay3 ‘J9ASMOY SPUBLILIOD
[eqJaA £2qo 01 9|qe SWedaq pu ‘SA
oY1 wouy pagiaws syusned |7/8
SpuBWIWOD

[eqJoA Aoqo 01 9|qe SWedaq pue ‘SA
oY1 wo.y padtaws sauaned |7/8

91e3s USppLIPaq B ul

paurewa. Aay3 ‘J9ASMOY SPUBLILIOD
[eqJaA £2qo 01 9|qe SWedaq puUB ‘SA
oY1 wouy pagiswa sauaned gg//
'IUOISApIWAY

pue ured jo Juswaroadw|

qui| 3y8iu J4addn ay3 jo JuswaAow pue
saunisod 21uolsAp aya ul JuswaAoadw)

a7ed]UNWWOod
01 9|qe a.JoMm suaired da.y |

$SaUSNOIdsUOd jo UCOEw>OLn_E_

snuis [e313es Joliadns

a3 jo 9s4nod ay3 o1 |9|jeed
‘Aljeanpida pue snuA8 [esauadaud
ay1 jo Adojorewos |edadejolpaw
a3 3uoje A|jeanpgns :3934e

(42p40g JOA/VOA

33 38 3UO pue 43pIoq JOA/WIA
91 7& 2UO) spes| Sg oMl 1a3Je |

ap!Is 2y314 ay3 uo snuiaaul snpijjed
snqoj|3 [e.491e| [esausA0IRIsOd

a1 pue Jolisod sijelade|
SI[EJUDA SN3JONU dlwe[ey) :3a8J. ]

(SA) «1T/T
uonew.Io} JejndinaJ dljeydasuassw

“(SDW) 45/5 PUe (SA) 41T/61
x3|dwod jd-|D diwejeyy 3984e |
(sased 41)

x3|dwod jd-|yD pue (sased oml)
uonewW.Io) JendnaJ dljeydasuasaly
(soseo g|) xo|dwod

3d-|yD snajonu Jejnodseeled
-UBIPOWO.IUDD PUB (SOSBD OMI)

uonew.o} JendnaJ dljeydseduassjy
snuJaaul snpijjed snqoj3d 1asue )|
SnWwiejeys ays o snajdnu
|eJa1ejoa9150d0aIUSA Y| N98JE |
sna|aNu dlweeyl

ol1>adsuou Jo/pue uonew.io)
Jejnonad dijeydadsuasaw nadJe]
snwiejeys ayx

Jo snajpnu Jejod [eare| 9| Y3 pue
euJaul Ipijjed ejjpwe) Y31 9due |

ured s1uouyd
jua3sisuad snoiaaud
pue |g L siuoays

(1) Jowa.y sisous|ds
a|dnjnw pue Jowa.uy
snewney-3sod

(€) 191 2w04yd

BIUOCISAp
juol [njured
— 9L 3uedyd

+(S/€) SO pue
(12/6) SA 201yD

+(17/6) SA 21044D

+(02/8) SA 2woayD

191 duoiyd

19.L 21uoayd

SAd 191 2uodyp

SOW 191 2uoayd

(1) 140dau asen

() saaodau ased

(1) 140dau asen

(92) 12qe| uado

(17) 1°oqe| uado

(02) 12qE| uado

(1) 110dau asen

(1) 1a0dau asen

(g) saluas ase)

(g) saaodau ased

900T
5gl® 39 UOS

900¢
«,[® 30 91004

900T
sl 39 9|]adeD

S00T (getedere))
pue ojowewe

£00¢
4ol 39 Ol0WERWEL

2002
cgl® 30 Ol0WEWE X

0002
o 39 J3yo]

€661
I® 32 [BIISS

0661
gl® 30 BMBYOQNS |

6961
a.B 39 J9|sseH

SEEITERET IS

sy|nsay

|o20304d SgQ

adfy 1g1L

(u) Apn3s jo adA

Jeakjioyny

191 ulesnsga v 21qelL

1581

submit your manuscript

Neuropsychiatric Disease and Treatment 2015:11

Dove


www.dovepress.com
www.dovepress.com
www.dovepress.com

Dove

Li et al

'93e3s 9ANEI9Z9A JuAsIsIad ‘SAJ ‘uoneNWIaS pJod [eulds ‘§DS {W.I0J-1I0YS WR-9¢ 94| Jo Aljenb paleja.-ya[eay ‘9g-4S ‘UOIIBWLIOL JBINJ1S Dljeydaduasaw Iyl ‘Snajanu Jejndidsejeded—ueipawo.nuad 4d-|D
£JO1I9IUE SI[BJO SI[BJIUIA ‘YO SN3[INU 10142150d SI[BIO SI[BJIUBA ‘OA SNI|PNU SNIPBWLIBIUI SI[BIIUDA ‘||A ‘DIBIS DANEIDZIA ‘A DIBIS SNOIDSUOD AJ[BWIUIW ‘SO ‘Adnful ureaq onewnen ‘g ‘uonenwns urelq dasp ‘sgq :suolelIAl.iqqy
'sase (103 J4ad $ISED,, "BIXOUE PUEB JUIPIDIE IB[NISBAOIGR.RD ‘g :sauaned [eroy/sauaned |g ], :S9ION

suopedljdwod oN

suoned|jdwod oN

sjuaned

G/T Ul s94Im Jo auswade|dau 3uriinbau
‘syuaned g/¢ ul aduepadwi paseaoul
PUE [0.2UOD JOW?S.) PasEa.Iddp
papnjpul suonedldwod pakejpqg
uond.Ejul

snpijjed snqo|3 pue usweind
|esa1ejoua1sod pey qusned auo pue
‘usweand sy 3ulAjoAul elUCISApIWSY
oljeydadus-1sod pey siusaned om |

suonedl|dwod oN|

sueaA G Joy pajue|dxa Ja1ye swoldwAs
UBIUOSUD|JEY JO BUlUSSIOM pue
wWsAs UoRE|INWIIS SY3 JO UoRAyUI
{s4eaA ¢ 3ulInp 129)J9 9SISAPE ON

paJuajel 10N
suopnedljdwod oN

suoned|jdwod oN

aAoadwi

J0U pIp BIUOISAP |1’y puE Jowdl 33)
PliW ‘JowaJ3 3310A Ul JuswdAodwi
‘SWIIE Y10q Ul SIOWS.) JO UONINPIY
109)9

[ed1U1> pUE JOWaJ) Uo JudWIACIdW|
B149114D uoisnpdul [ed13ojoisAydo.ids|a
9U3 JO SISeq Y3 UO PaIIJ|IS M
S91EPIPUEd Y3 UBYMm sauaned §H|
pue GA ul A19A0D3. pasea.du|

JowiaJ) Jo uondNpay

(9€-4S) a41] Jo Ayenb pue sauods
JUSWSAOW 9[edS Suney eluoisig
USPS.IB|—Uye{—o>Ing Ul JuswaAoidw|
Sujweu 123lqo

pue ‘Suipasy ‘@duewL.IoIad Joj0W
‘UOIIBDIUNWIWOD [BUONDUN) U 9SBA.IDU|

swoldwAs pidLi—dnaupfe
pUE JOWa.1 d1I_UD] JO 9SBAIID(]

dnoug sgQg-uou o3 paJedwod
dnoug ggq o3 91e4 A19A0da. JamIRg
UONBAIDSGO SLYIUOW §

SulInp uoneg|RNW-J|9s Jo uoneulwi|g
pasiAay

‘9|2 A19A029Y BWOD) Ul paroaduw)

apis 3y311 ay3 uo ‘uonesuejdwi
SY1 J3)E SYIUOW 9 PUE ‘BPIS Y3
a3 UO IS4l ‘WA [e490e|Iq 2284

snpi|jed snqo|3 jeusaaur Y31 93ue |

xa|dwod
3d-WD Pue Yl ‘SgQ ut 3984

snuuaul snpyjjed
snqoj ay1 Jo sgQ [eJ91e|lq pue
SN9[ONU dBIPBIRIUI [BIIUSA 3038 |

snpijjed
snqoj|3 [euaaiul [eJa3e|lun 934

snwieey) [e3uad 98U

19]2NU dIWEBYIGNS PUE |||A 39348 |

(sauaned ¢|) xo|dwod yd-| >
pue (sausaned om) Y| 29848

snwefeyrodAy Jolisasod nadie ]
snwejeyy
[e13Ud ‘Sg [e493e|Iq 3934e ]

191 949485 djuoayD

|91 S49A3s u_CO.EU
$DS ul 4(01/9)
SO Pue SgQ Ul
+(S/€) SO pue
+(12/6) SA 2wouyDd

|91 ®49A3s dluouyd

191 949A3s dIuoIyD

SOW 191 2uodyp

|91 S49A3s u_CO.EU
saa

noyam (98/81) SA
pue ‘sgQ paAIedad
«(12/6) SA 201yD

191 2oiyd

SOW pue
191 949A3s d1UoIYD

(1) 110dau asen

(1) 1a0dau asen

|2qe| uadQ

(g) satas ase)

() saaodau ased
|o>030.4d

S9149S 9SBD B WOy
(1) 340dau aser

(1) 1a0dau asen

udisap [aqe| uadQ

(1) 110dau asen

(1) 10dau asen

¥10T
16l& 39 119]|04

¥10¢
| 39 oyjeAseD

€10C
06|B 30 OjJOWERWE A

€10t
LI 39 Jess|

[4]14
asl® 3 W]

(4114
2| 39 ouideln

110t
<ol 30 9599y

0102

g5l 39 Oj0WEWE L
800¢

(gl® 39 UYN3)
£00T

osl® 39 HIY2S

$323))° apIs

sy|nsay

Jo20304d s

adfy 191

(u) Apn3s jo adA

Jeakjioyny

(ponunuod) § sjqe L.

Neuropsychiatric Disease and Treatment 2015:1 |

submit your manuscript

1582

Dove


www.dovepress.com
www.dovepress.com
www.dovepress.com

Dove

Traumatic brain injury and utility of brain stimulation modalities

tDCS studies measured cognitive function using com-
puterized contrast reaction time task®” and attention/working
memory task.*! They used the JFK Coma Recovery Scale
Revised to assess consciousness in persistent VS or MCS*!
and monitored improvement of motor function using func-
tional independence measures as a primary outcome.* Three
LLLT/LED studies***'* addressed improvement of cognition
after TBI, but only one study included detailed psychologi-
cal measurements using the Posttraumatic Stress Disorder
Checklist — Civilian; the Beck Depression Inventory — II;
and the Visual Analog Scale for pain.

The primary outcomes of DBS studies?® were level of
consciousness and changes in JFK Coma Recovery Scale.
The secondary outcomes included neurophysiological
evaluation, EEG, and auditory brainstem response. Further
studies using comparable and standardized clinical and
functional outcomes are warranted to investigate benefits of
each brain stimulation technique for different post-traumatic
conditions. In fact, some studies, especially those using
NIBS, used surrogate cognitive outcomes, such as reaction
time in neurophysiological tests, thus making it difficult to
determine the clinical utility of these techniques. Given that
functional outcomes are associated with more variability and
less power, future studies need to test functional outcomes
in large sample size studies.

Comparison of techniques: which one
is better for TBI?

One important question is which technique is most beneficial
for the treatment of TBI. Although data to date do not give
enough information to respond this question, a few topics
can be explored when comparing techniques: 1) efficacy of
these techniques when comparing them; 2) differences of the
techniques that may be advantageous for TBI treatment; and
3) safety. There is not enough evidence on efficacy to rec-
ommend for or against any of these techniques. Most of the
studies are open label or case reports, and the few randomized
controlled trials are small and/or used surrogate outcomes.
Although the most remarkable clinical improvements have
been shown with DBS, comparison is difficult as DBS uses
longer protocols of stimulation that may be associated with
larger clinical and placebo effects. Therefore, two steps
are necessary to determine efficacy of these techniques:
1) development of appropriately designed placebo random-
ized clinical trials with large sample sizes; and 2) development
of randomized clinical trials comparing these techniques.

In terms of differences between the techniques, one
point for discussion is the focality. tDCS and LLLT are both

nonfocal interventions, while rTMS and DBS are more focal
interventions. It is unclear whether the nonfocality of tDCS
and LLLT are associated with less effect. It may be argued
that less focality in TBI may be beneficial to promote neuro-
plasticity in a wider area, or that focalization may be achieved
when combined with behavioral interventions.

Regarding targeting, for the more focal techniques, there
is also the question of what target is most optimal. NIBS
methods may be applied over several brain areas involved
in neuroplasticity processes. How the target is determined
plays an important role during the stimulation. Some stud-
ies have stimulated the DLPFC region in order to improve
neurobehavioral function, PCS, and depression.?>?3*¢ With
the development of functional imaging techniques, there are
more options to achieve this goal. Reviewed rTMS studies
applied navigational stimulation before and after the stimu-
lation to achieve the specific target**** using MRI and PET
scan. This enabled visualization of the lesion and assessment
of response to cortical excitability or connectivity of brain
network.?!22.24

DBS alters activity patterns to moderate abnormal brain
function related to a specific target. Successful stimulation
of the ventralis intermedius nucleus of the thalamus, reduced
post-traumatic tremors,”® and DBS targeting the subgenual
cingulate cortex were used for the treatment of refractory
post-traumatic depression.”'°! In this context, development
of this field will come with best definition of specific targets
for specific behaviors.

The use of neurostimulation strategies and their potential
role in recovery of TBI needs to be further developed. Dif-
ferent techniques may be optimized when used in combina-
tion, depending on the stage of the recovery and the specific
needs of the individual.” In addition, the use of closed loop
systems that can in real time change parameters of stimulation
according to the neurophysiological response, may optimize
the response to brain stimulation. Finally, the combination of
chemical stimulation with drugs and brain stimulation may
also result in better clinical outcomes.'??

Safety

Considering that TBI is characterized by a chronic hyper-
excitability state that increases seizure risk, NIBS, especially
rTMS, is regarded as a relative contraindication. In the case
where there is a remarkable clinical need, the benefits may
outweigh the risks of rTMS, especially when these risks
can be minimized. A potential venue to reduce risk would
be the use of navigated brain stimulation to ensure safely
delivered stimulation to the target area, thereby reducing any
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adverse effects. In addition, studies'**'* with low-frequency
stimulation have reported antiepileptic effects. The current
evidence for application of NIBS recommends exclusion of
subjects with a history of seizure, subjects taking medica-
tions that lower seizure threshold, or those who have metal
implants or brain tumors. DBS, on the other hand, is a con-
troversial modality due to its invasive nature. So far, this
stimulation is only used on VS or MCS to regulate arousal.
The guidelines of safety for each brain stimulation modality
used in TBI needs to be further developed.

Conclusion

This review addresses the clinical utility of brain stimulation
modalities to reduce disability and enhance recovery after
TBI. Neurostimulation may be applied to a great number of
debilitating neurological conditions associated with TBI.
For this purpose, brain stimulation techniques may play an
important role in inducing neuroplasticity and suppressing
pathological disinhibition of circuits implicated in maladap-
tive networks. Improvements of altered state of conscious-
ness, cognition, and psychiatric and motor function have been
the main goals of these therapeutic strategies. Although the
mechanisms of neuroplasticity induced by those methods
are not fully understood, these instruments have shown great
potential for clinical application, significantly changing the
current rehabilitation protocols of patients with neurological
sequelae post-TBI.
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