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Complex multifractal nature 
in Mycobacterium tuberculosis 
genome
Saurav Mandal1, Tanmoy Roychowdhury2, Keilash Chirom1, Alok Bhattacharya1,3 & 
R. K. Brojen Singh1

The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can 
be a useful parameter for identification of underlying patterns and variations. In this study C(r) and 
multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic 
bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed 
significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates.  
M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, 
these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug 
resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but 
all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be 
quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have 
highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be 
useful parameters for analysis of genomic sequences.

Genomic alteration through a number of mechanisms (mutation, substitution, duplication, deletion, insertion, 
and selection etc.) in combination with natural selection provides a basis of evolution. However, evolution does 
maintain some conserved features that are characteristics of the organisms. The generic features of these con-
served properties can be characterized by the scaling laws1,2 emerging from one dimensional genome sequence. 
These laws are preserved and inherited in the complex evolutionary process. Scaling law of an observable y(x), 
which manifests preserved properties in the system, can be quantified through scaling functions F[x, y(x)] and  
Γ [y(x)]3,4, and follows self-affine process for any scale factor c5, given by
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where, A is a constant, and D is the self-similarity dimension of the self-affine process. If this y(x) involves a few 
number of fractal rules then it obeys Mandelbrot’s classical multifractal rules for self-affine process6,
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One of the conserved properties is genomic correlation function C(r) of the DNA sequence which follows the 
fractal rule7: ε−~C r r( ) , with D =  −ε. The value of D is different for different biological processes; for genome 
length distribution in unicellular organisms D =  1/48, for distribution of RNA concentration D =  1/48, for meta-
bolic process D =  − 3/49, for heart rate D =  1/48, for life span of the organism D  =   − 1/49, for the distribution of 
radii of aortas and tree trunks D =  − 3/89.

Multifractal properties of DNA can be characterized by long range correlation maintained in the whole 
genome7, and pseudorandom distribution of nucleotides10 following an overall probability distribution. These 
can be represented as a DNA walk in two dimensional space10,11. Even though multifractal detrended fluctuations 
analysis (MF-DFA) technique is particularly important for a varity of time series data analysis12, such as sunspot 
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time series13, stock exchange rate time series data14, complicated earthquake data15, social and religious dynam-
ics16, traffic flow time series17, energy stocks data18, brain EEG data19, human DNA sequence20, the application 
of this technique for analysis of Next Generation Sequencing (NGS) data of organisms for extraction of useful 
information may be challenging.

Mycobacterium tuberculosis is a slow growing pathogen that causes Tuberculosis (TB) and it is one of the 
major public health challange particularly among lower and middle income countries21,22. Drug resistance is 
one of the major concerns for treatment of patients with this disease and occurrence of extreme drug resistance 
(XDR) may make the scenario even worse. Drug resistant genes such as rpoB23,24, inhA25, katG26, gyrA27, ahpC28, 
embB29, pncA30 have been experimentally identified. Different isolates of this bacterium have been classified into 
various lineages using sequence features and these lineages show correlation with geographical location. Recent 
genomic studies have found relationship between sequence differences among different isolates (represented by 
single nucleotide polymorphisms or SNPs and different repetitive sequences) and lineages31,32. Drug resistance 
isolates can be classified into different categories depending upon level of resistance. Multi Drug Resistance iso-
lates (MDR) are insensitive to a few drugs whereas XDR isolates are resistant to a number of drugs. In recent times 
there has been an increase in the number of patients infected with both MDR-TB and XDR-TB, over 480,000 
people developed multidrug-resistance TB in 2014 22. India, the Russian Federation and the Peoples Republic of 
China reported half of the cases of MDR-TB and an estimate of around 9.7% of MDR-TB cases are likely to be 
also XDR-TB22. Changes in genomic sequences are not distributed randomly, some regions (hotspots) display 
high level of variations whereas a few others are highly conserved (coldspots)33. In our analysis we considered a 
few genes that display significant variations among drug resistant strains and are thought to be involved in drug 
resistance, such as rpoB, phoP and phoR. Sequences from some of these genes that map to the same strand of 
the genome from different M. tuberculosis isolates were concatenated to make a single sequence for multifractal 
analysis34. These sequences were obtained from NGS datasets of available isolates35,36. The results showed that C(r) 
and Multifractal analysis can be useful parameters for classification of drug resistant isolates.

Results and Discussion
Theory of multifractality in genome evolution. Genome alterations in M. tuberculosis, due to various 
internal and external factors (e.g. continuous encounter with drugs and immune response of the host), is associ-
ated with sequence changes that involve substitution with different nucleotide, insertion and deletion, expansion 
of repeats, recombination and activity of transposable elements. NGS has allowed rapid and inexpensive method 
of getting complete nucleotide sequence, however the sequences come out as short reads. The nucleotide variation 
in these isloates are found to be not uniform, and large variations occur in few regions (called hotspots)37 and few 
genes only23–30. One dimensional DNA walk38 is generated from the genome sequence { xi; i = 1, 2, …, N} of each 
isloate (Fig. 1, Fig. 2 uppermost panels), where xi =  + 1 for purine (A and G), and xi =  − 1 for pyrimidine (C and 
T)10. Major unaltered portion of the genome of each isolate maintains same long range correlation ∝ β−C r r( )  as 
reference genome with observed root mean square fluctuations of DNA walk, ∝ γW r r( ) , where, γ =  1/2 for long 
range (r →  large), and short range (r→ 0); and γ ≠  1/2 for infinite range r →  ∞ 38 exhibiting multifractal nature5,6,12. 
The specific genomic portions of each isolate (concatenated similar drug resistant genes), where significant 
amount of alterations are exhibited as compared to reference genome, show long range correlations ∝ ε−C r r( )  7 
(Fig. 1, Fig. 2 middle panels), with fluctuation function Fq(s) of order q (see Methods) obeying power law, 

∝F s s( )q
Hq (Fig. 1, Fig. 2 lower most panels), where, Hq is generalized Hurst exponent12, showing indication of 

multifractal nature in the genes.
Since the differences in the phenotypic and genotypic characters of each and every isolates from the reference 

M. tuberculosis genome(H37Rv) are due to the variations in the sequences of few hotspots and genes, local scaling 
properties of highly polymorphic regions(HPR) which are concatenated similar drug resistant genes may provide 
the characteristics of the perturbation induced in the reference genome and gets adapted to it. Consider a DNA 
walk of a HPR which can be divided into m segments {ui; i =  1, 2, … , N}. Then the probability that the ith segment 
having length scale r can have Ni observations for large N, which is given by Λ = →∞r( ) limi N

N
N

i , holds the follow-
ing power law in the limit r →  039,

Λ α~r r( ) (3)i

where, α is Holder or singularity exponent40 which serves as the measure of crowding index in HPR. If N(r, α) is 
the number of segments in which Λ i has singularity strength between α and α +  Δ α, then N(r, α) obeys39,

α α−~N r r( , ) (4)f ( )

where, f(α) is the singularity function which can be related to the observable properties of a certain experimental 
measure. f(α) can also be known as fractal dimension of the set of segments with singularity strength α. It can be 
related to another important generalized dimension Dq of order q which can be defined by41,42,
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Different values of Dq characterize distribution in the segments with different degree of clustering in it. For 
non-stationary DNA walk, = →+∞D Dlimq q and = →−∞D Dlimq q corresponds to fractal dimensions of most 
and least populated segments respectively. Dq can be related to f(α) by employing Legendre transformation to its 
expression, and can be obtained as39,43,44,



www.nature.com/scientificreports/

3Scientific RepoRts | 7:46395 | DOI: 10.1038/srep46395

α α τ τ α τ
= − = − = − = = +f q q q q D qH d

dq
H q

dH
dq

( ) ( ); ( ) ( 1) 1;
(6)q q q

q

where, τ is another classical multifractal scaling exponent43,44.
For HPR, f(α) is singularity spectrum with α α α∆ = − = −−∞ ∞H Hmax min  as width of the singularity 

spectrum, which is a quantitative multifractal strength. Further, f(α) →  0, if α → ∞H  and α → −∞H 45,46. If the 
DNA walk is monofractal, Hq is independent of q, and so from (6), α =  constant, τ(q) is linear function of q, and 
f(α) is constant with α.

The calculated f(α) as a function of α for forty isolates each of DS, MDR and XDR of M. tuberculosis shows 
different maxima values of f(α), but shows similar structural behavior (Figs 3 and 4 upper panels). The average 
f(α) along α shows significant difference in three different type of isolates (DS, MDR and XDR), except average 
f(α) values of DS and MDR isolates are approximately overlapping(Figs 3 and 4 the panels in the first and third 
rows). The scaled behavior of f(α) with α for each type of isolate shows approximately similar nature (Figs 3 and 
4 insets in the panels of first and third rows).

The complexity of the DNA walk can be measured by expanding the singularity function f(α) around α0, with 
f(α0) →  fmax (maximum value of f(α)), by Taylor’s series,
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where, ω is the degree of the truncated polynomial. Then fitting the f(α) data of DNA walk with the polynomial 
(7), the following multifractal parameters can be calculated: αo, αmin, αmax, and Δ α =  αmax −  αmin. The symmetry 
of each singularity spectrum can be quantified by defining a skew parameter,

Figure 1. Multifractal and correlation function behaviors of rpoB gene (sequence positions: 759807–
763325), phoP and phoR gene combined together(sequence positions: 851608 to 853853) in M. tuberculosis 
genome. (a) DNA walks of forty isloates each of DS, MDR and XDR of M. tuberculosis (panels of uppermost 
row). (b) Corresponding plots of correlation functions (C(r) versus r) of the three types of isloates (panels of 
middle row). Straight lines are power law fits on the data (for rpoB gene: DS: − .~C r r( ) 0 13; MDR: − .~C r r( ) 0 25; 
XDR: − .~C r r( ) 0 32 and for phoPR gene complex: DS: − .~C r r( ) 0 14; MDR: − .~C r r( ) 0 26; XDR: − .~C r r( ) 0 33). 
(c) Plots of fluctuation function (F s( )q ) with respect to s for the corresponding three types of M. tuberculosis 
isloates showing power law nature (panels of lowermost or third row).
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Small value of α0 correspond to more regular struture in the HPR14. Δ α →  large indicates stronger multifrac-
tality due to richness in structure of the genome. χ >  1 reveals the dominance of scaling by small fluctuations 
and higher Hurst exponents, and indicating the presence of fine structure process in the genome. However, χ <  1 
indicates the dominance of scaling by large fluctuations of singular spectrum and relatively small Hurst exponents 
showing correlation in the signal corresponding to absence of fine structure process in the signal. Richness in 
complexity in the HPR corresponds to large value of α0, wide range of Δ α, and χ >  114,47.

The nature of α0 for DS and MDR type of isolates are closely similar to each other. This similar behavior is due 
to the similarity in sequence variation in these two types of isolates, which exhibits similar multifractal behaviors 
(Figs 3 and 4 extreme left panels in second and fourth rows). The average values of α0 for the four genes in the 
three isolates DS, MDR and XDR are found to be different but follow similar behavior (Figs 3 and 4 fourth panels 
in second and fourth rows). Similar properties of these two types of isolates are also exhibited in the nature of Δ α 
(Figs 3 and 4 second leftmost and fifth panels in second and fourth rows), and in the behaviour of χ (Figs 3 and 4 
third leftmost and sixth panels in the second and fourth rows). Comparatively large values of Δ α and χ values in 
XDR as compared to those of DS and MDR indicates significant richness in multifractality in XDR. Further, since 
χ <  1 (slightly left skewed) for all the three types of isolates, the sequence alteration in the HPR is due to genome 
evolution in M. tuberculosis. This induces large fluctuation in the singular function and small in Hurst exponents 
driving more correlation in the signal and causing destruction of fine structure process in the signal. Since the 

Figure 2. Multifractal and correlation function behaviors of gyrB gene and gyrA gene concatenated 
together (sequence positions: 5240–9810) and embC, embA and embB gene concatenated together with 
sequence position from 4239863 to 4249810 in M. tuberculosis genome. (a) DNA walks of forty isloates each 
of DS, MDR and XDR of M. tuberculosis (panels of uppermost row). (b) Corresponding plots of correlation 
functions (C(r) versus r) of the three types of isloates (panels of middle row). Straight lines are power law fits on 
the data (for gyrBA: DS: − .~C r r( ) 0 12; MDR: − .~C r r( ) 0 24; XDR: − .~C r r( ) 0 31 and for embCAB: DS: 

− .~C r r( ) 0 14; MDR: − .~C r r( ) 0 25; XDR: − .~C r r( ) 0 32). (c) Plots of fluctuation function (F s( )q ) with respect to 
s for the corresponding three types of M. tuberculosis isloates showing power law nature (panels of lowermost or 
third row).
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changes in these parameters are small, these sensitive parameters (α0, Δ α and χ) can capture small changes in the 
multifractal nature due to few sequence alterations in the HPR significantly.

SNP based sequences of M. tuberculosis isolates show multifractal nature. The whole genome 
of each isolate is mapped to the reference genome, and the SNP are arranged in a string without changing their 
positions but removing the nucleotides in between any pair of SNPs in the genome. The constructed SNP based 
sequences have varied lengths depending on the isolates, ranging from 432 bp to 4000 bp in length. We look at the 
multifractal properties of these SNP based sequences to understand fundamental mechanism of genome evolution 
(See Table1 in Supplementary file).

DNA walks of these SNP based sequences exhibit different behaviors for the three different classes DS, MDR 
and XDR (Fig. 5 uppermost row, first three panels). The one dimensional correlation function C(r) of these SNP 
based sequences is calculated using the procedure of Messer et al.48 (see Methods). The calculated C(r)s of all forty 
isolates of each class are plotted together (Fig. 5 second row), and the data as a whole follows power law,
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where, k indicates isolate types: k →  s, m, x for DS, MDR and XDR respectively. The best fitted curve on the data 
with power law (9) gives different values of θk for different class. This power law behavior of C(r) versus r for 
individual as well as groups of isolates (DS, MDR, and XDR) are verified following a standard statistical fitting 

Figure 3. Singularity spectrum of rpoB gene and phoPR gene complex of M. tuberculosis isolates (forty) of 
each DS, MDR and XDR. (a) Plots of singularity function f(α) of the three types of isolates with respect to α 
(panels of first row) and their Scaling of f(α) by choosing αc =  1.02275 using interpolation showing self-affine 
process of the isolates (inside box). (b) Properties of multifractal spectral parameters: behaviors of α0, Δ α and χ 
as a function of isolates (colors show types of isolates).
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procedure49, and found that the p-values (statistical level of significance) of each fitting on the dataset is found to 
be more than predicted critical value (p− value >  0.1). This change in the θk could be due to changes in SNPs in 
the SNP based sequences of different types of isolates of M. tuberculosis.

The calculated singularity spectra f(α) as a function of α for various isolates in different types of isolates 
exhibit different structures (Fig. 5 third row). Calculated α0 for different types of isolates (Fig. 5 Lowermost row 
extreme left panel) shows comparatively large values as compared to those of HPR, indicating the possibility of 
associating complex multifractal features in the SNP based sequences. The range of singularity spectra Δ α for the 
types of isolates are also significantly large showing wide range of multifractal nature (Fig. 5 Lowermost row third 
plot). The shape of singularity spectra of all the isolates of different classes are found to be right skewed (χ >  1) 
which are the signature of the existence of fine structures in the SNP based sequences due to rich complex multi-
fractal behavior. Further, the values of α0, Δ α and χ for XDR SNP based sequences are found to be approximately 
larger than the other types showing richer possession of multifractal properties.

Scaling in genomic correlation function. The changes in HPR and SNP based sequences in different iso-
lates of DS, MDR and XDR are due to selection of M. tuberculosis that are undergone sequence changes allowing 
resistance to drugs in the course of time50. This selection process is the one that allows only some isolates with 
altered genotypic and phenotypic properties leading to genome evolution51,52. These changes are species specific 
and affected very much by many factors including host immune systems and climatic conditions53. The 
spatio-temporal alterations in sequences in the isolates due to sequence alterations (mutations, deletions, dupli-
cations, insertions, substitutions, selections) can be nicely modeled using the proposed sequence evolution 

Figure 4. Singularity spectrum of gyrBA gene complex(sequence position: 5240 to 9810) and embCAB gene 
complex(sequence position: 4239863 to 4249810) of M. tuberculosis isolates (forty) of each DS, MDR and 
XDR. (a) Plots of singularity function f(α) of the three types of isolates with respect to α (panels of first row) 
and their Scaling of f(α) by choosing αc =  1.02275 using interpolation showing self-affine process of the isolates 
(inside box). (b) Properties of multifractal spectral parameters: behaviors of α0, Δ α and χ as a function of 
isolates (colors show types of isolates).
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model7,54, and some of the observables can be characterized by the dynamics of position dependent one dimen-
sional sequence compositional correlation, = < >+C r s s t( ) ( )i i r . Defining = −C r P r t P r t( ) ( , ) ( , )E O , where, PE 
and PE are joint probabilities of finding any two symbols equal and opposite in sign and following their own 
Master equations, one can arrive at the following evolutionary dynamics of C(r) for r ≫  1 (long range 
correlation),

∂
∂

= − −
∂
∂

C r t
t

AC r t rB C r t
r

( , ) ( , ) ( , )
(10)

where, A and B are constants which are functions of the rate constants of sequence alterations. The solution of the 
equation (10) is given by, γ−~C r t v t r( , ) ( ) ; with κ~v e t, where κ is a constant. The stationary (t →  0) long range 
C(r) follows power law as we have observed in the HPR and SNP based sequences (Figs 1, 2, 6 and 7) with γ θ→ k. 
Averaging the values of θks of different isolate types in HPR and SNP based sequences (Fig. 6 Fourth and fifth col-
umn panels) respectively, we observe that in long range regime (r ≫  1):

•	 HPR: −~C r r( ) 1/4; follows 1/4 scaling rule.
•	 SNP based sequences: −~C r r( ) 1/3; obeys 1/3 scaling law.

Figure 5. Multifractal and correlation function behaviors of all SNPs (SNPs based Sequences) within a 
genome of forty isolates each from DS, MDR and XDR. (a) DNA walks of forty isolates each of DS, MDR and 
XDR of M. tuberculosis (the first three panels of uppermost row). (b) Corresponding plots of correlation 
functions (C(r) versus r) of the three types of isolates (first three panels of second row). Straight lines are power 
law fits on the data (for DS: − .~C r r( ) 0 23; MDR: ∼ − .C r r( ) 0 35; XDR: ∼ − .C r r( ) 0 43). (c) Plots of singularity 
function f(α) of the three types of isolates with respect to α (first three panels of third row). (d) Properties of 
multifractal spectral parameters: behaviors of α0, Δ α and χ as a function of isolates (colors show types of 
isolates) in the bottom row.
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However, in short range regime (r ≪  1) the nucleotides in the sequence follow Markov process7,55, and there-
fore C(r) decays with distance r of the nucleotide distribution, −~C r C e( ) r r

0
/ 0, where, r0 is the characteristics 

length scale.
The scaling behavior of the HPR can be studied by fitting the C(r) data of HPR of each isolate with equation (9) 

and analyzing the scaling nature. The fitted lines on the data of DS type (forty isolates) are approximately parallel 
(Fig. 6 extreme left panel of first row). These data can then be scaled together by using one parameter scaling 
procedure4,56 (see Methods) obeying θ .~ 0 13s  behavior (Fig. 6 fourth and fifth column panels). Applying the 
same one parameter scaling procedure, data of MDR and XDR isolates can also be scaled obeying θ .~ 0 23m  and 
θ .~ 0 33x  scaling rules respectively (Fig. 6 second, third and fourth column panels). These scaled data of DS, 
MDR and XDR can then be scaled together (Fig. 6 fourth and fifth column panels) following θ~1/4 scaling rule.

The same one parameter scaling procedure can also be done to the SNP based sequence data of DS, MDR and 
XDR isolates (Fig. 6 third and fourth rows). The scaled data follows θ~1/3 scaling law.

The scaling function Γ  can be calculated in this regime using equation (1),

γΓ = −
→∞

C r v tlim [ ( )] ( ) (11)r

For short range correlated sequences (generated through Markov process), ε−~C r Ee( ) r48, and the scaling 
function can be obtained by,

Figure 6. One parameter scaling law in correlation function of rpoB gene and SNP based sequences of DS, 
MDR and XDR of M. tuberculosis. (a) Scaling in rpoB gene for twenty isolates each of DS, MDR and XDR 
(panels of first row). The straight lines are power law fits to each isolate. The power law exponent (γ) for DS, 
MDR and XDR are given in rightmost panel of second row. The scaled data using Mackinnon and Kramer’s one 
parameter scaling procedure4 ( θ−C r r( )/  as a function of r, see Methods) is shown in first two panels of second 
row. (b) Same scaling procedure is done for SNP based sequences (panels of third and fourth row).
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Γ =










→

C r C r
E

flim [ ( )] ln ( )
(12)r 0

The obeying of one parameter scaling law in NGS genome indicates the signature of self-organization in the 
system.

Classification of M. tuberculosis isolates. Different isolates(DS, MDR and XDR) can be classified based 
on the multifractal and correlation properties found in the corresponding HPR and SNP based sequences (Figs 3, 
4, 5, 6 and 7). The average values of singularity spectral parameters of these isolates (Fig. 7) show significant dif-
ferences: 1. For α0 (f(α0) →  constant) α α α< <DS XDR MDR

0 0 0 ; 2. For Δ α (measure of multifractal complexity) 
α α α∆ < ∆ < ∆MDR DS XDR, and 3. For χ (measure richness in multifractality) χ χ χ< <MDR DS XDR. The nature 

of long range correlation function C(r) of these isolate types also exhibit significant behaviors (Fig. 7) as follows,

•	 For DS: correlation function in HPR follows, −~C r r( ) 1/9 rule; and in SNP based sequences obeys 
−~C r r( ) 1/5.

•	 For MDR: correlation function in HPR follows, −~C r r( ) 1/5 rule; and in SNP based sequences obeys 
−~C r r( ) 1/3.

•	 For XDR: correlation function in HPR follows, −~C r r( ) 1/3 rule; and in SNP based sequences obeys 
−~C r r( ) 1/2.

The behaviors of Multifractal parameters in DS, MDR and XDR of M. tuberculosis are found to distinctly 
different given by:

•	 For DS: HPR and SNP : Min[α0], Moderate[Δ α, χ].
•	 For MDR: HPR and SNP : Max[α0], Min[Δ α, χ].
•	 For XDR: HPR and SNP : Moderate[α0], Max[Δ α, χ].

Figure 7. Multifractal and correlation function based classification of DS, MDR and XDR. The average 
singularity spectra of DS, MDR and XDR of rpoB, phoPR, gyrBA, embCAB and SNP based sequences (lower 
panel) as a function of α. The classification of DS, MDR and XDR based on Multifractal parameters and 
correlation function behaviors.
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We classified the NGS sequences of M. tuberculosis based on these two distinct properties of Multifractal 
parameters and correlation function (Fig. 7).

Conclusion
The genome evolution in M. tuberculosis involves alteration of nucleotides in different isolates of DS, MDR and 
XDR. It is important to remember that genomic alterations continuously takes place and drugs tend to target 
isolates with appropriate sequence. Normally there are insignificant changes in most of the genome involved in 
house keeping function needed for the organism to survive and grow52. The significant alterations of nucleotides 
in the genomes of various isolates take place in few regions of the genomes called HPR (hotspots and concate-
nated genes)23–30,34,37. Few of these conserved properties are multifractal nature and correlation function which 
are being inherited by these isolates from the parent genome with modified rules.

The multifractal nature in the HPR of the different M. tuberculosis isolates are due to long range correlations 
with small and large fluctuations, and significant probability distributions in the genome. The singularity spectra 
of these HPR of the isolates is able to capture small range of multifractality from singularity spectral parameters 
leading to slightly ordered state, but far from monofractality.

The scenario of multifractal properties is quite different in SNP based sequences of these isolates which can 
provide overall properties of the modified genome. These SNP based sequences show rich and complex multifrac-
tal nature characterized by fine structures in the sequences. This rich multifractal nature in SNP based sequences 
shows the perturbation in the reference genome, with these modified rules (multifractal and correlation nature) 
within the multifractal boundary for a change for fit survival.

The long range correlation function of HPR and SNP based sequences of these isolates follow 1/4 and 1/3 scal-
ing rules respectively. The rules in the correlation function may be different in these isolates, but this property is 
inherited during evolution. Further, the correlation functions in different isolates follow one parameter scaling 
law indicating that it is one of the properties which keeps genome integrity.

Methods
DNA walk of M. tuberculosis NGS data. The reads of the isolates of M. tuberculosis are downloaded from 
the Sequence Read Archive (SRA)35,36. Total 120 isolates are considered for our analysis. Forty isolates each from 
Drug sensitive (DS), Multi Drug Resitant (MDR) and Extremely Drug Resistant isolates (XDR) are considered. 
The reads are intially mapped to the reference genome H37Rv using BWA (Fig. 8)57. The BAM file is sorted using 
samtools and indexing of sorted bam file is performed58. In order to create a consensus sequence from the iso-
lates the output of samtools mpileup is piped into bcftools view command, which in turn is piped into vcfutilis.pl 
program and finally a fastq file is created for the respective isolate. The fastq file is then converted into fasta file 
using seqtk program.

Figure 8. Computational Pipeline for Multifractal Analysis in M. tuberculosis bacterium. 
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The fasta file is converted in DNA walk { = ...x i N; 1, 2, ,i } by considering purine (A and G) as step up (xi =  + 1)  
and pyrimidine (C and T) as step down (xi =  − 1)38. The DNA walk is considered to be a non stationary time series 
data due to its stochastic behavior which in turn can be used for various properties using Multifractal Detrened 
Fluctuation Average (MFDFA) analysis using Matlab program59–61. The detail procedure is shown in a flowchart 
below8.

Multifractal DFA approach. Multifractal detrended fluctuation analysis (MF-DFA) is a powerful technique 
to study fractal properties in nonstationary time series, and associated important correlations charactering the 
system39. Various important parameters which characterize the fractal nature of the time series and related prop-
erties, namely, Hurst exponent (H), generalized dimension (D), singularity spectrum (f) etc can be calculated 
numerically using a method adopted by Kantelhardt et al.12 as summerized below. Firstly, the time series signal 
x{ }j  of length N is taken as random walk, and can be represented by the profile, = ∑ −=Y i x x( ) ( )j

i
j1 , where, x  

is mean value of the signal, and = ...i N1, 2, , . Second, the profile Y(i) is now divided into = ( )N ints
N
s

 equal 
nonoverlapping equal segments of size s. To take into account all data points, 2Ns segments are considered by 
counting starting from both ends of the data. Third, the following variance is determined,

∑ν ν= − + − ν
=

F s
s

Y s i y i( , ) 1 { [( 1) ] ( )}
(13)i

s
2

1

2

where, ν = + ...N N1, , 2s s, and νy i( ) is the fitting polynomial in segment ν. Fourth, the qth order fluctuation 
function is estimated by averaging over all segments,

∑ ν=










ν=
F s

N
Y s( ) 1

2
[ [( , )] ]

(14)
q

s

N
q

q

1

2
/2

1/
s

Fifth, the scaling behavior of the function F s( )q  is represented by,

~F s s( ) (15)q
Hq

where, Hq is the generalized Hurst exponent, which represents the measure of self-similarity and correlation 
properties of the signal. Then, Hq is related to classical scaling exponent τ(q) as,

τ = −q qH( ) 1 (16)q

and from the definition of Holder exponent, α = τd
dq

, the singularity function αf ( )39 is given by,

α α τ= −f q q( ) ( ) (17)

Then, generalized fractal dimension of the signal is measured by,

τ
=

−
D q

q
( )

1 (18)q

Now, D0, for q =  0, is the fractal or Hausdorff dimension, D1 is information dimension and D2 represents cor-
relation dimension39. Multifractal signature in the time series can be observed in the system if there exists signif-
icant dependence of Hq on q in the time series due to different scaling nature of small and large fluctuations12. 
Positive dependence of Hq on q indicates the scaling behavior of the time series segments with large fluctuations, 
whereas negative dependence of Hq on q exhibits scaling behavior in the time series segments with small fluctua-
tions. Further, in multifractal time series, small and large fluctuations are characterized by large and small values 
of Hq.

Procedure for generating correlation function data. Correlation function C r( ) of one dimensional 
genomic sequence = ...x i N{ ; 1, 2, , }i  of length N  can be calculated following Messer et al. procedure7 defined 
by,

∑ ∑= = = − =
∈

+C r P x x x m P x m( ) [ ( ) ( ) ]
(19)k

N

m A C G T
k k r k k

{ , , , }

2

where, =P x m( )k  is the probability of finding a base m at position k in the genomic sequence, and 
= =+P x x x m( )k k r k  is the conditional probability to find the same base m at a distance r from k.

One parameter scaling law in correlation function. The calculated correlation function C(r) of HPR 
of different isolates of NGS data of M. tuberculosis, where significant variation of sequences take place (hot-
spots and genes), follow power law behavior with approximately parallel fitted lines on HPR of different isolates 
(Fig. 2). This power law fitting on the data is verified and confirmed by following the fitting procedure proposed 
by Clauset et al.62, where the value of p (statistical significant level) of each fitting is found to be larger than 0.1 
which is the critical value of verifying that each data follow power law. We then follow one parameter scaling 
theory3,4,56 to scale the data given by
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ξ
=









θ θ

C r
r

F
r

( ) ,
(20)

where F is a scaling function. The form of the scaling function F and values of scaling exponent θ for DS, MDR 
and XDR isolates can be obtained by scaling the data of these isolates by fitting on the scaled data. Following this 
scaling procedure, and with the choice of ξ, we found that F →  constant and obtained the following scaling law:

∝ θC r r( ) , (21)

where θ θ θ θ= − − −{ , , }s m x  for HPR and SNP based sequence of different isolates of DS, MDR and XDR 
respectively.

Datasets. NGS datasets were downloaded from European Nucleotide Archive(ENA), EMBL. In 
Supplementary file Accession numbers and isolate Names are mentioned. Some SNP sequences were downloaded 
from Genome-based Mycobacterium Tuberculosis Variation (GMTV) Database.
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