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Salinity is an important ecological factor that impacts the growth and survival of aquatic
organisms. The salinity of seawater in coastal and estuarine areas is often subject
to dynamic changes because of seasonal rainfall and continental runoff. Thus, the
current study investigated the effects of sudden changes in salinity on the survival
rate and osmotic pressure regulation mechanisms of bottom-sowing seedlings of the
economically important ark shell, Scapharca subcrenata. By simulating the sudden
changes that occur in seawater salinity after rainstorms, the results showed that the
osmotic pressure of the hemolymph and Na+, K+, Ca2+, and Cl− concentrations
first decreased and then increased. When the salinity decreased from 30 to 14h,
hemoglobin, soluble total protein, taurine, and total free amino acid gradually increased;
maximum levels of hemoglobin, soluble total protein, and taurine occurred once the
salinity increased to 22h at 96 h. After 96 h, the total free amino acid content increased
until 144 h. The reactive oxygen species (ROS) content and total antioxidant capacity
(T-AOC) peaked at 96 h, whereas the expression levels of Mn-superoxide dismutase
(MnSOD) and catalase (CAT ) increased earlier, indicating that, with continuous ROS
generation, antioxidant defense mechanisms were activated to avoid oxidative damage.
Expression levels of cathepsin C (CTSC), cathepsin D (CTSD), heat shock protein 20
(HSP20), and heat shock protein 70 (HSP70) were significantly higher than in the control
group at 48 h (salinity level 14h); the expression levels of HSP20, heat shock protein
90 (HSP90), MnSOD, and glutathione peroxidase (GPx) remained high, indicating that
they were still required for osmotic pressure regulation to maintain the dynamic balance
between the generation and removal of ROS as the salinity level increased. These
results not only add to our basic understanding of the aquatic ecology of S. subcrenata,
but also provide a theoretical ground for improving the survival rate of bottom-sowing,
propagation, and release of S. subcrenata seedlings.
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INTRODUCTION

In coastal areas, salinity is subject to drastic changes in response
to seasonal precipitation, tides, ocean currents, and seawater
evaporation (Huong et al., 2010; Johnson et al., 2011). In response
to changes in environmental salinity, organisms might perceive
changes in osmotic pressure, responding metabolically to regulate
the ion concentration and composition in cells, to maintain an
optimal metabolic state. The formation of this optimal state is
reflected in the dynamic equilibrium of internal osmotic pressure
through physiological responses and the secretion and absorption
of salt and water by the body (Kültz, 2012).

The ark shell Scapharca subcrenata is an economically
important marine shellfish in China; it is vertically distributed
in the sea between the low tide line and a 7-m depth. Most
individuals live in fresh water-affected inner bay and neritic
regions, showing a range of adaptations to salinity, and preferring
to inhabit soft mud or muddy seafloors with a high sand
content (Wang and Wang, 2008). Recently, overfishing and
environmental changes have led to a decrease in available
habitats. To restore the declining habitats of S. subcrenata,
large-scale enhancements and release of seeds have occurred.
In estuarine or intertidal zones, which are subject to significant
changes in salinity, organisms with a fixed living mode or those
only able to move slowly can grow well within an appropriate
range of salinity; however, if the habitat salinity increases or
decreases beyond that range, their growth is impacted and can
even lead to a stress response, which in turn diminishes immune
resistance (Wang and Chen, 2005; Sung et al., 2011). Therefore,
selecting a suitable release area based on the salinity tolerance
mechanisms of S. subcrenata would help improve the survival
rate of S. subcrenata seeds.

Euryhaline organisms are better able to regulate their osmotic
pressure compared with stenohaline organisms, enabling them to
maintain a higher rate of food intake, absorption, transformation,
and growth efficiency in a wider salinity range (Tseng and Hwang,
2008). However, the optimal growth salinity varies significantly
from species to species. When the osmotic pressure of water is
similar to the internal osmotic pressure, the energy consumption
of the organism allocated to the regulation of internal osmotic
pressure is the lowest, but is most beneficial to survival and
growth (Verbalis, 2007; Seale et al., 2012). After Litopenaeus
vannamei fed under a salinity of 35 psu was transferred to, and
kept in 25, 20, or 15 psu environments for 1–6 h, the activity
of granule cells, blood cells, phenol oxidase, and superoxide
dismutase (SOD) significantly decreased. Subject to the dual-
factor stress of Vibrio alginolyticus and salinity dip, the above
immune indexes decreased more significantly, suggesting that
the immunity level of L. vannamei also significantly decreased
(Lin et al., 2012). When Takifugu obscurus was placed under
a salinity of 30 psu, the number of chloride-secreting cells
in the gill filament increased, as did its volume; in addition,
hormones, such as growth hormone and cortisol, triggered the
synthesis of more transport proteins to stimulate the proliferation
and differentiation of chlorine cells, thereby changing the
transmembrane transport capacity of ions and water molecules
(Wang et al., 2016). Zhang et al. (2018) performed transcriptome

sequencing on Apostichopus japonicas grown under 20 and
30 psu and identified 109 differentially expressed genes. Gao
et al. (2017a) simulated the falling then rising trend of seawater
salinity after a rainstorm and found that the expression levels of
CAT, TPx, GSTs, GSTm tended to rise then fall, and these were
significantly higher than groups with constant salinity.

Consequently, osmotic pressure regulation mechanisms not
only involve the transport of ions and water and the regulation
of the neuroendocrine system, but also depend on energy
metabolism to maintain the activity of transport proteins
and on the auxiliary functions of different kinds of osmotic
pressure-regulating molecules, such as free amino acids. To date,
few reports have focused on the salinity tolerance range of
S. subcrenata and the osmotic pressure regulation mechanisms
involved, despite the economic importance of this species.
Therefore, the results of this study that shed light on the
physiological adaptation mechanisms of S. subcrenata to changes
in salinity will help increase not only our basic understanding of
the biology of S. subcrenata, but also the survival rate of bottom-
sown seedlings in habitats subject to regular changes in salinity.

MATERIALS AND METHODS

Source and Acclimation of S. subcrenata
Scapharca subcrenata (shell length: 32.85 ± 1.73 mm, body
weight: 8.15 ± 1.03 g) were purchased from Fuyuan fisheries
company (Rizhao, Shandong, China), and all experimental
S. subcrenata were sourced from the same batch after artificial
hatching. After purchasing the S. subcrenatas, they were
acclimated in one culture container (length 1.2 m × width
1 m × height 1 m, water volume: 1200 L) for 15 days; water
temperature was kept at 22◦C, salinity at 30 + 1, pH at 7.9,
dissolved oxygen concentration at > 6 mg/L, and the light cycle
was set as the natural light cycle. Aquaculture water was obtained
from the natural sea area and used after sedimentation and
sand filtration. Two-thirds of the water was replaced with fresh
seawater each day at 09:00 to ensure good water quality. During
the period of acclimation, the food mixture of Chlorella vulgaris,
Isochrysis galbana, and Platymonas subcordiformis was fed once
a day at a volume ratio of 1:1:1 and then the food concentration
was measured every 6 h.

Experimental Design
In total, 200 S. subcrenatas were randomly selected from the
culture container and divided among five aquarium tanks
(0.6 m × 0.5 m × 0.6 m, tank volume: 180 L), with 40 per tank.
Four of the tanks were used to simulate four phases in the changes
in seawater salinity after rainfall (Figure 1); four replicates were
used. In Phase 1, the salinity was reduced from 30 to 14h at a rate
of eight levels every 24 h; in Phase 2, the salinity was kept at 14h
for 24 h; in Phase 3, the salinity was increased from 14 to 30h at
a rate of eight levels every 24 h; and in Phase 4, the salinity was
maintained at 30h for 24 h. Meanwhile, S. subcrenata cultured at
a salinity of 30h in an aquarium was used as the control group, in
which the salinity stayed at the same level throughout the study.
The low-salinity seawater was prepared using tap water with 24 h
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FIGURE 1 | Diagram of the salinity change mode used in the experiment. First, salinity decreased gradually from 30 to 14 psu at a rate of 8 psu every 24 h (first
stage), and then was maintained at low levels for 24 h (second stage). After 72-h stress, salinity increased gradually to 30 psu at a rate of 8 psu 24 h−1 (third stage)
and was then maintained at 30 psu for 24 h (fourth stage).

aeration and seawater prepared through natural sand filtration;
while the high-salinity seawater was prepared by adding sea salts
(Blue Treasure Co., Ltd., Qingdao, China) to the experiment
group in low-salinity seawater.

All S. subcrenatas were starved for 24 h prior to the
experiment. During the experiment, no feed was given and
the room temperature was kept at 22◦C with air-conditioning
control, with the same pH as it was in acclimation. Each
aquarium was provided with continuous aeration to maintain
the concentration of dissolved oxygen above 6 mg/L, and
the ammonia concentration was always below 0.1 mg/L
throughout the experiment.

Collection of Samples
Samples of gill tissue and hemolymph were collected at different
time points in each phase: Phase 1, at 24 and 48 h after the start
of the experiment, when salinity was reduced to 22h (DS1) and
14h (DS2); Phase 2, at 72 h after the beginning of experiment,
when the salinity was maintained at 14h for 24 h (DL1); Phase
3, at 96 and 120 h after the start of experiment, when the
salinity was increased to 22h (IS1) and 30h (IS2), respectively;
and Phase 4, at 144 h, when the salinity was maintained at
30h for 24 h (IL1).

Before the experiment, 10 S. subcrenatas were randomly
selected as the samples at 0 h for later analysis. The survival rate
of S. subcrenatas in each aquarium was recorded at 24, 48, 72,
96, 120, and 144 h after the beginning of the experiment, and
three S. subcrenatas were randomly selected from each aquarium,
giving 15 S. subcrenatas in total, to measure the hemolymph
osmotic pressure. The concentration of Na+, K+, Ca2+, Cl−,
hemoglobin, soluble protein, and the concentration of taurine
and total free amino acids were determined after centrifugation
of hemolymph. Gill tissues were taken to analyze and determine
the enzyme activity of Na+/K+-ATPase, the content of reactive

oxygen species (ROS), total antioxidant capacity (T-AOC), and
the gene expression of Mn-SOD (MnSOD), Catalase (CAT),
glutathione peroxidase (GPx), cathepsin C (CTSC), cathepsin D
(CTSD), heat shock protein 20 (HSP20), HSP70, and HSP90.

Assay of Samples
Assay of Physiological Indices in Hemolymph
At the end of Phase 4, each S. subcrenatas was euthanized and
dissected; the adductor muscle was removed and hemolymph was
extracted from the blood sinus using a 10-mL medical syringe.
It was then placed it in a 1.5-mL sterile centrifuge tube in an
ice bath. The time between the removal of any sample and the
completion of sampling process was always < 10 min. Each
centrifuge tube contained the hemolymph of five individuals.
A Fiske 210 Micro-Sample Osmometer (Advanced Instruments,
Norwood, MA, United States) was used for the determination
of osmotic pressure. The remainder of the hemolymph was
centrifuged at 4◦C, 10,000 × g/min for 10 min, and the
supernatant was used to determine the concentration of
hemocyanin, total soluble protein, Na+, K+, Ca2+, Cl−, taurine,
and total free amino acids.

The concentration of hemoglobin was measured using
the hemiglobincyanide (HiCN) assay, and the contents of
hemoglobin were measured with a hemoglobin instrument
(WJX-1; Shanghai Touching Technology Co., Shanghai, China).

The concentration of total soluble protein in these samples was
calculated using Bradford’s (1976) Coomassie Brilliant Blue, with
bovine serum albumin as the standard protein.

The contents of Na+, K+, Ca2+, and Cl− in the supernatant
of hemolymph under each salinity level were determined with a
kit from the Nanjing Jiancheng Bioengineering Research Institute
(Nanjing, China) (Gao et al., 2017a).

The mixed hemolymph supernatant was analyzed at Qingdao
Institute of Bioenergy and Bioprocess Technology, Chinese
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Academy of Sciences (Qingdao, China). After being treated
with 8% trichloroacetic acid and sonication for 20 min,
the supernatant was collected and tested under Sykam S-
433D Automated Amino Acid Analyzer (Munich, Germany) to
determine the concentration of taurine and total free amino acids
in the hemolymph samples, respectively.

Na+/K+-ATPase Activity, ROS Content, and T-AOC
Assays
After the hemolymph had been collected, the gill tissues were cut
with scissors on an ice tray and evenly divided into two sections;
each section was placed into a 1.5 mL centrifuge tube, quickly
placed into liquid nitrogen, and then transferred to a –80◦C
refrigerator until use. Then 0.2–0.4 g gill tissues were extracted,
and fully ground with the addition of 1.8 mL 0.86% saline in
the ice-water bath. After grinding, the material was centrifuged
at 3500 × g/min for 10 min until 10% tissue homogenates
were obtained, to determine the content of ROS and T-AOC.
The activity of Na+/K+-ATPase was determined using a kit
supplied by Nanjing Jiancheng Bioengineering Institute and
the enzyme activity was determined using the phosphorus
determination method (Kaplan, 2005). One unit of enzyme
activity was defined as the generation of 1 µmol inorganic
phosphate from the decomposition of ATP per minute by ATPase
in 1 mg of tissue protein (Peterson, 1978). The protein content
in muscle homogenates was determined using Bradford’s (1976)
Coomassie Brilliant Blue, with bovine serum albumin as the
standard protein.

Regarding the ROS content, three gill tissue homogenates
from each aquarium were centrifuged at 1000× g for 10 min, and
then 1 mmol/L DCFH-DA (2′,7′-dichlorofluorescin diacetate)
was added to the supernatant. The mixture was incubated at 37◦C
for 30 min after being fully and evenly mixed. A fluorescence
spectrophotometer (960MC, INESA. CC) was used to determine
the fluorescence intensity at the optimum excitation wavelength
of 500 nm and at the optimum emission wavelength of 525 nm,
and the results were expressed as fluorescence arbitrary units
(A.U.) (Gao et al., 2017b).

Total antioxidant capacity was determined using the ferric
reducing ability of plasma method (Benzie and Strain, 1996). At
37◦C, a unit (U/mg) of T-AOC was defined as the increase of 0.01
of optical density of all chemical reaction substances by 1 mg of
tissue protein per minute.

Finally, the rest of the muscle tissues were absorbed with
a filter paper, and the wet weight of muscle tissues for fifteen
individuals was measured at each time point. These tissues were
dried to constant weight in a 202-00S oven (Lichen Co. Ltd.,
Shanghai, China) at 105◦C, their dry weight was measured, and
the moisture content calculated. Muscle moisture = (wet weight
of muscle tissues – dry weight of muscle tissues)/wet weight of
muscle tissues× 100%.

Analysis of Gene Expression
A sample of gill tissue was added to a mortar and ground with
liquid nitrogen. Then, 0.05 mg of the powder obtained was
quickly mixed with 1 mL TRIzol (Invitrogen, United States)
to extract the total RNA from the gill tissue. Total RNA was

extracted by removing the residual DNA from the sample using
RQI RNase-Free DNase (TaKaRa, Kusatsu, Japan), and then
RNA was reverse transcribed to cDNA using M-MLV reverse
transcriptase (Promega, Madison, WI, United States). Real-time
quantitative PCR was conducted using the SYBR R© Premix Ex
TaqTM II kit (Tli RNaseH Plus) (TaKaRa) and the TaKaRa
Thermal Cycler DiceTM Real Time System TP800 instrument.
The specific primers were designed based on cDNA complete
sequences submitted to GenBank, and MnSOD, CAT, GPx, CTSC,
CTSD, HSP20, HSP70, HSP90, and the reference gene β-actin
were analyzed. Genetic information and primer sequences are
presented in Table 1.

Statistical Analysis
Logarithmic transformation was used to satisfy the homogeneity
test of variances and standard normal distribution. One-way
ANOVA (SPSS18.0) and Tukey’s test were utilized to analyze the
difference of hemolymph osmotic pressure, ion concentration,
activity of related enzymes, and gene expression in gill tissues
under salinity changes at different sampling times, and t-test was
performed to analyze the difference of associated physiological
indexes in hemolymph and gill tissues between the salinity-
changing group and the control group at the same sampling
points, in which P < 0.05 was used as the significant difference
level. All experimental data were indicated by mean ± standard
error (mean ± SE) and the data after analysis were drawn
using Sigmaplot.

RESULTS

Survival Rate
Throughout the experiment, no S. subcrenata were found dead in
the control group. In the groups with sudden changes in salinity,
the survival rate of S. subcrenata began to decrease at 96 h. The
survival rate at the end of the experiment was 91.67%, although
no significant difference was identified compared with 120 h
(Figure 2, P = 0.281), which was significantly lower than that at
any other time point during the study.

Osmotic Pressure of Hemolymph Fluid
The osmotic pressure of the hemolymph in S. subcrenata changed
in accordance with the changes in seawater salinity. At 96 h,
the osmotic pressure of the hemolymph was not significantly
different from that at 120 h (Figure 3, P = 0.175), but was
significantly lower than that at any other time point during
the study. At 144 h, when the salinity had increased to 30h,
the osmotic pressure concentration remained significantly lower
than at 0, 24, and 48 h. Except at 0 and 24 h, the osmotic pressure
concentration in the treatment group was significantly lower than
in the control group at all other time points (48 h, P = 0.001; 72 h,
P < 0.001; 96 h, P < 0.001; 120 h, P < 0.001; 144 h, P < 0.001).

Concentrations of Na+, K+, Ca2+,
and Cl−
At 72 h, the Na+ concentration was not significantly different
compared with 96 h (Figure 4, P = 0.142), but was significantly
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TABLE 1 | Real-time quantitative PCR primers for antioxidant enzymes, cathepsin, and heat shock proteins’ genes of Scapharca subcrenata.

Gene Sequence (5′–3′) Size (bp) Efficiency (%) References

Mn-SOD F: CGGAACCACTCCTCCGTCA 167 100.15 Zheng et al., 2015

R: ACGCCGATTTTCTAACCGATT

CAT F: GCCCACACCGAGACCTTAA 183 102.64 Huang et al., 2016

R: AACTTAGCTAAGCGGGGTACC

GPx F: ACTCCGCGCGTCCACG 149 97.04 Cheng et al., 2016

R: GCCATTTCACCTTTGGAT

CTSC F: CAACGGGTTGGCCCGAGATCCCCAC 155 96.81 Designed by author

R: ATTCTGGAAAACCCAACGGAAGT

CTSD F: CCTTACTTACGGGGTTCCCAAC 213 104.22 Designed by author

R: GCTTTACCGGCGGCAAAAGGT

HSP20 F: AACTTGCCAACCTCCTGACCTTTA 173 100.82 Designed by author

R: GCCAAACCCTTACCAGGCAAAT

HSP70 F: AACGGCTCTAAACGGAACTTGGG 189 97.05 Designed by author

R: GGCCGTTTAACCCAGGGCTCT

HSP90 F: GTAAAACCTCCAACAAAAGGCCCAGTT 134 99.31 Zheng et al., 2018

R: CGAAAGCGCGGGCAAATCCGCAAGC

β-Actin F: ACACGGTAAAGCAACCTACC 207 102.92 Designed by author

R: GCGCCCCAAACTTCCGAA

Mn-SOD, Mn-superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; CTSC, cathepsin C; CTSD, cathepsin D; HSP20, heat shock protein 20; HSP70, heat
shock protein 70; HSP90, heat shock protein 90; F, forward primer; R, reverse primer.

FIGURE 2 | Effects of salinity changes on the survival rate of ark shell (Scapharca subcrenata). Values are expressed as mean ± SE (n = 4). Statistical analysis was
performed by one-way analysis of variance (ANOVA) followed by Tukey’s test, using SPSS version 18.0. Means with the different lower case letters are significantly
different at P < 0.05 level.

lower than that any other time point. Except at 0 h, the Na+
concentration in hemolymph from the treatment group was
significantly lower than in the control group at all other time
points (24 h, P = 0.003; 48 h, P < 0.001; 72 h, P < 0.001; 96 h,
P < 0.001; 120 h, P < 0.001; 144 h, P < 0.001). The minimum K+
concentration occurred at 96 h, but was not significant different
compared with 72 or 120 h (72 h, P = 0.183; 120 h, P = 0.269),
although it was significantly lower than at any other point. The
minimum concentration of Ca2+ also occurred at 96 h. At 144 h,
the concentration of Ca2+ remained significantly lower than

that at 0, 24, or 48 h (0 h, P < 0.001; 24 h, P = 0.001; 48 h,
P = 0.001). At 96 h, the Cl− concentration was significantly
lower than that at any other time point. At 72, 120, and 144 h,
there were no significant differences in the Cl− concentration
in the treatment group, but each was significantly lower than
that at 0, 24, and 48 h. Except at 0 h, the concentration of
Cl− in the treatment group was significantly lower than in the
control group at all other time points (24 h, P = 0.001; 48 h,
P = 0.001; 72 h, P < 0.001; 96 h, P < 0.001; 120 h, P < 0.001;
144 h, P < 0.001).
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FIGURE 3 | Effects of salinity changes on the osmotic pressure of hemolymph in ark shell (Scapharca subcrenata). Values are expressed as mean ± SE (n = 4).
Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey’s test, using SPSS version 18.0. Means with different lower case
letters are significantly different at P < 0.05 level. Asterisks indicate significant differences between salinity change treatments and control treatment for the same
time points, P < 0.05.

FIGURE 4 | Effects of salinity changes on the Na+, K+, Ca2+, and Cl− concentration of hemolymph in ark shell (Scapharca subcrenata). Values are expressed as
mean ± SE (n = 4). Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey’s test, using SPSS version 18.0. Means with the
different lower case letters are significantly different at P < 0.05 level. Asterisks indicate significant differences between salinity change treatments and control
treatment for the same time points, P < 0.05.
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Hemoglobin, Soluble Total Protein, Free
Amino Acids, and Moisture Content
Sudden changes in salinity had a significant effect on the
concentration of hemoglobin in S. subcrenata (Table 2, df1 = 6,
df2 = 21, F = 195.17, P < 0.001). At 96 h, the hemoglobin
concentration peaked, and was significantly higher than at 0, 24,
or 48 h (0 h, P < 0.001; 24 h, P < 0.001; 48 h, P < 0.001).
The concentration of soluble total protein also peaked at 96 h,
followed by a gradual decrease until 144 h, when it was
significantly lower than at 96 h (P = 0.007). From 48 h to the
end of the experiment, the content of soluble total protein and
taurine in the treatment group was also significantly higher than
in the control group. At 96 h, taurine content also peaked, and
was significantly higher than at any other time point. As the
salinity level decreased and then increased, the total free amino
acid content tended to gradually increase and peaked at 144 h;
although no significant difference was identified compared with
96 and 120 h (96 h, P = 0.258; 120 h, P = 0.327), each was
significantly higher than at any other time point. The moisture
content also tended to increase then decrease with the changes in
salinity, with the moisture content of gill muscle peaking at 72 h,
which was significantly higher than that at 0, 24, 48, and 144 h.
From 72 to 120 h, the moisture content of muscle in the treatment
group was significantly higher than in the control group (72 h,
P < 0.001; 96 h, P = 0.001; 120 h, P = 0.001).

Na+/K+-ATPase Activity, ROS Content,
and T-AOC
At 48 h, the activity of Na+/K+-ATPase in the treatment group
was significantly higher than in the control group and remained
so until 144 h (Figure 5, 48 h, P = 0.002; 72 h, P < 0.001; 96 h,
P < 0.001; 120 h, P < 0.001; 144 h, P < 0.001). Sudden changes

in salinity also had a significant effect on the content of ROS
(df1 = 6, df2 = 21, F = 163.26, P < 0.001). At 96 h, the content
of ROS was at its maximum and remained significantly higher at
144 h compared with at 0, 24, and 48 h. At 96 h, T-AOC reached
its maximum, which was significantly higher than at 0, 24, 48,
and 72 h. From 72 to 144 h, T-AOC in the treatment group was
significantly higher than in the control group (72 h, P < 0.001;
96 h, P < 0.001; 120 h, P < 0.001; 144 h, P < 0.001).

Analysis of Gene Expression
Sudden changes in salinity had a significant effect on the
expression levels of MnSOD (Figure 6, df1 = 6, df2 = 21,
F = 227.18, P < 0.001). At 144 h, the expression level of MnSOD
had peaked and was significantly different compared with 0,
24, 48, and 72 h. From 72 to 144 h, the expression levels of
MnSOD in the treatment group were significantly higher than
in the control group (72 h, P < 0.001; 96 h, P < 0.001; 120 h,
P < 0.001; 144 h, P < 0.001). The expression levels of CAT tended
to increase and then decrease with the sudden changes in salinity.
At 120 h, no significant difference in the expression levels of
CAT was identified compared with 144 h (P = 0.197), although it
was significantly higher than at any other time point. At 144 h,
the expression levels of GPx were significantly higher than at
any other time point. From 0 to 72 h, no significant difference
in the expression levels of GPx in the treatment group was
identified compared with the control group; however, from 96 to
144 h, the expression levels of GPx in the treatment group were
significantly higher than in the control group (96 h, P < 0.001;
120 h, P < 0.001; 144 h, P < 0.001).

The maximum expression levels of CTSC occurred at 72 h, and
were significantly lower at 96 h than at 72 h (Figure 6, P = 0.005),
although both were significantly higher than at any other time
point. From 48 to 144 h, the expression levels of CTSC and

TABLE 2 | Effects of sudden salinity changes on the contents of hemoglobin, soluble total protein, taurine, free amino acid, and tissue moisture in Scapharca subcrenata.

Time Treatment Content

Hemoglobin
(mmol/L)

Soluble total
protein (mg/mL)

Taurine
(mg/100 g)

Free amino acid
(mg/100g)

Tissue moisture
(%)

0 h Salinity change 1.42 ± 0.21b 12.15 ± 1.18d 56.52 ± 8.72f 16.24 ± 2.52b 73.09 ± 1.42b

Control 1.39 ± 0.14 11.74 ± 0.56 58.12 ± 7.38 14.94 ± 1.57 72.44 ± 1.19

24 h Salinity change 1.36 ± 0.17b 14.59 ± 1.26c 71.33 ± 13.59e 15.06 ± 1.87b 72.26 ± 1.75b

Control 1.33 ± 0.10 12.98 ± 0.92 61.39 ± 5.06 16.73 ± 1.74 72.79 ± 0.93

48 h Salinity change 1.48 ± 0.15b 15.86 ± 1.15c 75.18 ± 10.64e 18.13 ± 1.95b 74.51 ± 1.82b

Control 1.45 ± 0.25 11.29 ± 1.42* 57.37 ± 12.15* 16.11 ± 2.64 71.02 ± 0.75

72 h Salinity change 2.37 ± 0.23a 19.28 ± 1.49ab 146.37 ± 15.26c 20.64 ± 2.92b 82.09 ± 1.94a

Control 1.41 ± 0.16* 13.51 ± 1.18* 60.59 ± 9.47* 18.79 ± 1.38 71.89 ± 0.88*

96 h Salinity change 2.54 ± 0.26a 22.35 ± 2.07a 197.02 ± 16.90a 33.92 ± 4.01a 81.55 ± 1.43a

Control 1.36 ± 0.31* 12.09 ± 0.63* 64.75 ± 10.15* 15.49 ± 2.05* 73.14 ± 0.52*

120 h Salinity change 2.22 ± 0.31a 20.14 ± 1.73ab 166.42 ± 18.08b 35.16 ± 3.87a 80.64 ± 1.18a

Control 1.39 ± 0.20* 14.17 ± 1.64* 61.64 ± 7.97* 17.09 ± 1.77* 72.96 ± 1.03*

144 h Salinity change 2.09 ± 0.27a 18.66 ± 2.13b 113.92 ± 14.14d 37.09 ± 3.50a 75.92 ± 1.52b

Control 1.38 ± 0.16* 12.85 ± 1.02* 60.79 ± 10.74* 16.52 ± 1.84* 71.74 ± 0.72

Values are expressed as mean ± SE (n = 4). Different lower case letters indicate significant differences in the contents of hemoglobin, soluble total protein, taurine, free
amino acid, and tissue moisture for the different time points in salinity change treatments, P < 0.05. Asterisks indicate significant differences in the contents of hemoglobin,
soluble total protein, taurine, free amino acid, and tissue moisture for the same time points between salinity change treatments and control treatment, P < 0.05.
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FIGURE 5 | Effects of salinity changes on the activity of Na+/K+-ATPase, content of reactive oxygen species, and total antioxidant capacity in ark shell (Scapharca
subcrenata). Values are expressed as mean ± SE (n = 4). Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey’s test, using
SPSS version 18.0. Means with different lower case letters are significantly different at P < 0.05 level. Asterisks indicate significant differences between salinity
change treatments and control treatment for the same time points, P < 0.05.

CTSD in the treatment group were significantly higher than in the
control group. Sudden changes in salinity also had a significant
effect on the expression levels of CTSD (df1 = 6, df2 = 21,
F = 283.52, P < 0.001). At 72 and 96 h, the expression levels of
CTSD were significantly higher than at any other time point.

With the sudden changes in salinity, the expression levels of
HSP20 tended to increase and then decrease, with the pattern
then repeating. At 72 h, the expression levels of HSP20 peaked
and then decreased significantly after 96 h. From 48 to 144 h,
the expression levels of HSP20 in the treatment group were
significantly higher than in the control group (Figure 6, 48 h,
P < 0.001; 72 h, P < 0.001; 96 h, P < 0.001; 120 h, P < 0.001;
144 h, P = 0.014). The expression levels of HSP70 also peaked at
72 h; although no significant difference was identified compared
with 96 h, it was significantly higher than at any other time point.
In the treatment group, the expression levels of HSP90 were
significantly higher than in the control group at 24 h (P < 0.001),
and remained so until the end of the experiment. At 48 h, the
expression levels of HSP90 peaked, then decreasing, increasing,
and then decreasing again, although the expression levels at each
later time point were significantly lower than at 48 h.

DISCUSSION

The salinity level under which aquatic animals live varies greatly.
For most aquatic animals, osmotic pressure regulation is a

basic physiological process that enables the body to adapt to
differences in internal and external ion concentrations. However,
osmotic pressure regulation is complex because the environment
inhabited varies from organism to organism (Sokolova et al.,
2012; Kültz, 2015; Urbina and Glover, 2015).

The gill is the first organ to come into contact with the
external environment. It has multiple physiological functions: in
addition, to gas exchange, ammonia nitrogen excretion, acid–
base balance regulation, it is an important site and primary organ
for osmotic regulation (Politis et al., 2018; Giffard-Mena et al.,
2020). Previous studies showed that the gill epithelial cells have a
crucial role in ion regulation, in which Na+/K+-ATPase is vital
to osmotic regulation by participating in the transport of ions
(Abdel-Mohsen, 2009; Evans and Lambert, 2015). During the
sudden changes in salinity in the current study, the Na+/K+-
ATPase activity peaked at 72 h, when S. subcrenata was in 14h
water for 24 h. As the salinity gradually returned to 30h, the
enzyme activity also gradually declined. Furriel et al. (2000)
considered that Na+/K+-ATPase in the gills of crustaceans is
the most important protease in osmotic regulation, Na+/K+-
ATPase accounts for 70% of the total ATPase activity, and can
transport Na+ out of the gill epithelial cells to the hemolymph,
and transport K+ in the hemolymph into the gill epithelial cells,
thereby maintaining the equilibrium of Na+ and K+ in body and
the osmotic pressure of the hemolymph. When the salinity was
24h, the expression levels of NKA mRNA in Pagrus pagrus larvae
were significantly higher than in a group at a salinity of 34h,
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FIGURE 6 | Relative mRNA expression levels of antioxidant enzyme and heat shock proteins’ genes in the gills of ark shell (Scapharca subcrenata). Values are
expressed as mean ± SE (n = 4). Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey’s test, using SPSS version 18.0.
Means with different lower case letters are significantly different at P < 0.05 level. Asterisks indicate significant differences between salinity change treatments and
control treatment for the same time points, P < 0.05.

and the osmotic pressure of the hemolymph showed the same
trend with the changes in salinity (Ostrowski et al., 2011). When
Gadus morhua was transferred from a salinity of 33 to 9h, the
expression of NKAα in the gills and kidney significantly reduced;
in contrast, when transferred from 9 to 33h, its expression
levels significantly increased (Larsen et al., 2012). The activity
of Na+/K+-ATPase in the gill of Poecilia latipinna following
adaptation to a salinity of 35h was significantly higher than
in the 15h or freshwater group; the content of NKAα subunit
protein in the 35h salinity group was 2.2 and 1.7 times that
in the 15h salinity and freshwater groups, respectively, and
the osmotic pressure of the plasma showed the same trends
(Yang et al., 2009). Therefore, Na+/K+-ATPase participates in
the active transport of Na+ and K+ across the cell membrane
and, thus, is important in regulating the osmotic pressure level
of the hemolymph.

In response to external changes in salinity, aquatic organisms
regulate the permeability of water and inorganic ions, and

osmotic regulation involves changes in the content of osmotic
effectors, such as inorganic ions and free amino acids, in
the hemolymph. Inorganic ions have an important role in
maintaining the osmotic pressure levels of the hemolymph,
particularly Na+ and Cl− (Cheng et al., 2002; McNamara and
Faria, 2012). Crustaceans can actively absorb Na+ and Cl− to
compensate for salt loss from the body under low salinity levels,
enabling them to adapt to environments with low or variable
levels of salinity, such as estuaries (Flik and Haond, 2000).
Inorganic ions are the main components affecting the osmotic
pressure of the hemolymph in crustaceans. An increase in water
salinity will increase the concentration of inorganic ions in the
serum in Eriocheir sinensis and Scylla serrate, thus increasing
its osmotic pressure (Romano et al., 2014; Long et al., 2017).
In the treatment group, the concentrations of Ca2+ and K+
were significantly lower than in the control group at 96 and
48 h, respectively. These results also indicated that inorganic
ions, such as Na+, Cl−, and K+, acted as primary osmotic
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effectors in the hemolymph and might have a greater impact
on osmotic pressure compared with Ca2+. K+ plays a critical
role in maintaining the osmotic pressure in neurons, maintaining
the normal function of the nervous system. Intracellular changes
of Na+ concentration affect the osmotic pressure response of
organism, seal the mantle cavity, and protect cells from extreme
salinity (Berger and Kharazova, 1997). Natochin et al. (1979)
studied Mytilus edulis and Littorina littorea and found that, in
addition to Na+ and K+ pumps, these organisms also have a Na+
exchange system related to Cl− that regulates the cell volume and
osmotic pressure. In this sense, the Na+–K+ pump and the Na+–
Cl− pump might jointly be involved enabling marine shellfish to
cope with salinity changes.

Free amino acids in marine shellfish are also important
osmotic effectors, and are mainly sourced from the
decomposition of cells or hemolymph proteins. In crustaceans,
with increases in environmental salinity, the serum protein
decreases, whereas the content of free amino acids increases (Fu
et al., 2017). Similar results have been found in shellfish placed
in low salinity environments: when the cells swell because of the
moisture produced in response to osmotic pressure differences,
changes in plasma membrane permeability can induce the
outflow of specific amino acids, thus enabling the cells to remove
excess moisture and restore cell volume by the efflux of low
molecular weight free amino acids (Silva and Wright, 1992,
1994). Taurine, glycine, and alanine are the most commonly used
free amino acids, and the changes in taurine account for most of
the free amino acid changes (Neufeld and Wright, 1996). In this
study, the hemoglobin concentration peaked at 96 h, followed by
a decrease, although it was still significantly higher than in the
control group. In addition to carrying oxygen, hemoglobin can
store energy and maintain osmotic pressure and antibacterial
activity (Wang et al., 2013; Kato et al., 2017). Therefore, with
sudden changes of salinity, because S. subcrenata lacks a specific
immune system, it has to rely on the innate immunity of blood
cells and humoral factors to enhance its resistance in response to
external environmental stress.

For C. gigas under low osmotic conditions, most free amino
acids in the mantle cells showed a significant, synchronous
decrease within 2–8 h; under high osmotic condition, glycine,
alanine, and taurine significantly increased, with the rapid
increase in alanine having a crucial role in the short-term
adaptation of salinity changes, whereas taurine was involved
in long-term adaptation (Hosoi et al., 2003). In the current
study, taurine and total free amino acids increased gradually
with the sudden drop of salinity, with taurine peaking at 96 h
when the salinity level had increased to 22h, whereas total
free amino acids increased gradually, suggesting that taurine has
a crucial role in the rapid response of S. subcrenata to short-
term sudden changes in salinity, whereas total free amino acids
are involved in responses to long-term changes in salinity. Lu
et al. (2015) reported that, when the salinity level of the external
environment decreased, the content of total free amino acids
in Scylla paramamosain also decreased, whereby the extent of
the decrease in the content of glutamate, glycine, proline, and
arginine accounted for 50% of the decrease in the total free
amino acid content. The internal accumulation of certain free

amino acids is a response to changes in external salinity. For
osmotic pressure regulation, free amino acids can better stabilize
macromolecules, such as proteins, compared with inorganic ions,
without changing the structure and function of the enzyme or
impacting the organism (Long et al., 2018). Therefore, free amino
acids in the hemolymph are directly involved in the osmotic
pressure regulation of S. subcrenata, and an effective means of
maintaining the equilibrium of osmotic pressure is to increase the
content of free amino acid.

Aerobic organisms continually produce ROS via metabolism.
Excessive accumulation of ROS destroys macromolecular
substances, such as proteins, carbohydrates, nucleic acids, and
lipids (Finkel and Holbrook, 2000; Lushchak, 2011). As a result,
maintaining the dynamic equilibrium between the production
and removal of ROS is crucial to protect against oxidative
damage and to maintain normal physiological functions
(Martínez-Álvarez et al., 2005; Okoye et al., 2019). DCFH-DA
shows sensitivity and specificity for the determination of ROS
when used as a probe, but this type of compound is poorly
selective against H2O2. Furthermore, the fluorescent response of
DCFH and its derivatives is based on the oxidation mechanism,
which responds to not only intracellular H2O2, but also other
oxidation substances. It was also reported that an excessive
concentration of DCFH can result in cytotoxicity, affecting the
determination result (Miller et al., 2005; Wrona et al., 2005). In
future studies, the method used to detect ROS should be selected
by considering the low auto-oxidation, high optical stability, and
low cytotoxicity of the method, in addition to its high selectivity
and sensitivity.

However, aquatic animals have an evolutionarily conserved
antioxidant defense system that can remove excess ROS. In
particular, as antioxidant enzymes, SOD and CAT are considered
to be the first line of defense against oxygen poisoning (Bhagat
et al., 2016; Wang et al., 2020). SOD activities in the zebra
and white zebra strains of Ruditapes philippinarum increased
significantly with decreasing salinity from 30 to 5h, with the
highest value at a salinity of 5h. CAT activity in the white and
white zebra strains decreased with decreasing salinity from 30
to 5h, but increased slightly in the zebra strain at 15h and
then increased slightly at 5h (Nie et al., 2020). The current
results showed that the expression levels of MnSOD and CAT
in the treatment group at 72 h (equivalent to 24 h under a
salinity level of 14h) were significantly higher than in the
control group, suggesting that sudden changes in salinity led to
oxidative damage internally, with the continuously accumulated
ROS requiring the organism to activate its antioxidant defense
mechanisms before the dynamic equilibrium between oxidation
and oxidation resistance could be restored. The expression levels
of MnSOD at 144 h were still increasing, whereas the expression
levels of CAT were lower than that at 120 h; thus, the higher
expression levels of MnSOD might led to excessive accumulation
of H2O2, thereby inhibiting the function of CAT. Nevertheless,
as the second line of defense against oxidative damage, GPx also
has an important role in cell metabolism and scavenging of free
radicals; in cells, it can catalyze the reduction of hydroperoxides
to hydroxy compounds (Cnubben et al., 2001; Peña-Llopis et al.,
2003). From 96 h onward, the expression levels of GPx in the
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treatment group began to be significantly higher than in the
control group. By the end of experiment, these were significantly
higher than at any other point, whereas the expression levels of
CAT tended to decrease; thus, it can be inferred that GPx had a
significant role in reducing toxic peroxides to non-toxic hydroxy
compounds, thus shielding the structure and function of the
cell membrane from interference and damage by the peroxide.
However, when the expression levels of CAT decreased and that
of MnSOD continued to increase, the scavenging of H2O2 was
mainly dominated by GPx. Regarding enzyme kinetics, GPx in
mammals and other vertebrates has a greater affinity for H2O2
compared with CAT (Reddy et al., 1998; Avanzo et al., 2001). GPx
is thus largely responsible for the removal of H2O2 in vertebrates,
while CAT and GPx play complementary roles in H2O2 removal
(Mourente et al., 2002; Jo et al., 2008). As a result, in response
to sudden changes in salinity, CAT and GPx had not only a
synergistic, but also a dominant role in mediating the scavenging
of H2O2 to maintain the dynamic equilibrium between internal
oxidation and reduction.

In invertebrates, cathepsins act as a primary component
of the lysosomal proteolytic system and are responsible for
the specific degradation of intracellular proteins (Knop et al.,
1993). As the salinity level decreased and then increased, the
expression levels of CTSC and CTSD tended to increase and then
decrease, peaking at 72 h (under a salinity of 14h). Then, the
expression levels of CTSC and CTSD decreased, although each
was still significantly higher than in the control group. These
changes suggested that, in response to salinity stress, the higher
expression levels of CTSC and CTSD contributed to enhancing
the innate immune response of the organism and its resistance to
invasion and infection by pathogenic bacteria. Nair et al. (2005)

studied Strongylocentrotus purpuratus and found that the
expression levels of CTSL significantly increased subject to
stimulation with lipopolysaccharide, thus inferring that CTSL is
an important immune-related gene. Venier et al. (2006) found
that, when Mytilus galloprovincialis was cultured in a stressful
environment with heavy metals, the expression levels of CTSL
were significantly higher than in the control group, suggesting
that it is involved in the immune stress response. Therefore,
our current findings indicated that cathepsins were involved in
various physiological activities and had an important role in the
regulation of innate immune response in invertebrates.

Heat shock proteins form a group of proteins with crucial
physiological functions and a highly conserved structure; they
are produced in large quantities in response to heat stress, tissue
hypoxia, and osmotic pressure stress (Tine et al., 2010; Yang
et al., 2019). In the current study, HSPs were induced with the
sudden changes in salinity, although there were differences in the
expression patterns of HSP20, HSP70, and HSP90. As a member
of the small molecule HSP family, HSP20 might not refold non-
denatured proteins on its own, but might combine with unfolded
proteins and other HSPs to form complexes that are involved in
biological processes, such as cellular stress resistance, formation
of germ cells, and development of tissues and organs (Morrow
and Tanguay, 2012; Liu et al., 2013). Two peaks occurred in the
expression levels of HSP20, at 72 h (under a salinity of 14h) and
at 120 h, suggesting that HSP20 had an important role in enabling
the organism to adapt to changing salinity stress. Hsp70 has an
important role in regulating the effects of environmental stress
and maintaining homeostasis in cells (Casas and La Peyre, 2020;
Hong et al., 2020). In the current study, the expression levels of
HSP70 peaked at 72 h, followed by a gradual decrease, although

FIGURE 7 | Schematic overview of the osmotic pressure and immunoregulation mechanism of Scapharca subcrenata in response to a sudden drop in salinity.
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it remained significantly higher than in the control group at
144 h. This suggested that the continuously accumulated ROS
led to the denaturation and degradation of partial proteins. At
this point, the increased expression levels of HSP70 contributed
to the repair of damaged proteins and the effective regulation of
the cell cycle. Salinity stress facilitated the increased expression
levels of HSP70 in A. japonicus; especially under low salinity
(20h) stress, the higher expression levels of HSP70 would
help enhance the resistance of A. japonicus to salinity changes
(Dong et al., 2008). Hsp90 is a molecular chaperone involved in
protein maturation and has a role in maintaining the stability
of protein construction, participating in cell cycle regulation,
organism immunity, and signal transduction (Galt et al., 2018).
In the current study, the expression levels of HSP90 peaked
at 48 and 120 h, and were significantly higher than in the
control group from 24 h onward; thus, HSP90 might be more
sensitive to sudden changes in salinity compared with HSP70 and
HSP20, and had a specific role during the initial salinity changes,
participating in signal transduction and maintained the stability
of cell function. Wu et al. (2011) reported that the content of
HSP90 mRNA stored in the cells for the maintenance of normal
physiological function will be upregulated. It has also been shown
that cysteine residues, methionine residues, and others in HSP90
are vulnerable to oxidation. HSP90 may be deprived of biological
activity as molecular chaperone under long-term environmental
stress. In the current study, the expression levels of HSP90 also
began to fall after 72 h, then increased again until 120 h, but no
significant difference was identified compared with 72 h. Thus,
during the initial stages of responding to sudden changes in
salinity, S. subcrenata enhanced signal transduction by relying
on the high expression levels of HSP90. After 72 h, S. subcrenata
relied more on the synergy of HSP20, HSP70, and HSP90 to better
adapt to the environmental stress.

As an important economic shellfish in coastal and estuarine
areas, seasonal heat and rainstorm often impact the survival
of S. subcrenata after bottom sowing. In the current study,
by simulating the sudden changes in salinity that occur after
a rainstorm, it was found that the concentration of osmotic
pressure of the hemolymph, and Na+, K+, Ca2+, and Cl−
content decreased and then increased with the changes in salinity,
whereas hemoglobin, soluble total protein, taurine, and total free
amino acid tended to increase with the decrease in salinity, with
the content of hemoglobin, soluble total protein, and taurine
then gradually decreasing as salinity increased (Figure 7). ROS
peaked at 96 h, whereas the activity of Na+/K+-ATPase and
the expression levels of MnSOD, CAT, GPx, HSP20, HSP70, and
HSP90 increased gradually. At 144 h, the expression levels of
MnSOD and GPx gradually increased, indicating that, although
the salinity level had increased to 30h, ROS had accumulated
internally during the initial sudden changes in salinity. Thus,

there was still a need for the antioxidant system to maintain
the dynamic equilibrium between the production and removal of
ROS, otherwise this would have impacted the cell structure and
resulted in functional damage, which was an important cause of
the reduced survival rate of S. subcrenata in the treatment group.
Thus, there is a need to attempt to reasonably select the bottom-
sowing and release area based on the osmotic pressure regulation
mechanism of S. subcrenata and its tolerance to changing salinity
levels and to avoid sowing and releasing after uninterrupted
periods of rain, both approaches that will be instructive for
improving the survival rate of S. subcrenata seedlings and, thus,
the resource proliferation efficiency.
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