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The neuropeptide vasopressin (VP) and its three G protein-coupled receptors (V1aR, V1bR and V2R) are of
high interest in a wide array of drug discovery programs. V1aR is of particular importance due to its car-
diovascular functions and diverse roles in the central nervous system. The structure–activity relation-
ships underpinning ligand-receptor interactions remain however largely unclear, hindering rational
drug design. This is not least due to the high structural flexibility of VP in its free as well as receptor-
bound states. In this work, we developed a novel approach to reveal features of conformational selectivity
upon VP-V1aR complex formation. We employed virtual screening strategies to probe VP’s conformational
space for transiently adopted structures that favor binding to V1aR. To this end, we dissected the VP con-
formational space into three sub-ensembles, each containing distinct structural sets for VP’s three-
residue C-terminal tail. We validated the computational results with experimental nuclear magnetic res-
onance (NMR) data and docked each sub-ensemble to V1aR. We observed that the conformation of VP’s
three-residue tail significantly modulated the complex dissociation constants. Solvent-exposed and pro-
line trans-configured VP tail conformations bound to the receptor with three-fold enhanced affinities
compared to compacted or cis-configured conformations. The solvent-exposed and more flexible struc-
tures facilitated unique interaction patterns between VP and V1aR transmembrane helices 3, 4, and 6
which led to high binding energies. The presented ‘‘virtual conformational space screening” approach,
integrated with NMR spectroscopy, thus enabled identification and characterization of a conformational
selection-type complex formation mechanism that confers novel perspectives on targeting the VP-V1aR
interactions at the level of the encounter complex – an aspect that opens novel research avenues for
understanding the functionality of the evolutionary selected conformational properties of VP, as well
as guidance for ligand design strategies to provide more potent and selective VP analogues.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction turally similar to oxytocin (OT) and can also activate the closely
Vasopressin (VP) is a highly conserved neuropeptide that acts
via three class A (rhodopsin like) G protein-coupled receptors
(GPCRs) [1]: vascular (V1aR) [2], pituitary (V1bR) [3], and renal
(V2R) [4,5]. VP regulates several vital body functions including
water balance and salt homeostasis (V2R) [6–8], blood pressure
(V1aR) [9,10], pain perception (V1aR) [11,12], cognitive function
(V1aR, V1bR) [13,14] and social behavior (V1aR, V1bR) [15–18]. VP
is also involved in the regulation of stress response (V1bR)
[19,20], as it takes part in the signaling mechanism associated with
ACTH/cortisol release (V1aR) [21]. Additionally, VP plays a role in
the hepatic metabolism of glucose (V1aR) [22], and the regulation
of the sympathetic nervous system (V1aR, V2R) [23,24]. VP is struc-
related oxytocin receptor (OTR) [25]. Dysregulation of VP signaling
is linked to a wide array of disorders including autism [18,26–28],
cancer development [29,30], cardiovascular disorders [31,32],
polycystic kidney disease [33], nephrogenic diabetes insipidus
[34], and nocturia [35].

VP ligand-receptor interaction has been the subject of long-
standing research and drug design efforts [28,32,36,37]. Neverthe-
less, structural dynamics and details of its receptor interactions
remain unclear, particularly due to the lack of crystal or electron
microscopy structures, and therapeutic targeting of its interactions
has had only limited success to date [36,37].

VP comprises a six amino acid containing, disulfide-cyclic sub-
unit linked to an amidated three-residue C-terminal tail. Pro7 func-
tions as a hinge between these two subunits [38,39]. Arg8 in the
three-residue tail is a primary modulator of VP-receptor (VPR)
selectivity (compared to OTR) [40,41], whose spatial position is
crucial for binding [41]. Similarly, Pro7 plays a role in V1aR and
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Fig. 1. a) Representative snapshots of limiting cases for VP structures in the Pro7-
trans extended (left), Pro7-trans compact (middle, most compacted) and Pro7-cis
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V2R selectivity [41]. However, the structure–activity relationships
(SARs) underpinning these features remain elusive.

The discrepancy between medical interest and lack of insights
into structural dynamics is not least due to the limited experimen-
tal access to atomic-level details. In particular, nuclear magnetic
resonance (NMR) spectroscopy – the major structure elucidation
technique for non-crystallizable substrates in solution – is limited
by the absence of long-range distance information (e.g., by nuclear
Overhauser effects; NOE [42]). Consequently, combinations of NMR
and computational techniques [38,43] have become increasing
popular to reveal the complex dynamics of VP and related SARs.
In this context, we capitalized in this work on an integrative
approach combining in-silico modelling of the VP-ligand-receptor
complexes and NMR-based structure validation. More specifically,
we adapted virtual screening techniques [36,44,45] to assess the
structural dynamics involved in VPR recognition. We used the
VP-V1aR interaction as a model system, given its particular impor-
tance for regulating cardiovascular functions.

With our approach, we demonstrate how conformational
selection-type events upon encounter complex formation can be
assessed. In particular, we can assess in-silico which structures
within the heterogeneous peptide conformational space favor
complex formation. Thereby, we introduce a new approach of
‘virtual conformational space screening’ at the example of a medi-
cally important target. This advancement of the virtual screening
methodology enables several novel avenues for understanding
peptide activities and ligand modifications in the context of SARs
and drug development.

Our approach comprises two stages: First, we identified distinct
sub-ensembles within the total VP structural ensemble by integrat-
ing molecular dynamics (MD) simulations and NMR spectroscopy.
Then, we independently docked the identified sub-ensembles to an
inactive V1aR-homology model [46] and screened the resulting com-
plex structures for variations in binding energies and dissociation
constants to identify preferentially selected peptide conformations.

V1aR preferentially selected VP conformations featuring
solvent-exposed tail units, as these enabled adoption of energeti-
cally favorable complex conformations. This contrasts with two
other identified sub-ensembles that feature structural restraints
due to intramolecular side-chain contacts or cis-configuration of
Pro7 and three-fold reduced binding energies.

Virtual screening techniques are well-established in the context
of in-silico drug discovery [45,47,48] and were here expanded to
peptide-receptor interactions. For virtual screening in drug-
receptor interactions [44,49], a library of drugs is typically docked
to a receptor and compounds displaying the desirable binding
properties are selected for further analysis. We replaced the library
of drugs with a library of VP conformational ensembles to assess
the conformational selectivity involved in VP-V1aR recognition.

Comparable approaches by Bonvin and co-workers were
already successful in generating flexible protein–protein [50] and
protein-peptide [51] complexes. This was achieved either by
screening conformations observed in NMR structure predictions
for varying binding energies [50], or by individually docking differ-
ent peptides with varying degrees of conformational freedom to a
target receptor [50].

Here, we first ran an MD simulation of VP in solution to obtain
the library of conformations to be docked.
extended (right) state. The distance between residues Tyr and Arg is indicated by
the dashed line. b) Distributions of Arg8(Hg)-Tyr2(Hg) distances r found in MD
simulations of VP in the Pro7-trans (left) Pro7-cis (right) state. While the former
displayed a bimodal distribution with two distinct maxima, the latter had only a
single maximum. The blue shade indicates distances extracted from the compact
sub-ensemble. c) Trajectories of Arg8(Hg)-Tyr2(Hd) distances r underlying the
distributions in panel (a). The blue shaded area guides the eye to distances < 1 nm
between residues Tyr2 and Arg8. These were only observed for the Pro7-trans state.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
2. Results

2.1. Vasopressin’s conformational sub-ensembles

In our MD trajectories (all-atom simulations, pH 7.4, 37 �C), VP
sampled three well-distinguishable sub-ensembles including two
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in which Pro7 adopted its natural trans state. One of these is char-
acterized by a compact three-residue tail and the other by an
extended tail (Fig. 1a), which is in agreement with reported confor-
mational switches [52]. The third sub-ensemble was observed
when Pro7 adopts a cis state, in which the peptide tail also adopted
an extended conformation. A compact sub-ensamble with Pro7 in a
cis state was not detected (Fig. 1b). We have denoted these three
observed ensembles as CTRANS, ETRANS and ECIS indicating com-
pacted (C) and extended (E) states of the three-residue tail as well
as the cis and trans conformations of Pro7 in the index.

In the case of the compact CTRANS tail conformation, Arg8 folds
transiently back towardsTyr2 and is stabilizedby side-chain interac-
tions between both residues (see Fig. 1a). In particular, the
Tyr2-OHg---Hg-Arg8 hydrogen bonds appear to stabilize the com-
pacted fold. This ‘back-folded’ structure is distinct from the
extended solvent-exposed tail conformations ETRANS (Fig. 1a). The
differential structural sampling of the two trans forms constitutes
a bimodal conformational space, which is reflected in the
intramolecular distances between atoms Arg8(Hg) and Tyr2(Hg).
The conformational space is visualized by the distance distributions
in Fig. 1b. Evidently, a bimodal distance distribution is observed.
Arg8(Hg)-Tyr2(Hg) distances r as short as 0.3 nm were detected for
the compacted CTRANS fold. The distance distribution of this compact
structural ensemble housing the back-folded state is centered
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at ~ 0.5 nm (Fig. 1b, left). By contrast, the extended mode that
includes all other disordered states spans distances up to 2.5 nm
whilst being centered at 1.9 nm (Fig. 1b, right).

When the conformation of Pro7 switches from a trans to cis
state, only extended peptide tails were sampled (Fig. 1b, right
panel, monomodal histogram). Here, the Arg8(Hg)-Tyr2(Hg) dis-
tances span a broad dominant distribution centered at � 2.2 nm,
consisting of species having separations ranging again from
1-2.8 nm. Fig. 1c displays the time trajectories underlying the
distance distributions. It can be seen how VP in the Pro7-trans state
switches between the two sub-ensembles, i.e., compact (indicated
by the blue area) and extended. No such switches were observed
for the Pro7-cis state.

The three different peptide tail ensembles were confirmed in
three independent MD runs (Fig. 1 shows one replica; see Support-
ing Information for the other two replicas; note that each run
contains two independent data sets for the trans- and
cis-conformations, respectively. Hence, six MD trajectories were
computed in total). Note that we refrained from a quantitative
assessment of the MD data due to the finite length of the trajecto-
ries. Instead, we restricted our interpretation on the observation of
the three different sub-ensembles, but did not quantify their rela-
tive populations or the frequencies of conformational switches.
2.2. Virtual conformational space screening

Next, we randomly selected 50 structures from the three sub-
ensembles observed in the MD trajectories and docked these in-
silico to an established V1aR model [46]. For computation, we used

VINA (Vina Is Not Autodock [53,54]); further details can be found
in the Experimental section. This ‘virtual conformational space
screening’ approach is illustrated in Fig. 2a. From the all-atoms
MD trajectories, snapshots of 50 different VP conformations were
independently docked to the V1aR model. The VP structures for
each of the three sub-ensembles (CTRANS, ETRANS and ECIS) that led
to the lowest dissociation constants are depicted in Fig. 2b and
the associated ligand-receptor complex structures in Fig. 2c.

It was interesting to observe how residues Tyr2 and Phe3 inter-
acted with transmembrane helices (TMH) 3 and 4 in all cases to
provide optimal complex stability (in agreement with published
results [41]). In contrast, the position of the three-residue tail var-
ied for the three docked cases CTRANS, ETRANS and ECIS. The pre-
formed tail structures were conserved upon docking to the
receptor which led to different complex conformations. Most
prominently, tail residue Arg8 interacted with TMH 6 in the ETRANS,
but with TMH 5 for the CTRANS and ECIS states, while tail residue
Gly9 interacted with TMH 6 in the ETRANS and CTRANS states, but
with TMH 4 in the ECIS state. These findings are in partial agree-
ment with published structures of the VP-V1aR complex. These dis-
played similar interaction patterns for the three-residue tail with
TMH 4 [41,55]. Yet, the interaction with TMH 6 was not reported.
Fig. 2. a) Sketch of the virtual conformational space screening approach. First, an MD si
randomly selected structures were fed into independent docking experiments and late
represent the conformations chosen for analysis in panels (b) to (e), but serve only as vis
ETRANS (left), CTRANS (center) and ECIS (right) state. The displayed structures are VP-V1aR
complexes computed for the three structures shown in panel (b); ETRANS (left), CTRANS (ce
how VP residue Arg8 varied its position (between TMHs 4 to 6), while Tyr2 and Phe3 alw
ETRANS (left), CTRANS (center) and ECIS (right) sub-ensembles for three independent MD run
were always lower than those of the other two sub-ensembles. Red crosses indicate outli
75th percentiles, respectively. e) Representation of KD for the complexes with the best scor
constants. Note that these values approach the bottom edges of the boxes in panel d (see
legend, the reader is referred to the web version of this article.)
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For statistical analysis, each docking experiment for the 50
selected VP conformations was repeated 25 times yielding 1250
VP-V1aR complexes per sub-ensemble. Each computed complex
structure was analyzed with respect to binding energies and disso-
ciation constants KD. Fig. 2d displays box plots for the three sub-
ensembles CTRANS, ETRANS and ECIS, calculated in each case from
the top five ligand-receptor complex structures with respect to
binding energies. The same analysis was performed for three inde-
pendent runs. In each run, the ETRANS state led to significantly lower
dissociation constants compared to CTRANS and ECIS. The p-values
for comparing the compacted and extended conformations the
three runs were 1.0�10�5, 1.6�10�3 and 1.9�10�1. The full list of
computed values is in the Supporting Information (Table S1). Our
findings were further confirmed by comparison of the dissociation
constants calculated for the complex structure with the best VINA
score out of the 1250 structures (Fig. 2e). ETRANS led in all runs to
two- to three-fold reduced dissociation constants. Note that sev-
eral structures with comparably low dissociation constants have
been computed (see Table S1). Since only results with the five
highest VINA scores were used for computation of the box plots
in Fig. 2d, the bottom edges converge to the values shown in
Fig. 2e.

2.3. NMR validation of the VP structure: The heterogeneous
conformational space of the VP Pro7-trans form

To validate the MD-based results, we experimentally probed
VP’s conformational space by means of solution-state NMR spec-
troscopy. Evidence for the tri-modal sampling space of the three-
residue tail was observed in 1H–1H NOESY and 1H–1H TOCSY
experiments. An overlay of TOCSY (blue) and NOESY (red-green)
NMR spectra of VP in phosphate buffered solution at pH 6.5 is pre-
sented in Fig. 3a. The resonances of Gly9 and Arg8 are both split into
two clear signals along the direct dimension, indicating the pres-
ence of the cis and trans Pro7 isoforms (further confirmation by
repeated annealing is presented in the Supporting Information).
Additionally, three features are notable in the NOESY data: (i)
Arg8(Ha)-Gly9(Ha) cross-peaks were observed for the Pro7-trans
state, but not for the cis state, (ii) Arg8(Ha)-Tyr2(Hd) cross-peaks
were observed (Fig. 3b; note that these NOEs contacts stem from
different atoms than the H-bond described in Fig. 1; as the
Arg8(Hg) could not be identified by NMR.), and, most importantly,
(iii) the Arg8(Hb)-Arg8(HN) and the Arg8(Hc)- Arg8(HN) cross-peaks
had a negative amplitude for the Pro7-cis and a positive one for the
Pro7-trans state (with respect to positively phased diagonal peaks;
green signals represent fast motions and red restricted motions;
Fig. 3c).

The presence of these features confirmed the conformational
sampling of the MD simulations for the acyclic Pro7-Arg8-Gly9 tail.
In particular, the positive amplitudes for the Arg8(Hb)-Arg8(HN) and
the Arg8(Hc)-Arg8(HN) NOE cross-peaks for the Pro7-trans state
indicate slowed conformational dynamics of the three-residue tail.
"

mulations generated different sub-ensembles and conformational snapshots. Then,
r associated with a particular VP state. Note that the shown VP structures do not
ualization of the virtual conformational screening method. b) Structures of VP in its
complexes with the lowest dissociation constants in our simulations. c) VP-V1aR

nter) and ECIS (right). The transmembrane helix (TMH) numbering is indicated. Note
ays bound to TMH 3 and 4. d) Box plots of dissociation constants computed for the
s from the structure with the best VINA scores. The KD for the ETRANS sub-ensemble
ers, the red bars mean values, bottom and top edges of the box indicate the 25th and
es in our docking experiments, with ETRANS having significantly reduced dissociation
the main text for details). (For interpretation of the references to colour in this figure
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Fig. 3. Overlay of an 1H–1H TOCSY (blue) and 1H–1H NOESY (red – positive values and green – negative values) of VP obtained at a proton Larmor frequency of 600 MHz.
Spectra were recorded at 25� C and pH 6.5. a) NOESY correlations of residues of interest are marked with dashed rectangles. Cross-peaks with the water signal are marked
with a blue semi-transparent rectangle. For 1D projections see the Supporting Information. b) NOESY correlations (red) between Y2(Hd) and R8(Hb) are marked together with
TOCSY correlations (blue) between R8(Hb/c) and R8(HN). c) Zoom onto NOESY spectra showing signals for amino acids G9 and R8. (For 1D projections see the Supporting
Information.) The cross-peak amplitudes feature inverted signs for the trans and cis conformation, as only the trans form entails that compacted conformational ensemble,
which slows down side-chain dynamics and leads to positive NOEs with respect to a positively phased diagonal. The Greek letters indicate the R8 protons that couple to the
Hd. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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By contrast, in the Pro7-cis state, only negative cross-peaks were
observed indicating faster side-chain dynamics. This validated
the heterogeneous conformational space of the VP three-residue
tail, as only transient intramolecular attraction between the tail
and the macrocycle residues could account for these observations
[52]. Given the observation of Arg8(Hb)-Tyr2(Hd) cross-peaks,
attractive interaction between tail residue Arg8 and the Tyr2 aro-
matic side-chain appear intuitive as an underlying force, which
aligned well with the structures computed for the CTRANS case.

We conclude that VP, when Pro7 adopts the trans state, indeed
populates a bimodal conformational space due to transient side-
chain interactions between Tyr2 and Arg8 that slows down confor-
mational sampling, i.e., the intramolecular dynamics. In the
Pro7-cis state, no indications of a conformationally restrained
sub-ensemble were observed, and hence no compacted state could
be inferred, in line with the MD results. Besides, the observation of
slow conformational dynamics for the trans-state indicates that the
CTRANS forms dominate the conformational ensemble when Pro7

adopts the trans-state. Indeed, a predominance of extended confor-
mations likely would result in fast backbone and side-chain
dynamics and a similar cross-peak sign as observed for the ECIS
structural ensemble.

Note that a line shape analysis supports this conclusion. The
trans-state leads to a broader linewidth compared to the cis-state
(Fig. 3c and S5-S7 in the Supporting Information, the trans-state
G9 peak even overlaps with the cis-state one). This indicates, in
agreement with the above interpretation, an exchange-based line
broadening as the trans-state exchanges between two conforma-
tions. However, the cis-state only samples extended forms such
that no exchange broadening is observed.

It has been suggested that both the cis and trans conformations
of VP are populated under physiological conditions, owing to the
similarity in energy of their respective proline backbone bond con-
figurations [39,56,57]. At the same time, the energy barrier for
bond rotation is sufficiently high to permit observation of the sep-
arate resonances for both isomers on the NMR time scale [58].
Indeed, previous NMR investigations of VP structure observed
spectroscopic fingerprints of two isomers, observing Pro7-cis popu-
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lations in the range of 5–9% [56,38] under near-physiological con-
ditions. Here, under our conditions (pH 6.5, 25 �C), we were able to
detect the presence both states simultaneously. To this end, we
used the almost pure cis-form as starting material and obtained ~
60% trans populations (as judged from the NMR peak intensities)
after annealing at 60 �C for 8 h.
3. Discussion

V1aR is the main receptor in mediating these functions [59] and
it is thus not surprising that significant efforts have been made to
develop selective V1aR agonists and antagonists for therapeutic
applications as well as to study this signaling system [60,61].

Targeting V1aR has been a long-standing research challenge
[28,37,46,62,63] mainly due to the selectivity problems to its
closely-related receptor subtypes, namely V1bR, V2R and OTR. Our
findings might therefore be of interest to the medicinal chemistry
community for the development of more potent and selective V1aR
ligands. In particular, one could envisage to implement unnatural
amino acids that shift the CTRANS/ETRANS population equilibrium to
improve receptor affinity and potentially also receptor subtype
selectivity. Our simulations indicate that the Tyr2-OH--–NH-Arg8

hydrogen bond particularly stabilizes the CTRANS state. Hence, mod-
ification of either the Tyr2 or the Arg8 residue might foster an over-
population of the better binding ETRANS state, e.g., by introducing a
methylated Tyr2 modification that lacks the possibility to form the
hydrogen bond in question. Alternatively, the binding affinity of VP
to V1aR could be modulated by directly manipulating the cis–trans
equilibrium of the Pro7 residue [64,65]. Such strategic modifica-
tions could deliver important potency and selectivity improve-
ments for V1aR binding, which is critical for therapeutic lead
development.

Concerning the computed complex structures, we found that
the dissociation constant of the VP-V1aR complex depends on the
spatial conformation of the VP three-residue tail. The lower disso-
ciation constant for ETRANS indicates a preferential binding of the
corresponding structural sub-ensemble to the receptor. From
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Fig. 2c we deduce that the conformation with an extended peptide
tail enables simultaneous interactions of VP residue Arg8 with TMH
6, accompanied simultaneously by interactions aromatic side-
chains of Tyr2 and Phe3 with TMHs 2 and 4, respectively. This com-
plex configuration led to the highest binding energies in our
simulations but was not observed in the ECIS nor CTRANS states, sug-
gesting that this unique configuration drives the observed confor-
mational selectivity. This is supported by other studies stating that
the VP ligand-receptor complex is characterized by an intricate
network of hydrogen bond interactions across several residues,
rather than by a few well-defined points of contact [66]. The
ligand-receptor interactions in the complex consist primarily of
contacts between the residues of the cyclic part of VP and TMHs
3 and 4 and the extracellular loops of the receptor [55,66]. At the
same time, the C-terminal tail modulates binding affinities via a
few intermolecular contacts [66]. Indeed, SAR studies of VP
revealed that modification or replacement of Pro7 in VP can affect
V1a/V2 receptor selectivity [67,68].

It should be noted that the herein computed differences in dis-
sociation constants between the compacted and extended VP con-
formations likely do not suffice to lead to a ‘pure’ conformational
selection-type binding event. Instead, a more complex binding pro-
cess that features aspects of structural selectivity appears to be
more probable. Moreover, due to the nature of virtual docking
experiments with limited receptor flexibility, the computed disso-
ciation constants correspond to conformations found upon ligand-
receptor encounter. In other words, the ETRANS state is preferen-
tially selected by V1aR for encounter complex formation as the like-
lihood of dissociation is significantly reduced in comparison to the
CTRANS and ECIS VP states. However, subsequent conformational
sampling and structural adaption in the complex are not excluded
by the presented methodology. In contrast, it is not unlikely that
the selectivity towards a particular encounter complex structure
can guide the VP-V1aR system towards a particular final complex
structure.

VP has received substantial attention from both, the structural
biology [36,41,55] and medicinal chemistry communities
[28,69,70], and V1aR remains a drug target of interest. However,
crystallization and electron microscopy efforts so far have failed
to provide a high-resolution structure of this receptor. With longer
MD trajectories, higher computing power, more refined V1aR
homology models, and high-sensitivity NMR becoming more
accessible, deeper insights into the conformational characteristics
of VP and its receptor interactions can be provided. We capitalized
on these developments in this study and adapted a well-
established in-silico methodology for screening receptor interac-
tions of potential drug candidates to the screening of solution con-
formations for favorable binding properties. In classical virtual
screening experiments, the rational selection of the ligand set often
constitutes a bottleneck, but we could overcome this by confirming
the selected conformations experimentally by NMR spectroscopy.
4. Conclusions

We developed a ‘virtual conformational space screening’ that
provided new insights into the interactions of VP with V1aR. We
could establish that the binding event has different energetic pref-
erences based on the sampled and experimentally verified confor-
mations of the VP three-residue tail. In particular, the extended
conformations of the Pro7-trans configuration (ETRANS) led to a
reduced dissociation constant and favorable binding energies.

Our results highlight the key role of the three-residue ‘tail’ in
determining VP conformational selectivity, providing missing
atomic-level detail to the current understanding of VP-V1aR inter-
action – an aspect that opens novel research avenues for under-
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standing the functionality of the evolutionary selected
conformational properties of VP, as well as guidance for ligand
design strategies to provide more potent and selective VP ana-
logues. Our VCSS is fast, easy to implement, applicable to other
peptide-receptor systems, and data interpretation is straightfor-
ward. We expect this methodological advance to be interesting
for a spectrum of chemists and biologists as it enables the elucida-
tion of peptide-receptor recognition events at the atomic level.
5. Experimental

VP was obtained from Biosynth Carbosynth (Compton, United
Kingdom).

5.1. NMR spectroscopy

For NMR spectroscopy VP was dissolved at 3 mg/mL in PBS buf-
fer at pH 6.0 (90% H2O and 10% D2O; 25 mM Na2HPO4, 25 mM
KH2PO4, 25 mM NaCl). NMR spectra were recorded on a 600 MHz
Bruker NEO spectrometer equipped with a Prodigy TCI probe head.
All spectra were acquired at 25 �C. TOCSY and NOESY data were
recorded using the Bruker ‘dipsi2gpph190 and ‘noesyfpgpphrs190

pulse sequences for TopSpin 4. For annealing, the samples were
heated to a maximum of 60 �C for 8 h. The high temperatures were
necessary as the cis–trans conversion features high energy barriers
and is rather slow. All TOCSY spectra were recorded with a spectral
width of 8196.7 Hz in both dimensions and 32 scans. Mixing time
was 150 ms. QUADRATURE detection was done using States-TPPI.
All NOESY spectra were measured with width of 9615.3 Hz in the
F2 dimension and 7202.1 Hz in the F1 dimension. We recorded 32
scans. The mixing time was 300 ms. QUADRATURE detection was
employed again using States-TPPI sampling schemes.

Spectral processing was achieved using TopSpin, NMRPipe [71],
and Sparky [72]. All data were zero filled to twice the original
number of data points and apodized using a 60� shifted sine bell
function prior to Fourier transformation. This was followed by a
polynomial baseline correction in the frequency space.

Line shape analysis were conducted using home-written scripts
for the MATLAB software package employing the ‘fitnlorentian.m’
function.

5.2. MD simulations

We performed all-atoms MD simulations of VP, beginning from
either Pro7-cis- or -trans conformations. The published Pro7-trans
VP structure was used as starting model [73]. To obtain the Pro7-
cis form the N-C’ bond was switched accordingly. This was fol-
lowed in both cases by energy minimization and simulated anneal-
ing in explicit solvent (1% NaCl in water at pH 7.4). Finally,
trajectories were recorded at 37�C at 2 fs time steps.

MD-simulations were performed using the YASARA software-
package [74,75]. The AMBER03 force field was employed with peri-
odic boundary conditions [76]. Non-bonded interactions were cut
off at 1.05 nm Long-range Coulombic interactions were treated
by a smoothed particle-mesh Ewald method [77,78].
Non-canonic amino acids were built using YASARA and semi-
quantum-mechanically parameterized (YAPAC-AM1). MD trajecto-
ries of > 120 ns length were accumulated for the two systems. In
total, six trajectories were computed, i.e., for both states (cis and
trans) three trajectories were computed. Intermolecular forces
were recalculated at every second simulation sub-step. Tempera-
ture rescaling was employed with a set-temperature of 37 �C.
The box dimensions (cubic of 37 Å side length) were controlled
to yield a solvent pressure of 1 bar. Snapshots of the simulations
were taken every 10,000 fs.



K. Che, M. Muttenthaler and D. Kurzbach Computational and Structural Biotechnology Journal 19 (2021) 5826–5833
5.3. Receptor docking

Insights into ligand-receptor interactions were generated using
VINA [53] as implemented in YASARA. We used a recently reported
homology model of V1aR [46]. 25 structures were generated for
each docked structure. Side-chains flexibility was enabled upon
docking the ligand structures. Dissociation constants were calcu-
lated from the binding energies DGbinding following the Autodock
method and conventions:

KBinding ¼ 1=KD
lnKBinding ¼ �lnKD
DGbinding ¼ �RT lnKBinding

The binding energy DGbinding was calculated using the ‘BindE-
nergy’ macro implemented in YASARA, i.e., by determining the
energy at infinite distance (between the object and the rest of
the soup, i.e., the unbound state) and then subtracting the energy
of the soup (the bound state). The more positive the binding
energy, the more favorable the interaction. It should be noted that
such determined energies are representing approximations that
should only be compared among each other. They should not be
understood as independent absolute measures of binding affinities.
For each of the MD runs, the three sub-ensembles were identified,
and the respective docking experiments were performed. This led
to a total of nine docking experiments. The initial VP structure
for docking to V1aR were chosen randomly from the respective con-
formational sub-ensembles using the MATLAB random number
generator. Box plots (Fig. 2) were calculated using the ‘boxplot’
function implemented in the MATLAB software package.
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