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Abstract

Gene expression is intrinsically a stochastic (noisy) process with important implications for

cellular functions. Deciphering the underlying mechanisms of gene expression noise

remains one of the key challenges of regulatory biology. Theoretical models of transcription

often incorporate the kinetics of how transcription factors (TFs) interact with a single pro-

moter to impact gene expression noise. However, inside single cells multiple identical gene

copies as well as additional binding sites can compete for a limiting pool of TFs. Here we

develop a simple kinetic model of transcription, which explicitly incorporates this interplay

between TF copy number and its binding sites. We show that TF sharing enhances noise in

mRNA distribution across an isogenic population of cells. Moreover, when a single gene

copy shares it’s TFs with multiple competitor sites, the mRNA variance as a function of the

mean remains unaltered by their presence. Hence, all the data for variance as a function of

mean expression collapse onto a single master curve independent of the strength and num-

ber of competitor sites. However, this result does not hold true when the competition stems

from multiple copies of the same gene. Therefore, although previous studies showed that

the mean expression follows a universal master curve, our findings suggest that different

scenarios of competition bear distinct signatures at the level of variance. Intriguingly, the

introduction of competitor sites can transform a unimodal mRNA distribution into a multi-

modal distribution. These results demonstrate the impact of limited availability of TF

resource on the regulation of noise in gene expression.

Author summary

Genetically identical cells, even when they are exposed to the same environmental con-

ditions, display incredible diversity. Gene expression noise is attributed to be a key
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source of this phenotypic diversity. Transcriptional dynamics is a dominant source of

expression noise. Although scores of theoretical and experimental studies have

explored how noise is regulated at the level of transcription, most of them focus on the

gene specific, cis regulatory elements, such as the number of transcription factor (TF)

binding sites, their binding strength, etc. However, how the global properties of tran-

scription, such as the limited availability of TFs impact noise in gene expression

remains rather elusive. Here we build a theoretical model that incorporates the effect of

limiting TF pool on gene expression noise. We find that competition between genes for

TFs leads to enhanced variability in mRNA copy number across an isogenic popula-

tion. Moreover, for gene copies sharing TFs with other competitor sites, mRNA vari-

ance as a function of the mean shows distinct imprints for one gene copy and multiple

gene copies respectively. This stands in sharp contrast to the universal behavior found

in mean expression irrespective of the different scenarios of competition. An interest-

ing feature of competition is that introduction of competitor sites can transform a

unimodal mRNA distribution into a multimodal distribution, which could lead to phe-

notypic variability.

Introduction

Every living organism regulates gene expression through the action of transcription factors

(TFs), enabling the cell to respond to intra-cellular and environmental cues [1]. The binding

and unbinding of both RNAP molecules and the TFs (DNA binding proteins that abet or hin-

der RNAP binding) to the promoter [2–4], are inherently stochastic processes and this stochas-

ticity is manifested in the output of gene expression [5–11]. Consequently, at the single cell

level, the numbers of mRNA and protein molecules fluctuate in time and across populations.

Such fluctuations in expression can be detrimental to cell fitness [12–14] and the development

of multicellular organisms [15]. On the contrary, noisy expression can benefit a population of

genetically identical cells by creating phenotypic heterogeneity [16–21, 21–30]. This raises the

question of how noise in gene expression is regulated [31, 32]. Over the past decade or so, the-

orists have sought to unravel how gene expression noise is regulated [33–40]. Meanwhile,

experimentalists have measured noise at both the mRNA and protein level in prokaryotes [41–

45] and eukaryotes [46–48], in order to systematically test the predictions of these models, and

refine our understanding.

Models of transcription quintessentially hinge on the details of the promoter architecture

such as the number and affinity of TF binding sites and relative binding positions on the gene

[39, 49–54]. Most of these theoretical models implicitly assume that the number of TFs is in

excess with respect to the number of its binding sites in the cell. However, inside the cell this

assumption often breaks down. For example, TFs get shared by multiple gene copies, in highly

replicated viral DNA genes [55], genes expressed on plasmids [56], and in multiple identical

copies on the chromosome [57–61]. Furthermore, the majority of TFs are entrusted with the

regulation of multiple genes; for instance, cAMP receptor protein (CRP) is reported to have

nearly 400 binding sites per E. coli genome copy [62, 63]. It is therefore crucial to predict gene

expression noise due to limited availability of TF resource, in order to dissect how the sharing

of TFs among multiple genes contributes to noise.

Some studies have explored the interplay of TF sharing between genes and other competing

binding sites in different scenarios [44, 64–72]. For instance, in a recent study, Rydenfelt et al.

[73] have theoretically explored the effect of TF sharing on the mean level of gene expression,
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which has since been verified experimentally [65, 67]. However, few studies have systematically

explored how competition, for TF binding influences gene expression noise [68–71]. In one

such study, it was found that in the context of a single auto-regulated gene copy, the addition

of decoy binding sites can lead to bimodal protein distributions in an isogenic population.

Although these studies provide useful insights, nevertheless a general theoretical framework of

understanding how TF resource sharing affects noise in gene expression remains in its infancy.

The goal of this study is to develop such a framework.

Here we examine a simple model of transcription, where a number of TFs are shared

between a comparable number of gene copies and other competitor sites. We explicitly

envisage two different scenarios of competition, demonstrated schematically in Fig 1: (i)

multiple identical promoters sharing their TFs (Fig 1B), and (ii) promoters sharing their TFs

with other competitor sites (Fig 1C). These competitor sites can represent ‘decoy sites’ or

promoters driving expression of other gene species. We find that competition enhances

noise across an isogenic population, i.e. the Fano factor (defined as the variance divided by

the mean) of the mRNA distribution shows a peak when the TF number becomes compara-

ble to the promoter number. Interestingly when a single promoter copy shares TFs with mul-

tiple competitor sites in a cell, we find that there exists a master curve for the mRNA

variance as a function of its mean that is independent of the binding, unbinding rates and

the number of competitor sites. However, this result does not hold when a number of pro-

moter copies compete for a pool of TFs. In other words, these different scenarios of TF com-

petition bear distinct signatures at the variance level. This finding stands in sharp contrast to

the behavior at the mean level [67], which follows a universal master curve irrespective of the

nature of competition. We further find that a unimodal mRNA distribution without any

competitor sites can be transformed into a multimodal distribution when competitor sites

are introduced. For such a multimodal distribution, different modes arise and diminish as

the number of competitor sites is systematically tuned. While our model predictions are con-

sistent with recent experimental [67] and theoretical [73] studies at the mean level of expres-

sion, we also find that TF competition can have a complex impact on the noise in expression

Fig 1. Different scenarios of competition for a pool of TFs among promoters and other binding sites. (A) A

single promoter copy in isolation without the presence of any other TF binding sites. (B) Multiple copies of identical

promoters competing with each other for the TFs. (C) Promoters compete with other competitor sites for the TFs.

Competitor sites can correspond to ‘decoy sites’ or promoters driving expression of other gene species. Therefore,

although the competitor sites bind to the TFs, they do not regulate the production of mRNA molecules from the target

promoters.

https://doi.org/10.1371/journal.pcbi.1005491.g001
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which results in multimodality and a scaling with mean expression level that depends on the

source of the competition.

Results

Model

In order to investigate how TF sharing affects cell-to-cell variability at the mRNA level across a

population of genetically identical cells, we examine a simple model of transcription, where a

number of TFs are shared between a comparable number of identical promoter copies and

competitor sites (see Fig 1B and 1C). Moreover, as case studies, we consider two regulatory

motifs of transcription in E. coli [74]: 1) a promoter containing a single binding site where a

repressor molecule can bind and hinder transcription, and 2) a promoter consisting of a single

binding site where an activator molecule can bind and increase the rate of transcription. These

regulatory architectures have been extensively explored in different studies, using the implicit

assumption that TFs are in abundance [38, 64, 75–79].

We construct a general model of transcription, that explicitly incorporates the interplay

between TF copy number and its binding sites. To elucidate the model, we first consider a

number of identical promoters sharing a pool of TFs, as shown in Fig 2A in the absence of any

competitor sites. We can easily incorporate the presence of competitor sites in our model, as

shown in the later sections. For the sake of generality we discuss the process of TF binding and

unbinding generically without regard to their regulatory functions; later we will outline the

influence of activators and repressors separately. Let us consider NTF number of TFs being

shared by NP number of promoters, where each promoter contains a single TF binding site. A

TF binds to a promoter at a rate kon, and it unbinds from it at a rate koff (see Fig 2A). For math-

ematical convenience we view the process of TF binding to a promoter as the formation of a

‘TF-promoter’ complex, and the unbinding of the TF as dissociation of the complex [80]. Con-

sequently, complex formation rate per TF per promoter is kon, while dissociation rate per com-

plex is koff (see Fig 2B).

The number of TF-promoter complexes determines the transcriptional output. In the case

of activators, mRNA production takes place when the activator is bound to a promoter (see

Fig 2C). Each of the activator-promoter complexes produces mRNA molecules at a rate r,

which then subsequently degrades at a rate γ. Here we have assumed for simplicity that the

basal transcription rate, when the promoter is not bound to an activator, is zero, as it is negligi-

ble for many activator regulated genes [62]. However, all our results still qualitatively hold

even when we incorporate a non-zero basal rate of transcription (see Fig D in S1 Text). On the

other hand, since repressor binding to a promoter hinders the attachment of RNA polymerases

to the promoter, each promoter produces mRNA molecules at a rate r, only when it is not

bound to a repressor, as shown in Fig 2E. In the limit of one promoter copy, our model reduces

to the well known ON-OFF model [75, 81–84], where the promoter switches between an active

and an inactive state, and transcription can ensue only in the active state.

The above processes can be depicted as trajectories in the space of TF-promoter complex

number and mRNA copy number, as shown in Fig 2B, 2D and 2F. By employing a stochastic

framework, we monitor the time evolution of two random variables: the instantaneous num-

ber of TF-promoter complexes, n(t) and the instantaneous number of mRNA molecules, m(t).
Evidently for activators, the instantaneous mRNA production rate is proportional to the num-

ber of complexes (n); while for repressors, the mRNA production rate is proportional to the

number of unbound promoters (NP − n) (compare Fig 2D and 2F). Using the master equation

approach, we write down the time-evolution equation for the joint probability distribution

P(n, m, t) of having n complexes and m mRNA molecules at a time t. For instance, the master

Effect of transcription factor resource sharing on gene expression noise
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equation for activators is given by

dPðn;m; tÞ
dt

¼ konðNTF � nþ 1ÞðNP � nþ 1ÞPðn � 1;m; tÞ þ koffðnþ 1ÞPðnþ 1;m; tÞ

þrnPðn;m � 1; tÞ þ gðmþ 1ÞPðn;mþ 1; tÞ

� ½konðNTF � nÞðNP � nÞ þ koff nþ rnþ gm�Pðn;m; tÞ:

ð1Þ

Fig 2. A kinetic model of transcription, incorporating the TFs’ binding and unbinding to multiple competing promoters. (A) The

rate of binding of a TF to a promoter is kon and the rate of unbinding of the TF from the promoter is koff. (B) List of possible stochastic

transitions leading to either formation or dissociation of ‘TF-promoter’ complexes, and their respective statistical weights. The weights

represent the probability that each transition will occur during a time interval, Δt. TF copy number, promoter copy number, and the

instantaneous number of complexes are denoted by NTF, NP and n respectively. (C) While an activator is bound to a promoter, it promotes

the binding of RNAP molecules to the promoter, which subsequently leads to the production of an mRNA molecule at a rate r. Each

mRNA molecule then decays at a rate γ. Here, m denotes mRNA copy number. The basal transcription rate, when the activator is not

bound to the promoter, is assumed to be zero (see S1 Text for a more general model for activators with a nonzero basal rate). (D) List of

stochastic transitions leading to changes in mRNA copy number by the action of activators and their respective weights. (E) When a

repressor is bound to a promoter, it hinders RNAP binding to the promoter, subsequently blocking mRNA production. However when a

promoter is not bound to any repressor molecule, it produces mRNA molecules at a rate r, which again subsequently decay at a rate γ. (F)

List of stochastic transitions leading to changes in mRNA copy number by the action of repressors, with respective weights.

https://doi.org/10.1371/journal.pcbi.1005491.g002
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The above equation is built by counting all possible steps that lead to either a change in

complex number (n) or in mRNA copy number (m) by one (see trajectories in Fig 2B and 2D).

Similarly, we could also write the master equation for repressors by combining the trajectories

depicted in Fig 2B and 2F (see S1 Text for details). In principle, we can obtain the relevant

moments of the mRNA distribution from these master equations. However, exact expressions

of mean (hmi) and variance (var(m)) of the mRNA distribution can only be obtained for the

simplest case of one promoter. For the general case of multiple promoters, deriving exact

closed-from expressions for the moments is challenging, because the system of equations for

the moments do not close. Nonetheless, we can obtain approximate analytical solutions (see S1

Text for details).

Since we do not have exact analytical solutions for the moments of the mRNA distribu-

tion, we simulate the kinetic processes defined above using the Gillespie algorithm [85]. This

allows us to numerically generate multiple time-traces of the random numbers n and m,

using realistic values of the kinetic rates suitable for E. coli promoters (see Table 1). From

these different time traces, we calculate the values of the mean and variance of the steady

state mRNA distribution. The approximate analytical solutions match reasonably well with

our simulation data (see Fig A in S1 Text). While there is a systematic deviation which results

from ignoring higher order terms (beyond second order), these closed form relations can be

useful in understanding the qualitative behaviors of these curves, which the analytical solu-

tions do capture (see S1 Text for details). Below we summarize our main results, obtained

from the Gillespie simulations.

Multiple identical promoters competing for a pool of TFs

Armed with the framework established above, we first investigate the scenario when multiple

identical promoter copies compete for a pool of TFs (as shown in Fig 1B). Our model predicts

the effect of TF sharing on the mean (hmi) and variance (var(m)) of the steady-state mRNA

distribution. We shall first discuss the case when the TFs act as activators, and then shift our

focus to the case of repressors.

We explore the effect of activator sharing in the fold-change of mean expression, a quan-

tity often measured in bulk assays (see Fig 3A) [67, 73]. Here we define the fold-change as

the ratio of the mean expression hmi to its maximum value NP(r/γ). The mean of the mRNA

distribution, increases steadily with activator number, and asymptotically goes towards the

value of NP(r/γ) (see Fig F in S1 Text). In the limit of activator copy number being much

greater than the promoter copy number, all the promoters essentially remain bound to acti-

vators. Accordingly each of these activator-promoter complexes contributes, on average, r/γ
mRNA molecules, resulting in the production of NP(r/γ) mRNA molecules on average, in the

steady state. The qualitative behavior of fold-change, which first monotonically increases

Table 1. Kinetic rates that are used in simulations.

Kinetic processes Symbols of

rates

Values of rates

Activator/repressor binding kon 0.0027s−1 (per TF per promoter) [42]

Activator/repressor unbinding koff 0.0023s−1 (per TF-promoter complex) [86]

mRNA production

(transcription)

r 0.33s−1 (per ‘activator-bound’ or ‘repressor-free’

promoter) [87]

mRNA decay γ 0.011s−1 (per mRNA) [41]

https://doi.org/10.1371/journal.pcbi.1005491.t001
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with activator number and asymptotically approaches one, is in agreement with previous

studies [73].

In contrast to the fold-change, variance is a non-monotonic function of the number of

activator molecules, which peaks when the number of activators equals the promoter copy-

number (see Fig 3B and also see Fig F in S1 Text). The origin of the peak in variance lies in

the activator-promoter complex number variability. In fact the variance in complex num-

ber also peaks when the promoter copy number equals activator copy number (see Fig B in

S1 Text). In other words, when activator number is comparable to promoter copy-number,

there is enhanced variability in complex number stemming from the stochastic complex

formation and dissociation processes, which subsequently gets reflected at the level of

mRNA distribution. On the contrary, if the numbe of activators is either much greater or

much less than the promoter number (in the limits of NTF� NP and NTF ⪡ NP), the effect

of competition disappears, as all the promoters remain either bound or unbound to

Fig 3. Our model of TF sharing predicts the behavior of the first two moments of steady-state mRNA distribution

across an isogenic population. (A) Fold change of the mRNA distribution (defined by hmi/(NPr/γ)) as a function of activator

number. (B) Variance of mRNA distribution (var(m)) versus activator number. Note that the variance peaks when the activator

number equals the promoter number. (C) Fano factor (defined by var(m)/hmi) also exhibit a peak as a function of activator

number, when the activator number equals the promoter number. (D) Fold change of expression as a function of repressor

number. (E) Variance of mRNA distribution versus repressor number. Just like activators, the variance peaks when repressor

number equals the promoter number. (F) Fano factor versus repressor number, showing peaks when the repressor number

becomes comparable, but slightly higher than the promoter number. In all the plots, symbols represent data from numerical

simulations, which are connected by smooth dashed lines to guide the eyes. The parameter values are as specified in Table 1.

https://doi.org/10.1371/journal.pcbi.1005491.g003
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activators. If we consider the example of activator number being much higher than pro-

moter number, all the identical gene copies driven by the promoters will be expressed all

the time. This will lead to each gene copy producing mRNA molecules which is Poisson dis-

tributed across an isogenic population [54]. Hence the distribution of all the mRNAs pro-

duced from all the identical gene copies will be given by the sum of the numbers of mRNA

produced from every gene, leading to a reduction in mRNA variability and a sharply peaked

distribution. We further show in Fig 3C the effect of activator sharing on the Fano factor

(var(m)/hmi). Just like the mRNA variance, the Fano factor also exhibits non-monotonicity

as a function of activator number, and peaks when the activator and promoter numbers

become equal.

Turning our attention to repressors, we find an analogous result where instead of gene

expression being proportional to the number of activator-promoter complexes; it is now pro-

portional to the number of promoters not bound to repressors. As such, we find that the

fold-change, defined by hmi/(NPr/γ), monotonically decreases with increasing repressor

number, and asymptotically approaches zero (see Fig 3D). Moreover, the variance is a non-

monotonic function of repressor number, and exhibits a sharp peak when the number of

repressors equal promoter copy number, as was the case for activators (see Fig 3E). As before

the appearance of these peaks can be understood from a corresponding enhancement in

complex number variability (see Fig B in S1 Text). Finally, the non-monotonic behavior of

Fano factor, found in the case of activators, also persists for repressors, when the Fano factor

is plotted as a function of the repressor number (see Fig 3D). However, there is a distinction

between the cases of activators and repressors at the level of Fano factor. Unlike the activa-

tors, the Fano factor for repressors do not peak exactly when the repressor number equals

the promoter number; rather the peaks appear when the repressor number is slightly greater

than (although comparable to) the promoter number (see Fig 3D). These behaviors are very

robust with respect to changes in the different parameter values associated with the model

(for details see the S1 Text, Figs G-I).

In summary, a key prediction of our model is that TF sharing among identical promoters

leads to a substantial increase in gene expression noise when TF and promoter copy number

become comparable to each other. Sharp peaks arise in mRNA variance and Fano factor as a

function of TF copy number, which bears the signature of pronounced competition.

Promoters sharing TFs with other competitor sites

Inside single cells, TFs often promiscuously bind to different competitor sites [42, 88, 89] such

as ‘decoy sites’ or promoters driving expression of other gene species, compelling a promoter

of interest to compete with these sites for a limiting pool of TFs (as shown in Fig 1C). Recent

bulk studies have theoretically [68, 73] and experimentally [67, 90] studied this scenario inside

bacterial cells, by synthetically integrating multiple competitor sites at several chromosomal

locations or on plasmids.

To explore how this interplay affects the cell-to-cell variability at the mRNA level, we

incorporate TF binding to competitor sites, and extend our model as described before to

consider NP number of promoters competing for NTF number of TFs in the presence of NC

number of competitor sites (shown in Fig 4A). Consequently, every TF can bind either to a

promoter or to a competitor site. The rates at which a TF binds to a competitor site and

unbinds from it are given by kC
on and kC

off respectively. We first discuss how the competition of

a single promoter copy (NP = 1) with multiple competitor sites affects the variability at the

mRNA level.

Effect of transcription factor resource sharing on gene expression noise
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A key prediction of this model is that for both activators and repressors, the variance as a

function of the mean remains unaltered, regardless of the number and the strength of the

competitor sites, as shown in Fig 4B and 4C (also see Fig E in S1 Text). In other words,

when we tune the variance as a function of the mean by altering TF number NTF, all the data

points for variance, generated from numerical simulations using different parameter values

for the number of competitor sites collapse onto a single master curve. This result holds true

even for different TF binding/unbinding rates to the competitor sites (please see Fig E in S1

Text). In order to develop an intuition for this result, we employ already existing analytical

results involving TF regulating a single promoter copy [37]. In fact, when the number of

competitor sites is zero, it is easy to obtain exact analytical expressions for the variance and

Fig 4. Prediction of mRNA variance as a function of mean, when the promoters share TFs with other competitor

sites. (A) Schematic of a single target promoter sharing TFs with multiple competitor sites. (B) The variance of mRNA

molecules per promoter (var(m)/NP) versus the mean per promoter (hmi/NP), when the TFs act as activators. (C) The

mRNA variance per promoter versus mean per promoter when the TFs act as repressors. In both the subfigures B and C,

different numerical data points are obtained for various numbers of competitor sites by varying the TF copy number. Note

that all the data for a single target promoter collapse onto a master curve (black curve). Data for a single target promoter is

shown by closed symbols, and the data for two target promoters are shown by open symbols. The parameters related to

the promoters (kon, koff, r, γ) are taken from the Table 1, while the number of competitor sites are systematically varied and

listed in the figures. The master curves are predictions from Eq 3.

https://doi.org/10.1371/journal.pcbi.1005491.g004
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the mean from the master equation (Eq 1), which are given by,

hmi ¼
r
g

konNTF

ðkonNTF þ koffÞ

varðmÞ ¼ hmi 1þ
koff

ðkonNTF þ koffÞ

r
ðgþ konNTF þ koffÞ

� �

ðfor activatorsÞ;

hmi ¼
r
g

koff

ðkonNTF þ koffÞ

varðmÞ ¼ hmi 1þ
konNTF

ðkonNTF þ koffÞ

r
ðgþ konNTF þ koffÞ

� �

ðfor repressorsÞ:

ð2Þ

It is conceivable from the above analytical expressions, that both the variance and the mean

can be expressed as simple functions of an ‘effective’ binding rate of the TFs to the promoter,

keff
on ¼ konNTF (also see Eq. 14-15 in S1 Text). The presence of the competitor sites essentially

modifies the TF pool as seen by the promoter i.e. the effective binding rate of the TFs to the

promoter without altering any of the other parameters such as, koff, r and γ. Hence we can

express the variance as a function of the mean by eliminating the dependence of these func-

tions on the effective binding rate, keff
on . For both the activators and repressors, we can thus

express the variances as functions of the means given by,

varðmÞ ¼ hmi þ
hmi½ðr=gÞ � hmi�2g

g½ðr=gÞ � hmi� þ ðr=gÞkoff
ðfor activatorsÞ;

varðmÞ ¼ hmi þ
hmi2½ðr=gÞ � hmi�g

ghmi þ ðr=gÞkoff
ðfor repressorsÞ:

ð3Þ

These are the functional forms of the master curves, which exactly match the collapsed

data, as shown in Fig 4B and 4C. In other words, for a single promoter copy, noise at the

mRNA level changes only as a function of the mean, irrespective of whether the promoter of

interest is competing for a pool of TFs with competitor sites or not. Moreover, this result holds

true even when there exists a basal rate of transcription for promoters not bound to activators

(see Fig E in S1 Text). This highlights an intriguing prediction for transcriptional noise in the

face of competition; the noise depends only on the mean, and it is determined solely by an

effective binding rate of the TFs to that promoter, irrespective of the interaction of the TFs

with the competitor sites. In fact this result also implies that variance as a function of the mean

cannot be used as a signature to distinguish scenarios where a single promoter copy is in com-

petition for a pool of TF with other competitor sites.

Next, we investigate the case of multiple promoter copies competing for a pool of TFs with

a number of competitor sites. Our model predicts that the collapse, as observed in the variance

as a function of the mean for a single promoter copy does not hold anymore. To explicate this

further, we consider the hypothetical situation of two promoter copies, competing with other

competitor sites. When we systematically tune the number of competitor sites and using gilles-

pie simulations obtain the variance as a function of the mean, we find that the different curves,

defining the variance per promoter as a function of the mean per promoter, no longer collapse

onto a single master curve, as shown in Fig 4B and 4C (open symbols). We note that the TF

copy number variation, affects mRNA production from both the promoter copies. Hence the

numbers of mRNAs produced from the two copies become correlated [73]. Owing to this cor-

relation, the mean and variance cannot be simply expressed in terms of some effective variable,

such as konNTF, as before (see Eq. 17 in S1 Text, where nonlinear terms, like k2
onN2

TF, appear in

the expressions). However, in the limit of the TF copy number or the number of competitor
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sites becoming much greater than one (i.e. NTF� 1 or NC� 1), the correlation between the

number of mRNAs produced from different promoter copies become negligible. In both these

limits the data for variance per promoter versus mean per promoter again fall on the master

curve obtained for a single promoter copy, signifying that the promoters behave independently

(see Fig 4B and 4C).

Introduction of competitor sites leads to multimodal mRNA distribution

The observations in the last two sections suggest that the mRNA distribution passes through

an interesting regime when the TF number is comparable to the number of binding sites (pro-

moter copies and competitor sites). In order to examine the features of mRNA distribution, we

consider activator sharing between multiple promoter copies driving the expression of the

same target gene. We find that multimodal mRNA distributions arise as activator number is

tuned for a given number of promoter copies (see Fig 5A), when the binding and unbinding

rates of activators (kon and koff respectively) to the promoters are much slower compared to the

mRNA production and degradation rates (r and γ respectively)(see Table 1). Multi-modal

mRNA distribution implies that mRNA molecules are present in multiple distinct abundances

across an isogenic cell population. The appearance of multimodality at the mRNA level can be

intuited by examining the steady state activator-promoter complex number distribution, since

mRNA production is directly proportional to the number of activator-promoter complexes. In

order to elucidate this point further, we consider the scenario when there are three activator

copies, shared by two promoters. As evident, we can have three possible values of the complex

number: zero, one or two. Since the binding and unbinding of the activator molecule to the

promoters are much slower than the mRNA production and degradation rates, the promoters

remain in activator bound and unbound states for a long time, such that sampling of mRNA

molecules across a population can capture the effect of distinct relative abundances. Conse-

quently in a genetically identical cell population, we may find three sub-populations, with one

population having one complex producing *r/γ amount of mRNA molecules on average,

another population having two complexes producing *2r/γ amount of mRNA molecules on

average; and the other population having zero mRNA molecules on average due to the absence

of any activator-promoter complexes. However, for our particular choice of parameters, the

relative probability of having zero complexes becomes much smaller than having one or two

complexes. Consequently the peak at zero vanishes, and we obtain a bi-modal mRNA distribu-

tion with two peaks, approximately at 2r/γ and r/γ (see the blue curve in Fig 5A). Nevertheless,

with suitable choices of parameters one could recover all the three modes (see Fig J in S1 Text).

In the limit of activator copy number being much greater than the promoter copy number, all

the promoters are essentially occupied and the mRNA distribution approaches a uni-modal

distribution, sharply peaked around NPr/γ (NP being the number of promoter copies). For

identical promoter copies competing for repressor molecules, we again find bi-modal mRNA

distribution in certain parameter regime, as shown in Fig 5B.

The appearance of bimodal distribution is known theoretically for a single ‘two-state’ pro-

moter switching between ‘on’ and ‘off’ states, when the state switching rates are slower than

mRNA production and degradation rates [37, 91]. The fact that we consider more than one

competing identical promoters leads to the possibility of obtaining more than two modes as we

tune the TF copy number, since it allows for the formation of more than one TF-promoter

complex. However, it is to be noted that multimodality can be observed only for a certain

parameter regime, namely when the binding and unbinding rates of the TFs are much slower

than mRNA production and degradation rates ({r, γ}> {kon, koff}). When this stringent condi-

tion is met, sharing of TFs among promoters alters the relative proportion of the different
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Fig 5. Introduction of competitor sites can lead to multi-modal mRNA distribution. (A-B) The steady-state number

distributions of mRNA molecules produced by two identical promoters are shown in absence of any competitor sites, with

varying number of activators (A) and repressors (B). The kinetic rates are taken from Table 1. Insets: The mRNA distributions

with a faster TF binding rate (kon = 0.027s-1) than the mRNA degradation rate (γ = 0.011s−1). Other parameters are as

specified in Table 1. (C-D) The steady-state mRNA distributions for two identical promoters are shown in presence of

competitor sites, when the TFs either act as activators (C) or repressors (D). For these plots, we choose a faster TF binding

rate than mRNA degradation rate (as in the insets of A, B) such that the distributions are unimodal in absence of any

competitor sites. The number of competitor sites is increased systematically keeping a fixed number of TFs (NTF = 3). For

simplicity we assume that the TF binding and unbinding rates to the promoters are the same as to the competitor sites.

https://doi.org/10.1371/journal.pcbi.1005491.g005
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modes, making them either more or less prominent. On the other hand, if the condition is not

met, the distribution becomes unimodal. For example, see the inset of Fig 5A and 5B, where

we choose the TF binding rate kon to be higher than the mRNA degradation rate γ.

Next, we investigate how the presence of competitor sites affects the distribution of mRNAs

produced by multiple copies of a promoter of interest. In the case of activator sharing, one of

the key findings is that the introduction of competitor sites can lead to multi-modality even

when the binding rate of TFs to the promoter is faster than the degradation rate of the mRNA.

In order to explain this further let us consider the example discussed above, where two com-

peting promoters of interest produce a unimodal mRNA distribution in the absence of any

competitor sites (Fig 5A, inset). By systematically increasing the number of competitor sites,

we find that the unimodal mRNA distribution transforms into a multimodal distribution (see

Fig 5C). This is because the activators can now also bind to the competitor sites, restricting the

pool of freely available activators (ones that are not bound to any binding sites). Since the free

activator number is restricted due to competition, the promoters can stay in unoccupied states

for sufficiently long time, even when the binding rate of the activators are faster than the

mRNA degradation rate. Hence the only requirement for observing multimodality is that the

unbinding rate of activators to the promoter has to be slower than mRNA degradation rate,

such that promoters can also stay occupied for a sufficiently long time, allowing the system to

again sample the relative abundances of mRNA molecules. It should be noted that for quite a

few known TFs, such as LacI, or lambda CI repressors in E. Coli, the unbinding rate from the

promoter is slower or comparable to the mRNA degradation rate [42, 92]. This is also true for

many TFs in yeast [93–95]. Please see the Methods section for a comprehensive discussion of

the rates we choose.

Similarly, for two promoter copies sharing repressors with a number of competitor sites,

our model predicts emergence of multi-modal mRNA distribution, as shown in Fig 5D. Just

like the case of activators, different modes of mRNA distribution arise and diminish as the

number of competitor sites is tuned. In the results above, we assumed for simplicity that the

TFs have the same binding and unbinding rate to both the promoters and competitor sites.

Nevertheless, our conclusions remain intact even when the TFs bind or unbind to the competi-

tor sites with a different rate than to the promoters (see Fig K in S1 Text).

To further validate our model prediction that multi-modal mRNA distribution stems from

the promoters of interest competing with the competitor sites for a pool of TFs, we also look at

the Pearson correlation coefficient between the numbers of mRNA molecules produced from

two promoters of interest. If the number of competitor sites is much smaller than the promoter

number, and the TF number is much higher than the promoter number, effectively each pro-

moter is expected to express independently. Thus, a nonzero correlation coefficient can be

regarded as a signature of competition. For our choice of parameters, we see that the correla-

tion starts from zero, reaches a minimum and then asymptotically approaches zero as the

number of competitor sites is increased (See Fig L in S1 Text). Hence the rise of multimodality

at the mRNA level coincides with nonzero values of correlation coefficient, signifying that this

effect stems from the competition between the promoters and competitor sites. One central

finding of this section is that altering the number of competitor sites and changing the number

of TFs in the absence of competitor sites yield qualitatively distinct responses at the level of the

mRNA distribution and correlation (see Fig M in S1 Text).

Discussion

The impact of transcriptional dynamics on gene expression noise has been a topic of intense

enquiry, in the field of quantitative regulatory biology [33–37, 39]. Most of these studies have
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investigated models of transcription, hinging on the properties of the cis regulatory elements,

such as the number of TF binding sites, their binding strength, etc [39, 49, 54]. The key

assumption these studies make is that we can treat each gene in isolation while dissecting their

transcriptional dynamics and its impact on noise in expression. In reality this assumption

often breaks down when a TF for a gene of interest gets shared by other genes or competitor

sites on the chromosomal DNA or plasmids [55–61]. Hence in order to understand how tran-

scriptional dynamics influences noise in gene expression, theoretical studies need to include

the global effect of TF sharing.

The model of transcription developed here offers a way to incorporate the interplay of TF

copy number and its binding sites and make predictions for how this interplay impacts gene

expression noise. Predictions of this model, for the mean mRNA expression as a function of

TF copy number is in agreement with recent bulk studies [67] (see Fig C in S1 Text). More-

over, for identical promoters competing for a pool of TFs, we find that both the variance and

Fano factor of the mRNA distribution are non-monotonic functions of the TF copy number

and show a peak when the TF and promoter copy numbers are comparable.

The incorporation of competitor sites into this model gives rise to intriguing predictions at

the noise level. As has been expounded in recent studies [65], at the mean level, gene expres-

sion profiles from a wide range of competition scenarios in the presence of competitor sites

can be collapsed onto a single master curve by considering the natural variable of the problem.

However, at the level of variance this elegant universality ceases to exist. Although there exists

a master curve in the variance as a function of the mean for a single promoter copy competing

with multiple competitor sites, for more than one promoter copy, this result no longer holds.

In other words, for more than one promoter copy, the simple picture of each promoter seeing

an effective pool of TFs fails. Although introduction of competitor sites would imply a change

in free TF concentration, one key implication of our results is that altering the number of com-

petitor sites has a qualitatively different impact than directly changing the number of TFs in

the absence of competitor sites.

As is evident, one major outcome of this study is that different scenarios of TF sharing lead

to qualitatively distinct noise characteristics at the mRNA level. In a recent set of experiments

in E.coli, Jones et al. [44] systematically tuned the number of LacI repressors and counted

mRNA molecules across an isogenic population in order to demonstrate the effect of promoter

architecture on gene expression noise. Similar strategies could be adopted to systematically

test the different scenarios of TF resource sharing by altering the number and strength of com-

peting binding sites, as we have outlined above.

We also find that the presence of competitor sites can further lead to a multi-modal distri-

bution, so long as unbinding rates of TFs to the promoters of interest are slower than the

mRNA production and degradation rates. Multi-modal distributions in expression, across

an isogenic population can provide a fitness advantage in a changing environment, by giving

rise to phenotypic diversity [96]. Certain cis regulatory elements have been demonstrated to

lead to bimodal expression patterns [71, 91, 97, 98]. Here we demonstrate that a generic fea-

ture of promoters competing for a finite TF resource in the presence of competitor sites lead

to a multi-modal distribution at the mRNA level. Whether such differential control is used

by cells to control the shape and modality of the mRNA distributions is a fascinating

question.

In general, the impact of global properties of transcription, such as the limited availability

of TF [99] or sigma factor [100, 101] resources on gene expression noise remain poorly under-

stood. In this light our theoretical framework provides a way of deciphering the global effect of

genetic resource sharing on expression noise.
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Materials and methods

Parameter selection

For E.Coli, there are several experimental studies that measure the degradation rates of the dif-

ferent mRNAs. In particular genome wide studies in E.Coli have shown that the average life-

time of mRNAs in E.coli is 2.5 minutes in the exponential phase and 4.5 minutes in the

stationary phase respectively, as shown in Figure 3A of [95]. On the other hand numerous

studies have measured the binding and unbinding rates of TFs to the promoters, as we have

cited in the manuscript. For a lot of these TF such as the well-known Lac and Lambda cI

repressors, the average residence times of minutes up to tens of minutes [42, 92, 102]. In other

words the residence time is longer or comparable than the degradation rates of the mRNA

molecules, justifying the assumption we make.

For eukaryotes, genome wide studies (see Figure 2A of [93]) in yeast have measured the life-

time of mRNA molecules from 4687 genes. These studies found that around 1700 genes have

an average lifetime of less than 10 minutes. Although we do not know of genome wide studies

that characterize the unbinding rates of all TFs to all binding sequences, we can find examples

where the residence time of different TFs to the DNA were measured or inferred [94]. For TFs

such as Rap I and Gcr I, the residence times are of the order or 10 minutes. As binding and

unbinding rates of different TFs are discovered more of them might have a long residence

time at the promoter.

Computational tools

In order to compute the mRNA distribution across an isogenic population, we performed Gil-

lespie simulations [85] using codes written in C++.

Supporting information

S1 Text. A single pdf file containing analytical calculations, discussion of activators with a

basal rate of expression, and 13 supporting figures.

(PDF)
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