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ABSTRACT

An increasing number of eukaryotic and prokaryotic
genes are being found to have natural antisense
transcripts (NATs). There is also growing evidence
to suggest that antisense transcription could play a
key role in many human diseases. Consequently,
there have been several recent attempts to set up
computational procedures aimed at identifying
novel NATs. Our group has developed the AntiHunter
program for the identification of expressed sequence
tag (EST) antisense transcripts fromBLASToutput. In
order to perform an analysis, the program requires a
genomic sequence plus an associated list of tran-
script names and coordinates of the genomic region.
After masking the repeated regions, the program
carries out a BLASTN search of this sequence in the
selected EST database, reporting via email the EST
entries that reveal an antisense transcript according
to the user-supplied list. Here, we present the newly
developed version 2.0 of the AntiHunter tool. Several
improvements have been added to this version of the
program in order to increase its ability to detect a lar-
ger number of antisenseESTs.As a result, AntiHunter
can now detect, on average, .45% more antisense
ESTs with little or no increase in the percentage of
the false positives. We also raised the maximum
query size to 3 Mb (previously 1 Mb). Moreover, we
found that a reasonable trade-off between the pro-
gram search sensitivity and the maximum allowed
size of the input-query sequence could be obtained
by querying the database with the MEGABLAST pro-
gram, rather than by using the BLAST one. We now
offer this new opportunity to users, i.e. if choosing

the MEGABLAST option, users can input a query
sequenceup to30Mb long, thusconsiderably improv-
ing the possibility to analyze longer query regions.
TheAntiHunter tool is freelyavailableathttp://bioinfo.
crs4.it/AH2.0.

INTRODUCTION

Several examples of natural antisense transcripts (NATs) have
been reported in prokaryotes and viruses, where they are found
to regulate gene expression by affecting mRNA transcription,
processing and translation (1). A growing number of endogen-
ous antisense RNA transcripts have also been found in many
eukaryotic organisms during recent years, with experimental
evidence suggesting a functional role for them at a surprising
variety of levels in gene regulation, including transcriptional
interference (2), genomic imprinting (3,4), RNA interference
(5), translational regulation (6), alternative splicing (7), X-
inactivation (8) and RNA editing (9). To facilitate the in silico
search of potential antisense transcripts, we have recently
developed a software tool, AntiHunter, aimed at facilitating
the identification of antisense expressed sequence tag (EST)
transcripts within a given genomic region of interest (10,11).

We report here the availability of a new AntiHunter release.
Thanks to an improved algorithm, this version of the program
can detect a significantly larger number of antisense ESTs,
while keeping to a minimum the number of false positives.
Moreover, because of improvements in the underlying pro-
cessing pipeline, it is now possible to analyze longer query
sequences with significantly shorter response times.

SOFTWARE UPGRADE

The AntiHunter-processing pipeline uses a genomic sequence
and a list of annotated transcripts of the genomic region as
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input. This list includes transcript names, their beginning and
ending positions plus their strand occurrence. Subsequently, it
first runs the RepeatMasker program on the genomic sequence
in order to filter out repeated sequences and then performs a
BLASTN search of the resulting sequence in the selected EST
database. Finally, it parses the BLAST output looking for
antisense EST with respect to the annotated genes and reports
the results to the user by email.

In order to gain information about the EST sequencing
strand, the program uses the database annotation, i.e. 50 or
30, reported in the actual EST entry. However, since only a
fraction of ESTs, 74% (18 111 572 versus 24 481 418, as of
January 2005), possesses such information, a significant per-
centage of ESTs cannot be used in AntiHunter searches. For
this reason, we tried to incorporate into our program a pro-
cedure that was able to take advantage of the information
contained in these un-annotated ESTs. We found that the
main reason for the missing EST strand annotation was that
these ESTs belonged to random-primed and non-directionally
cloned libraries (G. Lavorgna, unpublished data). Therefore, it
was conceivable to attempt recovery of the missing informa-
tion about the EST sequencing strand by looking at the spli-
cing consensi located in proximity to the edge of the alignment
of each EST exon with the genomic sequence. Splice donor
and acceptor sites are GT–AG for the vast majority of introns
(12). Thus, in AntiHunter 2.0, un-annotated ESTs spanning an
intron are recognized quite reliably by the presence of these
consensus sites, or their reverse-complementary sequence CT–
AC, at the intron’s border. It should be noted that the above
procedure was already implemented in the previous Anti-
Hunter version, but it was meant only to double check the
source of the sequencing strand of already annotated EST and
was not used to attempt an ab initio strand prediction.

Furthermore, in AntiHunter 2.0, we have made the width of
the region that searched for the presence of splicing sites from
the edge of the alignment, previously set to 5, user settable. By
changing this parameter, the user can compensate for BLAST
reported alignments whose edges go past the biologically
correct one. This allows AntiHunter 2.0 to detect antisense
transcripts missed by the previous version of the program. As
an example, a detail of the BLAST alignment between a query
genomic sequence from the MYCN locus (coordinates:
chr2:16024168–16039977 from the release hg17 of the UCSC
genome browser) versus the human EST AA609982 (subject
sequence) is shown in Figure 1A.

The identified alignment goes beyond the intron/exon
border: 11 genomic bases, shown in uppercase, are, indeed,
spuriously aligned to the EST, making it difficult to identify
the correct splicing sites. The specialized programs SIM4
(http://pbil.univ-lyon1.fr/sim4.php) correctly detects the align-
ment boundaries, as shown in Figure 1B. In AntiHunter 2.0,
the splicing consensi are correctly identified by AntiHunter
when using a value >11 for the width of the region searched
for splicing consensi (parameter ‘Bases_Searched_For_
Splicing_Consensi’). However, it should also be noted that
high value for this parameter will also increase the chance
of detecting artifactual splicing sites.

The new capabilities of AntiHunter 2.0 were tested using
known examples. In particular, we used the same test set we
used to benchmark AntiHunter capabilities (http://bio.ifom-
firc.it/ANTIHUNTER/ah_help.new.htm#function). It consists
of 15 genomic regions, previously described in the literature,
containing overlapping transcriptional units in mammalian
genomes. It was previously shown that AntiHunter was able
to pick up antisense transcripts from 14 out of these 15 loci
(10). This time, we also measured the number of antisense

A
Score = 252 bits (127), Expect = 5e-63
Identities = 133/135 (98%)
Strand = Plus / Plus

Query: 7527 cggggggagtaatggcttctgcgaaaagaaattccctcggctctagaagatctgtctgtg 7586
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 171 cggggggagtaatggcttctgcgaaaagaaattccctcggctctagaagatctgtctgtg 230

Query: 7587 tttgagctgtcggagagccggtgcgtccccaccccaggctggggttcttctccaaagggt 7646
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct: 231 tttgagctgtcggagagccggtgcgtccccaccccaggctggggttcttctccaaagggt 290

Query: 7647 gcccCTGGAGGAAGA 7661
||||| ||| |||||

Sbjct: 291 gcccccggacgaaga 305

B
290 TGCCC CCGGACGAAGATGACTTCTACTTCGGCGGCCCCGAC

|||||<<<...<<<||||||||||||||||||||||||||||||||||||
7646 TGCCCCTG...TACCCGGACGAAGATGACTTCTACTTCGGCGGCCCCGAC

Figure 1. Parameterizing the value of constant ‘Bases_Searched_For_Splicing_Consensi’ in AntiHunter. The constant ‘Bases_Searched_For_Splicing_Consensi’
determines the number of bases located upstreamand downstreamof the edge of aBLASTalignment between a genomic and anEST sequence that are searched for in
the presence of splicing consensi. It used to be set to a fixed value of 5 in the AntiHunter program. This low value made unfeasible the detection of alignments like
those shown in (A), where up to 11 spurious bases (shown in boldface uppercase) are added at the edge of the alignment between a query genomic sequence from
MYCN locus (coordinates: chr2:16024168-16039977 from the release hg17 of theUCSCgenomebrowser) and the ESTAA609982. The specialized programs SIM4
(http://pbil.univ-lyon1.fr/sim4.php) correctly detects the alignment boundaries of the alignment, as shown in (B). In AntiHunter 2.0, this hard-coded constant value
has been parameterized, allowing the user to experiment with it: the splicing consensi are indeed correctly identified by AntiHunter when using a value >11.
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transcripts reported by both versions of the program. As shown
in Figure 2, AntiHunter 2.0 detected a total of 272 ESTs versus
186 ESTs detected by AntiHunter, yielding an increase in
search sensitivity of >45%. The newly identified ESTs were
found in 6 loci. In all cases except one, the newly reported
ESTs were not reported before because they had no database
annotation about their sequencing strand. In the remaining
case, EST AA609982 from MYCN locus was identified
because the search was run using the parameter ‘Bases_
Searched_For_Splicing_Consensi’ set to a value of 20. It
should also be noted that general-purpose resources that are
not specially designed for this purpose could have been used
in antisense transcription detection of these examples. Among
these resources are the popular online genome browsers, such
as the University of California Santa Cruz (UCSC, http://
genome.ucsc.edu/) and Ensembl (http://www.ensembl.org/)
browsers, in which the user can view a specific genomic
locus with all cDNAs and ESTs aligned to it. The direction
of full-length cDNAs and spliced ESTs is usually shown so
that the user can determine whether there is an antisense over-
lap with a chosen gene. However, this choice can be rather
problematic in the case of genomic regions larger than a few
hundred kilobases, since details on the transcriptional orienta-
tion of the ESTs will be less easily discernible, especially in
the case of extensively transcribed regions (i.e. regions with a
large number of associated ESTs). In addition, these browsers
do not present several key orientation parameters, such as
poly(A) sequences or sites and database annotation. Therefore,
they should be mainly used to view the results of AntiHunter
in their genomic context. In this sense, they are an important
complementary resource.

Since the newly implemented procedure had somewhat
loosened the stringency of AntiHunter searches, we attempted
to measure the resulting search background. To do this, we

analyzed each of the newly found ESTs to determine if it was
localized within no more than 1 kb of the previously identified
ones. As a result, all the new ESTs fell within this range (data
not shown), thus supporting the idea that they belonged to the
same transcriptional unit as the old ones and that none of them
was, indeed, artifactual.

SYSTEM UPGRADE

The underlying AntiHunter pipeline was upgraded in order to
efficiently manage larger sizes of the query sequence and/or
to offer quicker response times. This was mainly achieved
by replacing the BLAST program with mpiBLAST, a freely
available open source parallelization of NCBI BLAST, which
permits BLAST queries to be processed on many nodes
simultaneously (http://mpiblast.lanl.gov/). Up to eight nodes
(16 CPUs) have been allocated for AntiHunter usage on the
new system, depending on the estimate of the needed com-
puting power. In addition, BLAST EST databases have been
pre-split in 4, 8 and 16 pieces in order to save CPU cycles at
running time. It is expected that BLAST search speed will
scale up quasi-linearly with the number of the used CPUs on
the new system, with the main reason for not having a com-
pletely linear scaling of the search speed being the time spent
in rejoining the results from the split databases, an operation
not-parallelized in mpiBLAST. Because of these system
improvements, AntiHunter 2.0 can now process queries up
to 3 Mb long, thus tripling the limit of the previous version.

As a further speed-up, the AntiHunter 2.0 interface now
allows the user to disable the pre-processing of the input
sequence with the RepeatMasker program (A. F. A. Smit,
R. Hubleyand P. Green; RepeatMasker Open-3.0, 1996–
2004, http://www.repeatmasker.org), a time-consuming step,
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Figure 2. Benchmarking the performance of AntiHunter 2.0. The capability of AntiHunter 2.0 to detect EST antisense transcripts was compared with that of
AntiHunter on a test case of 15 genomic regions, containing overlapping transcriptional units previously described in literature in mammalian genomes (for details
see http://bioinfo.crs4.it/AH2.0/ah_help.new.html). As a result, AntiHunter 2.0 detected a significantly larger number, 272 versus 186, of antisense ESTs than the
previous version of the program. The newly detected ESTs belonged to six different genomic loci (ASE-1, RFPL3S, RFPL1, MYCN, FGF2 and THRA).
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especially in case of large genomic sequences. We added this
option since it is now possible to use web resources, like the
UCSC genome browser (http://genome.ucsc.edu/), to obtain
pre-masked genomic regions belonging to the whole genome
of several organisms. These pre-processed regions can be used
as input to AntiHunter; similarly, the user might have already
masked once his/her sequence; therefore, no need for further
masking.

AntiHunter searches, especially when performing intra-
species comparisons, are expected to deal with sequences
that differ only slightly as a result of sequencing or other
similar errors. For this reason, several queries could be, in
principle, handled by MEGABLAST, a less sensitive but up
to 10 times faster program (13). Moreover, MEGABLAST is
also able to efficiently handle much longer DNA sequences
than the BLASTN program (http://www.ncbi.nlm.nih.gov/
blast/megablast.shtml). In AntiHunter 2.0, we offer the pos-
sibility to analyze queries up to 30 Mb long using the MEGA-
BLAST program. Our tests indicated a reasonable trade-off
between the loss in search sensitivity and the increased size of
the query sequence. We applied, in fact, MEGABLAST/Anti-
Hunter to the identification of antisense transcripts in the same
test set of Figure 2. Programs were able to detect 245 out of
272 antisense transcripts, with <10% loss in search sensitivity
with regard to the mpiBLAST version (see Supplementary
Material).

CONCLUSIONS

Identifying antisense transcripts embedded within genomes
and understanding their function is a formidable and challen-
ging task. We present a completely re-developed AntiHunter
2.0 web server, for high-throughput detection of antisense
transcripts. By combining advances in the algorithm design
and in the underlying server system, AntiHunter 2.0 maxim-
izes the probability of identifying functional antisense tran-
scripts. The novel features added to AntiHunter 2.0 also make
this tool very powerful for identifying antisense molecules in
long genomic intervals.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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