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Probing tissue microstructure 
by diffusion skewness tensor 
imaging
Lipeng Ning1*, Filip Szczepankiewicz1, Markus Nilsson2, Yogesh Rathi1 & 
Carl‑Fredrik Westin1

Probing the cellular structure of in vivo biological tissue is a fundamental problem in biomedical 
imaging and medical science. This work introduces an approach for analyzing diffusion magnetic 
resonance imaging data acquired by the novel tensor-valued encoding technique for characterizing 
tissue microstructure. Our approach first uses a signal model to estimate the variance and skewness 
of the distribution of apparent diffusion tensors modeling the underlying tissue. Then several novel 
imaging indices, such as weighted microscopic anisotropy and microscopic skewness, are derived 
to characterize different ensembles of diffusion processes that are indistinguishable by existing 
techniques. The contributions of this work also include a theoretical proof that shows that, to estimate 
the skewness of a diffusion tensor distribution, the encoding protocol needs to include full-rank tensor 
diffusion encoding. This proof provides a guideline for the application of this technique. The properties 
of the proposed indices are illustrated using both synthetic data and in vivo data acquired from a 
human brain.

Noninvasive probing of cellular structure of biological tissue in vivo is a fundamental problem in medical sci-
ence. Modern medical imaging modalities, such as computed tomography (CT) and magnetic resonance imag-
ing (MRI), provide imaging data with spatial resolution at the scale of millimeter (mm). But mental disorders 
and other brain diseases are related to alternations in the cellular microstructure at the micrometer ( µ m) scale 
without any gross effect at the macroscopic scale. However, no in vivo imaging technique is currently available 
to directly probe microscopic cellular arrangements in the human brain. Diffusion MRI (dMRI) is a modality to 
indirectly characterizes the microscopic cellular arrangements via the diffusion trajectories of water molecules1,2.

The diffusion coefficient of water at human body temperature is approximately 3µm2/ms . In biological tis-
sue, e.g. human brains, the displacement of water molecules is restricted or hindered by cellular membranes. 
The measured diffusion coefficients using dMRI, which is usually called the apparent diffusivity, depend on the 
microstructure of tissue as well as the experimental parameters such as the diffusion time. Within the typical 10 
to 100 ms diffusion time used in dMRI, the radius of the diffusion trajectory of a water molecule is usually in the 
order of several µ m, similar to the size of cells. Because of microstructural heterogeneity, water molecules from 
different tissue components within one voxel in dMRI have different apparent diffusivity. Moreover, the diffusion 
trajectories can be characterized by different principal diffusion directions and different degrees of anisotropy. 
Thus, characterizing the statistical properties of all diffusion trajectories provide information to indirectly assess 
the property of tissue microstructure. Furthermore, dMRI can be performed with various diffusion encoding 
waveforms to sensitize the MR signal to different properties of diffusion trajectories. Then, tissue microstructure 
can be estimated by using a suitable analysis method for dMRI data. For example, the apparent diffusion tensor is 
a standard technique to characterize orientation-dependent diffusion which is related to the underlying cellular 
or axonal directions3. But this simplistic model only reflects the diffusion tensor of the ensemble average process 
with no information provided about the underlying variance and other high-order moments of the distribution 
of diffusivity of all water molecules that are useful to characterize the tissue heterogeneity.

In fact, this limitation is not only caused by the signal model but also the acquisition protocol. Specifically, 
dMRI data acquired by the standard linear-encoding sequence is not sufficient to characterize the variance of 
the distribution of apparent diffusion tensors4. To overcome this limitation, more advanced diffusion encod-
ing waveforms, such as double-diffusion encoding5,6, q-MAS isotropic diffusion encoding7, and more general 
q-trajectory encoding (QTE)4,8, have been developed to characterize the microscopic anisotropy of the underlying 
diffusion processes. While these techniques have been used to estimate the variance of the underlying diffusion 

OPEN

1Brigham and Women’s Hospital, Harvard Medical School, Boston, USA. 2Lund University, Lund, Sweden. *email: 
lning@bwh.harvard.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-79748-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2021) 11:135  | https://doi.org/10.1038/s41598-020-79748-3

www.nature.com/scientificreports/

tensor distributions, the relationship between the diffusion encoding sequences and higher-order moments, 
e.g. skewness, remains unclear. Currently, no method is available to use the high-order moments to analyze the 
heterogeneity of apparent diffusion tensors within one voxel. This work introduces an approach for modeling 
and analyzing dMRI data acquired using novel QTE waveforms in order to derive several novel imaging indices 
based on the skewness of the diffusion tensor distribution. These indices are able to distinguish different distri-
butions of diffusion tensors that cannot be set apart by current approaches, providing new imaging measures of 
tissue microstructure. Moreover, this work also presents a theoretical proof that full-rank b-tensors are necessary 
to estimate the skewness tensor. The feasibility of the proposed approach is illustrated using an in vivo dataset 
acquired from a human brain.

Experiment and results
Statistical indices of diffusion tensor distributions.  A voxel can have tissue compartments with dif-
ferent cellular structures that are characterized by different apparent diffusivities at long diffusion time scale. 
The mixture of apparent diffusivity from these tissue compartments can be represented by the diffusion tensor 
distribution (DTD) function, whose statistical property indirectly characterizes the tissue heterogeneity. Fig-
ure 1 compares several statistical measures of three synthetic DTDs. The eigenvalues of the diffusion tensors 
in DTD1 and DTD2 are 0.1, 0.5, 0.5µm2/ms and 0.634, 0.233, 0.233µm2/ms , respectively. DTD3 has 88% of the 
tensors with eigenvalues being 0.63, 0.045, 0.045µm2/ms and 12% of isotropic tensors with eigenvalues being 
1.3µm2/ms.

The three synthetic DTDs in Fig. 1 all have the same mean isotropic diffusion tensor. As a result, the three 
DTDs cannot be distinguished by any indices derived from the mean tensor, including the fractional anisotropy 
(FA) and the skewness (SK) see Methods. The microscopic anisotropy, µFA , has been proposed to character-
ize more specific information of the DTDs using the underlying variances4,7, see Methods. But the µFA of the 
three DTDs shown in Fig. 1 have similar µFA values, indicating the limited sensitivity and specificity of µFA for 
characterizing tissue microstructure.

By using the third-order moment of the DTDs, we derived the microscopic skewness µSK and the weighted 
microscopic anisotropy, i.e. µFAfast and µFAslow , to characterize the statistical property of the DTDs, see Meth-
ods. In particular, µSK is sensitive to the shape of the microscopic diffusion tensors. In Fig. 1, DTD1 and DTD2 
have negative and positive µSK values, respectively, which reflect the underlying oblate and prolate ellipsoids 
for tensor representations. On the other hand, µFAfast and µFAslow are sensitive to the microscopic anisotropy 
of diffusion tensors with fast and slow diffusivity. DTD3 includes isotropic tensors with relatively fast diffusiv-
ity and anisotropic tensors with relatively slow diffusivity. As a result, the underlying µFAslow is higher than 
µFAfast . But µFAfast and µFAslow in DTD1 and DTD2 are not different, since the underlying tensors are of the 
same shape and size.

Diffusion encoding waveforms.  The proposed statistical indices have been applied to analyze an in vivo 
dataset of acquired from a human brain using a clinical 3T Siemens MAGNETOM Prisma scanner, see Methods 
for experimental parameters. The experiment was approved by a research ethics committee of Brigham and 
Women’s Hospital, Boston, MA. The first and second rows of Fig. 2 illustrate the diffusion-encoding gradient tra-
jectories corresponding to different shapes of b-tensors, where the waveforms along x, y and z axes are coded by 
different colors. In the third row of Fig. 2, the rotation directions of the waveforms are shown by the dots on the 
spheres, and the b-values, i.e. the trace of b-tensors, are indicated by the radius of the spheres. A total number of 
513 b-tensors are used in this experiment to ensure that the proposed statistical indices are uniquely determined 
by the dMRI signals, see Methods.

Microstructural measures of a human brain.  Figure 3 shows the estimated dMRI measures, including 
FA,µFA,µFAslow,µFAfast, SK,µSK and the corresponding standard deviation (STD) in an axial slice of the 
brain. The STD values were estimated using the residual bootstrap method proposed in10 . The first row shows 

Figure 1.   Comparison of three synthetic diffusion tensor distributions (DTDs). The yellow, red and blue-
colored spheres with isotropic, oblate and prolate spherical shapes represent different tensors of different 
eigenvalues and orientations.
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the FA , the micro-FA ( µFA ) and their STD values. The red and yellow circles in Fig. 3a point out two white-
matter regions with relative lower FA values but with uniform µFA measures compared to other white-matter 
regions. The STD map in Fig. 3d shows that µFA is more reliable in white-matter. The second row shows that 
µFAslow is higher than µFAfast especially in gray matter. It was shown in11 that extra-axonal water may have 
slower diffusivity than the intra-axonal water. Thus, extra-axonal water may be also related to higher µFA . Fig-
ure 3f,h show that µFAslow has lower STD values than µFAmfast especially in white matter. The third row shows 
the SK , the micro-SK, µSK and their STD maps. The white-matter region in the yellow circle has more negative 
SK values than the region corresponding to the red circle, though the FA in the yellow circle is relative higher. 
Thus, the diffusion tensors in the yellow-circle region are more prolate and anisotropic than those from the red-
circle regions. The difference in FA and SK between the two regions may be related to the number of crossing-
fibers12,13, the fiber dispersion14 and/or the angle between crossing fibers15, which needs to be further examined. 
The STD of SK in Fig. 3j is relatively high in white-matter, especially in regions with crossing fibers. The very high 
µSK values in the boundary between white/gray matter and the cerebrospinal fluid (CSF) in Fig. 3k are related to 
high STD values shown in Fig. 3l. It indicates that the µSK in these regions are sensitive to measurement noise, 
which may be related to the underlying partial volume effects, i.e. both CSF and white/gray matter are contained 
in the underlying voxel. Parameter uncertainty is inflated in a band toward the posterior of the brain as shown 
in Fig. 3b,f,h,j. This is likely due to poor fat saturation causing a mixture of fat and water signals at this location, 
as previously described by9.

Accuracy and precision of diffusion indices.  To examine the reliability of the estimated indices, the 
513 b-tensors were applied to simulate dMRI signals for the three DTDs shown in Fig. 1 with additive Gaussian 
noise. The dMRI signals were computed by sampling s(B) = �e−B:D�ρ + ν with B representing one of the 513 
b-tensors and ν representing the zero-mean Gaussian noise. For a fixed standard deviation of Gaussian noise, 
the 513 dimensional dMRI signals were sampled 5000 times. Then, the same estimation methods as applied in 
the in vivo experiment were applied to estimate the µFAfast , µFAslow and µSK measures. To further examine the 
accuracy and precision of the indices for different DTD functions, the experimental procedure was applied to the 
DTD function shown in Fig. 1c with varying volume fraction of anisotropic components and the signal to noise 
ratio (SNR), i.e. the ratio between the mean signal and the standard deviation of noise, being fixed at SNR=30 
similar to the SNR values of the in vivo data.

Figure 2.   Illustration of the QTE sequences used to acquire the in vivo dMRI data. The plots in the first row 
show the 3-dimensional gradients and the shape of the corresponding b-tensors. The shape of b-tensors are 
determined by two parameters b� and bη displayed on top of the plots. The curves are color coded by the slew 
rate, i.e. the rate of change of gradient sequences. The plots with different colors in the second row illustrate 
the gradient waveforms along the x-, y-, z-axises, respectively. In row three, the magnitude and orientation of 
a point on the spheres correspond to the trace, i.e. b-value, and an eigenvector of a b-tensor. The maximum 
b-values for the five types of b-tensors are equal to 3, 3, 4, 4, 5 ms/µm2 , respectively. The spherical or planar 
shapes in the top-right corner of figures in the top row represent the “shape” of b-tensors instead of the diffusion 
tensors as in Fig. 1.
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Figure 4 illustrates the median values (solid lines) and 25% and 75% percentiles (the boarder lines of the 
shaded areas) of the estimated indices with different values of inverse signal-to-noise (1/SNR). The dashed lines 
idicate the underlying true values. The median values of µFAfast and µFAslow increase with higher noise levels. 
Moreover, the median values for µFAfast , µFAslow in Fig. 4a,b are close to each other at different noise levels. 
But the median values µFAslow µFAslow in Fig. 4c are consistently far apart, indicating that the relative differ-
ence between µFAfast and µFAslow is reliable to characterize the DTDs, though these values are biased from the 
underlying true values. On the other hand, the median values of µSK in Fig. 4d–f decrease in accordance to 
increasing noise levels and all intersect with the underlying true values. The median values of µSK in Fig. 4d 
remain negative but the corresponding values in Fig. 4e,f gradually decrease from positive to negative values, 
indicating that sign of µSK is a reliable indices at low SNR values.

Figure 5 shows the estimated indices corresponding to the DTD shown in Fig. 1c with different volume 
fractions for the anisotropic components. Similar to Fig. 4, the solid red and blue lines show the median of the 
estimated values and the dashed lines show the underlying true values. The upper and lower boundaries of the 
shaded area correspond to 25% and 75% percentiles of the estimated measures. The true values stay within the 
shaded areas when the volume fraction of anisotropic components is higher than 0.4. But marked errors appear 
as the volume fraction decreases, indicating that partial volume effect may lead to biases in the diffusion indices. 
Moreover, the µSK has very high uncertainties indicating that it is challenging to be correctly estimated, which 
is consistent to the results of the gray matter region in Fig. 3l.

Figure 3.   Illustration of dMRI indices and the corresponding uncertainty of an axial slice of dMRI volume 
from a human brain. The first row shows the FA , µFA and the corresponding standard deviation (STD). The 
second row illustrates the µFAslow and µFAfast measures, where µFAslow has relative higher values than µFAfast . 
The third row shows SK and µSK . SK has negative values in the white-matter region highlighted by the red and 
yellow circle whereas the corresponding µSK are positive, indicating that the underlying microscopic diffusion 
tensors have prolate shapes that are related to crossing fibers or fiber dispersion. Parameter uncertainty is 
inflated in a band toward the posterior of the brain. This is likely due to poor fat saturation causing a mixture of 
fat and water signals at this location, as previously described by9.
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Discussion and conclusions
This work introduces a method for estimating the variance and skewness of a distribution of diffusion tensors 
as an approach for characterizing the microstructure of materials or biological tissue. The method is based on 
expanding the diffusion tensor probability distribution in its cumulant moments, and relies on the diffusion 
weighting with full-rank b-tensors. The skewness of diffusion tensor16, diffusion skewness17 and high-order 
tensors18–20 have been investigated for tissue microstructure estimation based on standard (rank-one) b-tensor 
diffusion encoding (SDE). The added benefit of the proposed method with more general diffusion encoding is a 
novel capacity to distinguish diffusion tensors based on their skewness on the microscopic level, disentangling 
prolate and oblate shapes, as well as separately quantifying the microscopic anisotropy of diffusion tensors with 
high and low isotropic diffusivity. Taken together these features can add additional information on tissue micro-
structure, expanding on lower order methodology like DKI21 and QTI4, which have been used to characterize 
prostate cancer22 and intracranial tumors23. We note that the proposed model ignores the intra-compartmental 

Figure 4.   Illustration of estimated dMRI indices of the three synthetic DTDs in Fig. 1 using the diffusion 
encoding sequences shown in Fig. 2 with different levels of measurement noise. The horizontal axis of these 
plots illustrates the inverse signal-to-noise ratio (1/SNR). The upper and lower boundary of the red and blue 
shaded areas in (a)–(c) illustrate the 25% and 75% percentiles of the 5000 sampled values of µFAfast and µFAslow 
of the three synthetic structures, respectively. The red and blue solid lines show the median values of the 
sampled of µFAfast and µFAslow values with the underlying true values indicated by the dashed lines. Similarly, 
the shaded plots in (d)–(f) illustrate the 25% and 75% percentiles of the sampled µSK values with the median 
and true values shown by the solid and dashed lines.

Figure 5.   Illustration of accuracy and precision of the estimated dMRI indices of the synthetic DTDs in Fig. 1c 
with varying fraction of anisotropic components. The upper and lower boundary of the shaded areas illustrate 
the 25% and 75% percentiles of the estimated indices in simulations. The solid red or blue lines show the mean 
value of the estimated indices and the corresponding dashed lines show the underlying true values. The SNR of 
the simulated signals is equal to 30.
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non-Gaussian diffusion24,25 and time-dependent diffusivity26,27, which can be further integrated to the model to 
improve the accuracy for microstructure estimation. We do not expect these effects are significant in the healthy 
brain especially in white matter28,29. Moreover, the proposed indices based on cumulant moments, similar to DKI 
and QTI, do not directly provide specific information about tissue microstructure such as intra-axonal/cellular 
volume fractions, though they are sensitive to microstructural changes. From studies using cumulant expansions 
up to the second order we know that there exists a tradeoff between trueness and precision, where the use of 
higher b-values typically increase the precision while being detrimental to the trueness30. Nevertheless, metrics 
provided by such approaches can be useful in radiology for example to improve glioma grading31. The trueness 
of the parameters proposed here certainly also depends on the specifics of the imaging protocol. Further studies 
are needed to carefully balance the trueness and precision in this context. We emphasize the need for further 
investigations of tissues of pathological conditions where this may provide relevant information. We speculate 
that it may resolve the equality of prolate and oblate solutions and being able to robustly detect the presence of 
planar structures, such as those conjectured to exist in white matter sheets15. Currently, a proof-of-concept is 
illustrated in a healthy human brain in vivo. Indices derived from the model will be validated using liquid crystal 
phantoms32 and biological tissue in future works.

In summary, this work has introduced an approach for modeling and analyzing diffusion MRI data acquired 
by the novel sampling scheme with a wide range of b-tensor shapes. The main contributions include several sta-
tistical indices based on the skewness tensor of DTD functions and a mathematical proof that full-rank b-tensors 
are needed to uniquely determine the skewness tensor.

Methods
Modeling of diffusion MRI signals.  In a diffusion experiment, on the application of a time-varying mag-
netic gradient field, g(t) ∈ R

3 for t ∈ [0, τ ] , the phase change of a rotating spin due to diffusive motion of water 
molecule during this time window is given by33:

where γ is the gyromagnetic ratio, rx(t) denotes the trajectory of the displacement of a particle starting from x , 
vx(t) denotes the corresponding velocity process, which is formally defined as vx(t) = ṙx(t) , q(t) = γ

∫ t
0 g(s)ds 

is the q-trajectory and T denotes the transpose. If the diffusion trajectory is assumed to be a three-dimensional 
Wiener process with constant diffusivity D during the period of diffusion time, then φx(τ ) follows a zero-mean 
Gaussian distribution with the covariance equal to

where B =
∫ τ

0 q(t)⊗2dt is the b-tensor. Then, the expected value of the corresponding MR signal is equal to 
E (eiφx(T)) = e−B:D.

The diffusion-weighted MR signal after being normalized by the non-diffusion-weighted signal, i.e. the base-
line, is equal to the ensemble average of signals from all water molecules given by:

where �·�p denotes the ensemble average with respect to the phase distribution function p(φ) . At long diffusion 
time scale when the travel distances of water molecules much longer than characteristic cellular sizes, the molecu-
lar diffusion processes can be approximated by Gaussian processes with location dependent diffusivity34. At long 
diffusion time, if the mixture of apparent diffusion tensors from different cellular compartments within a voxel 
follows the diffusion tensor distribution (DTD) function ρ(D) , then the diffusion-weighted signal is equal to4,35:

A similar signal model based on scalar-valued diffusivity was investigated in36.

The cumulant expansion.  The standard dMRI approaches probe the diffusion process using a linear dif-
fusion gradient waveform which corresponds to a b-tensor of rank one. In this case, estimating the underlying 
DTD ρ(D) using an inverse Laplace transform is a highly ill-posed problem. However, advanced QTE sequences 
are able to probe ρ(D) using any b-tensor up to rank 3, providing information that cannot be measured by SDE5. 
The ensemble average signal �e−B:D�ρ can be approximated using the following cumulant expansion:

where 〈D〉ρ ,C,S denote the first three cumulants and are given by: C = �(D − �D�ρ)⊗2�ρ and 
S = �(D − �D�ρ)⊗3�ρ . The notation ⊗ denotes the tensor product and “ :′′ defines the standard inner product 
between matrices. For example, B⊗3 : S = [B⊗3]ijk[S ]ijk using Einstein summation convention. The tensors 
〈D〉ρ ,C and S have 6, 21 and 56 independent variables, respectively. These 83 variables can be estimated by 
solving the following linear system of equations:

φx(τ ) = γ

∫ τ

0
rx(t)

Tg(t)dt = −
∫ τ

0
vx(t)

Tq(t)dt,

E (φ2
x(τ )) = γ 2

∫ τ

0
q(t)TDq(t)dt = trace(BD) � B : D,

s(B) = �eiφ(τ)�p

(1)s(B) =
∫

e−B:Dρ(D)dD � �e−B:D�ρ .

(2)log s(B) ≈ −B : �D�ρ + 1

2
B⊗2 : C− 1

6
B⊗3 : S ,
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where −→B ,
−−→�D�ρ are 6-dimensional column-vector representations for D and B using the Mandel-Voigt notations 

such that −→B ′−−→�D�ρ = B : �D�ρ . Similarly, 
−→
C  and 

−→
S  are 21- and 56-dimensional column-vector representations 

for C and S , respectively. Clearly, the number of measurements, m, needs to be at least 83 to ensure that the 
measurement matrix ( m× 83 ) is non-singular. The 513 b-tensors used in the experiment provides a full-rank 
measurement matrix of size 513× 83 . Next we show that non-singular b-tensors are needed to ensure that the 
measurement matrix is of full rank.

On full‑rank b‑tensors.  In linear encoding sequences, the gradient sequences have varying magnitudes 
along a fixed direction. In this case, the corresponding b-tensors have rank one. But the corresponding 21-dimen-
sional vector 

−→
B⊗2 only spans a 15-dimensional subspace. Consequently, the variable 

−→
C  in the linear system (3) 

cannot be uniquely determined using standard SDE measurements4. However, the vectors 
−→
B⊗2 corresponding to 

rank-2 b-tensors given by planar encoding sequences5,6,37,38 or rank-3 tensors general QTE sequences9 are able to 
generate full-rank 21-dimensional space, providing a unique solution to C . But b-tensors of rank two still have 
zero determinant, i.e.

which implies that the corresponding elements in 
−→
B⊗3 are linearly dependent. Therefore using only b-tensors 

of rank one or rank two is not sufficient to generate full-rank measurement matrices in Eq. (3). This shows that 
a full-rank b-tensor is needed to ensure a unique solution to Eq. (3). The importance of rank-2 b-tensors in 
estimating the covariance of DTDs was considered in5,8. The above analysis further extends the theory to show 
the importance of full-rank b-tensors in estimating the skewness of DTDs.

Microscopic anisotropy and skewness.  The estimated moments (or cumulants) can be used to derive 
scalar indices to characterize the underlying DTDs. In particular, the standard diffusion tensor imaging (DTI) 
technique uses the mean diffusion tensor 〈D〉ρ to compute several classical indices including the mean diffusivity, 
MD = 1

3 trace(�D�ρ) and the fractional anisotropy FA3. But these measures provide limited information about 
the underlying DTD. For example, the mean diffusion tensor of the three DTDs illustrated in Fig. 1 is propor-
tional to the identity matrix with FA = 0, though the underlying DTD functions are different. One can look at 
the covariance tensor C , and compute the micro-anisotropy µFA of the DTDs given by:

where �i(D) denotes the i-th eigenvalue of D, �̄(D) = 1
3

∑3
i=1 �i(D) , Eiso = 1

3 I6×6 with I6×6 being the identify 
matrix of size 6× 6 and Eshear is equal to4

However, in many scenarios, even the variance tensor is not enough to distinguish between the DTDs. For 
example, the three DTD functions in Fig. 1 have the same µFA measure though the underlying microscopic dif-
fusion tensors are different. In this case, the third-order moments provide useful information to distinguish the 
underlying DTD functions. To this end, we propose two sets of indices, µFAfast,µFAslow and µSK , to characterize 
the DTDs using the third-order moments.

To introduce the first approach, we introduce a family of DTD functions defined by

where f(D) is a given positive scalar-valued function of the diffusion tensor D. This function is chosen to scale 
the probability density so that the statistical property of the filtered DTD function ρf (D) provides more specific 
information about the underlying distribution. The moments of the filtered DTD function ρf (D) can be com-
puted using:

(3)











log s1
log s2
...

log sm











=















−−→
B1

′ 1
2

−−−→
(B⊗2

1 )′ − 1
6

−−−→
(B⊗3

1 )′

−−→
B2

′ 1
2

−−−→
(B⊗2

2 )′ − 1
6

−−−→
(B⊗3

2 )′

...
...

...

−−→
Bm

′ 1
2

−−−→
(B⊗2

m )′ − 1
6

−−−→
(B⊗3

m )′





















−−→�D�ρ−→
C
−→
S






,

det(B) = b11b22b33 + 2b12b23b13 − b213b22 − b212b33 − b11b
2
23 = 0,

(4)
µFA(ρ)2 = 3

2

� 13
∑3

i=1(�i(D)− �̄(D))2�ρ
� 13

∑3
i=1 �i(D)

2�ρ

= 3

2

�D⊗2�ρ : Eshear

�D⊗2�ρ : Eiso
,

Eshear =
1

9















2 − 1 − 1 0 0 0
−1 2 − 1 0 0 0
−1 − 1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3












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.

(5)ρf (D) =
f (D)

�f (D)�ρ
ρ(D),
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If f(D) is a polynomial function of D, then both the numerator and the denominator of the above equation are 
linear combinations of the moments of ρ(D) . In particular, we consider the following two linear functions:

where d̂ is a positive scalar such that fslow(D) > 0 for all feasible diffusion tensors. The functions ffast(D) and 
fslow(D) selectively weigh the density ρ(D) with relatively high and low trace values. We denote the correspond-
ing filtered DTD function by ρfast and ρslow , respectively. The difference between the moments of ρfast and ρslow 
reflects the distribution of ρ(D) over tensors with different diffusivities.

From (6), the first and second order moments of ρfast(D) is equal to:

which can be computed using the estimated moments of ρ(D) . Similarly, the first and second order moments 
of ρslow(D) are equal to:

These equations can be used to estimate specific dMRI measures using the estimated moments for ρfast(D) and 
ρslow(D) . For the DTD functions shown in Fig. 1, the µFA measures for ρfast(D) and ρslow(D) , denoted by µFAfast 
and µFAslow , corresponding to DTD1 and DTD2 have the same values since the underlying diffusion tensors 
have the same trace. For DTD3 , µFAfast is much lower than µFAslow since the underlying fast diffusion tensors 
are isotropic whereas the slow-diffusion components are anisotropic.

To introduce the microscopic skewness, we first extend the skewness measure for probability distribution 
functions to define the following measure of asymmetry of the distribution of eigenvalues of the mean diffusion 
tensor 〈D〉 :

where 〈D〉 is assumed to be anisotropic so that the denominator is assumed nonzero. In above, Eshear is a fully 
symmetric three-dimensional tensor, i.e. the value of [Eshear]ijk does not change by permuting the order of i, j, k, 
of size 6× 6× 6 with the following non-zero entries

where I4 = {1, 2}, I5 = {1, 3} , I6 = {2, 3} . The skewness measure SK is able to distinguish diffusion tensors 
that cannot be separated by FA values. For example, the diffusion tensors represented by oblate tensors have 
a negative SK while prolate tensors have positive SK . Following the definition of µFA , we define the following 
microscopic skewness measure:

(6)�D⊗k�f =
∫

D⊗kρf (D)dD = �D⊗kf (D)�ρ
�f (D)�ρ

.

(7)ffast(D) = trace(D),

(8)fslow(D) = d̂ − trace(D),

(9)�D�ρfast =
�trace(D)D�ρ
trace(�D�ρ)

,

(10)�D⊗2�ρfast =
�trace(D)D⊗2�ρ
trace(�D�ρ)

,

(11)�D�ρslow = d̂�D�ρ − �trace(D)D�ρ
d̂ − trace(�D�ρ)

,

(12)�D⊗2�ρslow = d̂�D⊗2�ρ − �trace(D)D⊗2�ρ
d̂ − trace(�D�ρ)

.

(13)SK(�D�) =
1
3

∑3
i=1(�i(�D�)− �̄(�D�))3

( 13

∑2
i=1(�i(�D�)− �̄(�D�))2)3/2

,

(14)= �D�⊗3 : Eshear

(�D�⊗2 : Eshear)
3/2

.

[Eshear]iii = 2
27 if i ∈ {1, 2, 3},

[Eshear]iij = − 1
27 if i, j ∈ {1, 2, 3} and i �= j,

[Eshear]iij = 1
18 if i ∈ {4, 5, 6} and j ∈ Ii ,

[Eshear]iij = − 1
9 if i ∈ {4, 5, 6} and j ∈ {1, 2, 3}\Ii ,

[Eshear]ijk =
√
2

12 if i, j, k ∈ {4, 5, 6},

µSK(ρ) = �D⊗3�ρ : Eshear

(�D⊗2�ρ : Eshear)
3/2

,
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which characterizes the microscopic skewness of the diffusion tensors. To enhance robustness with respect to 
measurement noise, the �D⊗2�ρ : Eshear term in the denominator on the right hand side of the above equation is 
replaced by �D⊗2�ρ : Eshear + ǫ with ǫ = 0.03µm4/ms2 , which does not change the sign of µSK(ρ) . In particular, 
the µSK(ρ) for DTD1 in Fig. 1 is negative while for DTD2 and DTD3 it is positive.

Experimental parameters of the in  vivo dataset.  The “free waveform” prototype pulse sequence9 
based on a diffusion-weighted spin-echo sequence with EPI readout was used to acquire MRI data from an adult 
male subject. Imaging parameters were: TE = 100 ms, TR = 2800 ms, field of view = 220× 220× 75 mm3 , voxel 
size = 2.2× 2.2× 5 mm3 , partial Fourier factor = 6/8 and in-plane acceleration factor = 2. The acquired images 
were corrected for motion and eddy current distortion using an extrapolation-based approach capable of cor-
recting diffusion weighted volumes acquired with high b-values39,40.

A total number of 513 image volumes were acquired using different QTE trajectories tailored to the MRI 
system by numerical optimization41 with compensation for concomitant gradient effects42. The QTE waveforms 
were determined by two parameters b� and bη , which characterize the shape of b-tensors9,43. The orientation 
of b-tensors was determined via rotation of the waveforms and b-values were changed by varying the magni-
tude of waveforms44. The diffusion encoding waveforms in the first two columns provide spherical and oblate 
b-tensors with full-rank, which are required to estimate the skewness of the underlying DTD. The 513 b-tensors 
in this experiment provide a full-rank measurement matrix so that the proposed statistical indices are uniquely 
determined by the dMRI signals.
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