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Abstract: The specificity of monoclonal antibodies represents a potential therapeutic  advantage, 

but their use as single agents in oncology has proven limited to date. The development of 

antibody-drug conjugates (ADCs) takes advantage of the specificity of the monoclonal antibody 

and potent cytotoxic effect of chemotherapy, leading to enhanced cytotoxicity in target cells and 

limiting toxicity to normal tissue. Microtubules represent a validated oncologic target in a range 

of tumor types, with a number of anti-microtubule targeting cytotoxic drugs approved for cancer 

use. The systemic use of potent microtubule-binding agents is limited by their effects in normal 

cells, which leads to toxicity including myelosuppression and peripheral neuropathy. Linking 

these agents to monoclonal antibodies may limit toxicity to normal tissues and increase drug 

concentration in target tissues, also allowing the use of more potent agents which would be too 

toxic to administer in their unbound form. Two such ADCs have been approved for clinical use 

and many others are in development. Here we review the characteristics of each of the ADC 

components that have led to efficacious therapies and discuss some of the tubulin inhibitor-based 

ADCs in development for cancer therapy.
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Introduction
In the past decade, more than ten monoclonal antibodies (mAbs) have been approved 

for use in the treatment of cancer (Table 1). Their specificity and favorable side effect 

profile make them attractive; however, their activity as monotherapy may be limited. 

Despite the development of mAbs and small molecule pathway inhibitors, cytotoxic 

chemotherapy remains the foundation for cancer treatment. Microtubules (MTs) are 

one of the most validated intracellular targets in oncology, though because of their 

ubiquitous presence and importance in all cells, generic delivery of anti-MT agents with 

chemotherapy has “off-target” toxicity. The development of antibody–drug conjugates 

(ADCs) takes advantage of the specificity of the mAb while augmenting its ability to 

produce a cytotoxic effect. A number of new anti-MT agents remain attractive options 

for antibody conjugation in light of their intracellular mechanism of action and relatively 

potent degree of cytotoxicity. The primary benefits of antibody–drug conjugation are 

enhancement of cytotoxicity in target cells and limiting toxicities of cytotoxic drugs in 

normal tissues. The simplicity of this paradigm is attractive; however, the development 

of ADCs that are effective in clinical use has proven to be quite complex.

The earliest ADCs combined drugs that were already approved for clinical use. These 

drugs were readily available, and their efficacies and toxicities were well understood. 

One of the earliest ADCs, BR96–doxorubicin, was a chimeric anti-Lewis-Y mAb 

conjugated to doxorubicin that was studied in patients with metastatic colon and breast 
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cancer.1 However, due to a combination of broad expression 

of the target antigen with relative low potency of the drug, the 

ADC did not move forward to late-stage trials for approval.2

Here we review the characteristics of each of the ADC 

components that have led to efficacious therapies, and discuss 

some of the tubulin inhibitor-based ADCs in development 

for cancer therapy.

Rationale for targeted anti-MT 
therapy
MT-binding agents are widely used in cancer chemotherapy 

as both monotherapy and combination therapy. MTs play 

a key role in mitosis, intracellular trafficking, and motil-

ity and are a major therapeutic target in cancer. Based on 

the pivotal role of the MT dynamics on mitosis,3 extensive 

research identified mitosis as a classic target of MT-binding 

agents. MT-binding agents are classified as MT stabilizers 

or destabilizers. Both stabilizers and destabilizers inhibit 

cell proliferation at clinically relevant low concentrations by 

suppressing MT dynamics and interfering with normal MT 

functions during both the interphase and mitotic stages of 

the cell cycle.4 MT-organizing centers represent the structures 

from which mitotic spindles emanate, generated from two 

centrosomes (spindle poles). The centrosomes serve as two 

opposing poles for spindle MTs during cell division. MTs 

form this mitotic spindle crucial for separation during mito-

sis; thus, MT inhibitors consequently have a role in mitotic 

arrest by interrupting MTs and the dependent movement of 

chromosomes. However, it is unlikely that mitosis is the pri-

mary target of MT-binding agents in humans, as the doubling 

time of most solid tumor cells is low.5

MTs are very important for the directional intracellular 

transport of vesicles, proteins, and messenger ribonucleic 

acid.6 Immunohistochemistry images demonstrated that many 

crucial oncoproteins were associated with MTs. p53 protein 

localizes to cellular MTs, and treatment with vincristine or 

paclitaxel reduces nuclear accumulation of p53.7 Rb together 

with p53 and PTHrP requires intact MTs for efficient nuclear 

import.8 Paclitaxel impairs HIF-1α protein nuclear translo-

cation, which downregulates HIF transcriptional activity.9 

A recently described practical example of a validated target 

trafficked by MTs is the androgen receptor (AR) in prostate 

cancer. The AR has been shown to be vital to prostate cancer 

progression throughout its life cycle, despite the emergence 

of resistance to castration. To date, taxanes are the only cyto-

toxic chemotherapy agents that have been shown to prolong 

survival among men with prostate cancer.10,11 The AR requires 

nuclear translocation on MT–dynein-dependent intracellular 

 trafficking. Taxanes inhibit ligand-induced AR nuclear trans-

location and downstream transcriptional activation of prostate-

specific antigen, which is an AR target gene.12 Experiments 

identified intracellular trafficking by MTs in nondividing cells 

on interphase as a new important target of MT-binding agents. 

MT-binding agents have a cytotoxic effect not only on dividing 

cells in mitosis but also on nondividing cells in interphase.5

MTs also serve important roles in cytoskeleton formation, 

endothelial cell adhesion, migration, and cell-to-cell interaction, 

thus providing additional targets to disrupt cellular function 

through the action of MT-binding agents. Tumor angiogenesis 

requires proliferation and migration of endothelial cells. Recent 

studies reveal antivascular effects of MT-binding agents in 

vivo and in vitro.13 Combretastatin A4 phosphate increases 

endothelial cell permeability and inhibits endothelial cell 

migration and capillary tube formation thorough disruption of 

the VE–cadherin/β-catenin/Akt signaling pathway.14 Combret-

astatin A4 phosphate induces a reduction in tumor blood flow 

in a different way from nitric oxide synthase inhibition.15

Toxicity of MT-binding agents
Hematologic toxicity and peripheral neuropathy are the major 

dose-limiting toxicity of MT-binding agents. Myelosuppres-

sion, due to disruption of mitotic phase MT function in the 

Table 1 Monoclonal antibodies and antibody conjugates 
approved by the US Food and Drug Administration for use in 
cancer treatment

Generic  
name

Description Target Approval 
date

Rituximab Chimeric igG1 CD20 1997
Trastuzumab Humanized igG4 HeR2 1998
Gemtuzumab  
ozogamicin

Humanized igG1 CD33 
(immunotoxin)

2000

Alemtuzumab Humanized igG1 CD52 2001
ibritumomab tiuxetan Murine igG1 CD20 

(radiolabeled)
2002

131i-Tositumomab Murine igG2 CD20 
(radiolabeled)

2003

Cetuximab Chimeric igG1 eGFR 2004
Bevacizumab Humanized igG1 veGF 2004
Panitumumab Human igG2 eGFR 2006
Ofatumumab Human igG1 CD20 2009
ipilimumab Human igG1 CTLA-4 2011
Denosumab Human igG2 RANK ligand 2010
Brentuximab vedotin Chimeric igG1 CD30 2011
Pertuzumab Human igG1 HeR2 2012
Obintuzumab Humanized and 

glycoengineered
CD20 2013

Trastuzumab  
emtansine

Humanized igG4 HeR2 
(mertansine)

2013

Ramucirumab Human igG1 veGFR2 2014

Abbreviations: ig, immunoglobulin; eGFR, epidermal growth factor receptor; 
veGF, vascular endothelial growth factor; veGFR, vascular endothelial growth 
factor receptor; CTLA, cytotoxic T-lymphocyte-associated protein.
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bone marrow, often manifests as neutropenia, since leukocyte 

precursors in the marrow are actively undergoing mitosis. The 

therapeutic target of taxanes, vinca alkaloids, and epothilones 

is β-tubulin, which consists of eight isotypes. β-tubulin iso-

type VI is hematopoietic cell-specific and detected in platelets 

and lymphocytes in bone marrow and is highly expressed 

in blood cells with substantial interindividual variability. 

Patients with a β-tubulin VI variant exhibited significantly less 

thrombocytopenia than wild-type homozygous patients when 

treated with paclitaxel.16 Peripheral neuropathy is frequently 

observed with anti-MT agents and represents the disruption of 

interphase MT function, since neuronal cells rarely divide in 

adults. The mechanisms causing peripheral neuropathy have 

not been clarified. However, axonal transport is an essential 

process in neurons, and MTs in the axon essentially form 

tracks along which various cargoes can be transported by 

various motor proteins.17 β-tubulin isotype IIa forms part 

of the neuronal MTs as a therapeutic target of paclitaxel in 

neurons. A large interindividual variability in the expression 

of β-tubulin IIa and an association between paclitaxel-induced 

peripheral neuropathy and regulatory polymorphisms in 

β-tubulin IIa have been reported.16 These dose-limiting tox-

icities are due to a noncancer-specific targeting capacity of 

drug, since MTs play pivotal roles not only in cancer cells 

but also in normal cells.

In addition to some of the approved anti-MT drugs dis-

cussed here, more potent drugs underwent initial clinical 

development; however, they were too toxic for untargeted 

use. With the advent of technology to more precisely deliver 

these potent drugs to their target, they are quite appealing for 

use in ADCs. One such group of drugs is the  maytansinoids – 

tubulin-binding agents with cytotoxic effects almost 

100-fold higher than vinca alkaloids.18  Currently, the vast 

majority of the 29 ADCs in clinical trials employ either 

maytansinoids or auristatins as drug payload. Since drug 

delivery to tumor cells is limited by antigen copy number 

on tumor cells, cytotoxicity at low concentration is crucial. 

It is estimated that in order to achieve a clinically relevant 

degree of cytotoxicity, a drug used in an ADC must be at 

a half maximal inhibitory concentration (IC
50

) level of at 

least 10–100 pM. The in vitro cytotoxicity (IC
50

 value) of 

the maytansinoids is even lower than this suggested level, 

which is why mertansine (DM1) is the most commonly used 

agent in ADC development.19

Additionally, maytansinoids remain nontoxic in their con-

jugated form. This prevents decomposition before delivery 

to the target site, which both limits toxic effects on normal 

tissues and maximizes the amount of drug that reaches the 

target site.

Antibody and antigen 
characteristics
One of the problems with BR96–doxorubicin was its lack of 

specific expression in tumor cells. In a Phase II trial, patients 

in the BR96–doxorubicin conjugate group had limited hema-

tologic toxicities compared with the single-agent doxorubicin 

group; however, the group treated with the ADC had marked 

gastrointestinal toxicity, suggesting that the target antigen, 

Lewis-Y, was expressed in the gastrointestinal tract. It is 

postulated that this not only led to increased toxicity but also 

limited delivery to target tissues.2

Design of an ADC relies on the proper selection of a 

tumor-specific antigen that is accessible for antibody binding 

and subsequent delivery of the ADC to its pharmacologic 

target. The basis behind ADCs lies in the specificity of antigen 

expression by tumor cells, which permits drug delivery to tar-

get tissues with relative sparing of healthy tissues. Likewise, 

the level of expression of the target antigen on tumor cells 

determines drug delivery as well as effect on normal tissues. 

If a target antigen is not expressed at high levels on tumor 

cells, ADC uptake will be low, which will limit cytotoxicity 

and may lead to accumulation of drug extracellularly and 

nonspecific toxicity to normal cells.20

Since MT agents act intracellularly, it is crucial that 

the target antigen transports the ADC intracellularly. If the 

antigen does not internalize, drug will not reach adequate 

concentration to cause cytotoxicity, and ADC may diffuse 

away and expose normal cells to toxic effects.20

It is also crucial that the antigen be expressed homoge-

neous in tumor cells. Intratumoral homogeneity of the target 

antigen allows ADC to reach more of the tumor. Tumor cells 

not expressing the target antigen will not bind and internalize 

the ADC, and will only derive cytotoxic effect by nonspecific 

mechanisms. Additionally, the target antigen must be easily 

accessible from the bloodstream.20

Linker characteristics
One fundamental aspect in the development of ADCs with 

regard to potency and tolerability has been the generation 

of stable linkers that connect the drug to the mAb. ADC 

processing generally follows sequential steps: binding to the 

cell surface target antigen, internalization into an endosome, 

trafficking to a lysosome, release of the drug, and diffusion 

of the cytotoxic agent to its site of action.18 The ideal linker 

must be stable in the systemic circulation to avoid off-target 

toxicity yet allow efficient drug release within the target site 

where it can reach its intracellular target.

Most linkers fall into two categories: cleavable and non-

cleavable. Cleavable linkers contain sites for hydrolytic or 
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enzymatic cleavage in the endosome/lysosome allowing ready 

separation of the drug and its diffusion to the site of action. In 

addition, by allowing the released drug to also diffuse back 

outside the cell, cleavable linkers allow bystander killing of 

nontargeted antigen-negative tumor cells,18,21 a particular 

advantage in the case of a heterogeneously expressed target 

antigen. Noncleavable linkers require proteolytic degradation 

of the antibody portion of the ADC within the lysosome in 

order to release the cytotoxic molecule. In this case, the drug 

is released along with its charged lysine or cysteine amino 

acid through which the drug was attached to the antibody.22,23 

The charged amino acid, in turn, prevents diffusion of the 

charged drug back through the cell membrane, thereby 

leading to drug accumulation within the tumor cell but also 

precluding a bystander effect. Noncleavable linkers hold 

the advantage of minimizing drug release in the circulation; 

however, they require highly efficient internalization into the 

cell and homogeneous expression of the target antigen by the 

tumor cell population.

Early generation cleavable linkers included unhindered 

disulfides and acid-labile hydrazones.24,25 Disulfide-based 

linkers are cleaved following thiol–disulfide exchange reac-

tions, while acid-labile hydrazones undergo hydrolysis in the 

acidic endosomes and lysosomes upon ADC internalization.26 

Unfortunately, these linkers were relatively labile, and cleav-

age frequently occurred in the circulation, resulting in both 

off-target toxicity and attenuated antitumor activity as the 

payload had been jettisoned prior to tumor uptake.27 Subse-

quent development of sterically hindered disulfide bonds using 

methyl substitutions improved ADC stability and thus toler-

ability and potency.28 These advances were later incorporated 

into mAb–maytansinoid conjugates.18 Currently, many of the 

linkers that have entered clinical trials are disulfide-based, 

including IMGN901 (lorvotuzumab mertansine) targeting 

CD56 and SAR3419 targeting CD19 as just two examples.29,30 

Another type of cleavable linkers are dipeptides, the develop-

ment of which was a major advance in the development of US 

Food and Drug Administration (FDA)-approved brentuximab 

vedotin (anti-CD30–monomethylauristatin E [MMAE]).27,31 

These linkers are composed of a valine–citrulline dipeptide 

that is degraded by lysosomal proteases such as cathepsin B.32 

This technology has subsequently been applied to prostate-

specific membrane antigen (PSMA) mAb–MMAE conjugate 

and CDX-011 (glembatumumab vedotin), among many 

others.33–35 Recently, it has been demonstrated that manipu-

lation of the C-terminal peptide sequence of these linkers 

can increase the potency and specificity of auristatins, thus 

improving the therapeutic window.36

The most commonly used noncleavable linkers are 

thioether bonds. Thioether linkers have been used to link the 

auristatin monomethyl auristatin F to mAbs. In vivo experi-

ments showed equal efficacy and better tolerability compared 

with the corresponding ADC linked by the cleavable dipeptide 

linkers.27 This methodology has also been applied to maytansi-

noids. Thioether-linked huC242 mAb–maytansinoid conju-

gates had comparable in vitro potency with the corresponding 

disulfide-linked ADCs; however, they displayed less activity 

in vivo,21,37 presumably due to lack of the bystander effect. 

Conversely, the only FDA-approved mAb–maytansinoid 

conjugate to date, trastuzumab emtansine, an HER2-targeting 

mAb conjugated to DM1, has enhanced activity with thioether 

linkers in comparison with disulfide linkers.38 These findings 

suggest that the biology of the target antigen and the biology 

of the tumor may influence activity of mAb–drug conjugates. 

In this regard, caution is warranted, as in vitro efficacies of 

ADCs do not always predict in vivo potencies.18

In addition to disulfide-, peptide-, and thioether-based 

linkers, sulfonate- or polyethylene glycol-containing 

hydrophilic linkers for mAb–maytansinoid conjugates have 

recently emerged. This new class of linkers allows a higher 

drug/ antibody ratio while increasing toxicity for antigen-

positive cells and decreasing cytotoxicity for antigen-negative 

cells.

The linker component is critical in the design of ADCs. 

There is no single “perfect” linker, due to variations in ADC 

processing from tumor type to tumor type and from target 

antigen to target antigen. For any mAb–drug conjugate, the 

optimal linker for a particular application currently needs to 

be determined empirically.

Approved ADCs
There are currently two FDA-approved ADCs – trastuzumab 

emtansine and brentuximab vedotin – both humanized anti-

bodies conjugated to anti-MT agents. The approval of these 

two agents followed the withdrawal of the only other approved 

ADC, gemtuzumab ozogamicin, in 2010.39 Gemtuzumab 

ozogamicin received accelerated approval as monotherapy 

for acute myeloid leukemia in patients aged .60 years. Its 

approval was based on the results of a Phase II study showing 

promising results,40 but gemtuzumab ozogamicin failed to 

show efficacy and demonstrated excessive toxicity in a ran-

domized study by the Southwest Oncology Group in 2010 and 

was subsequently voluntarily withdrawn from the market.41

Trastuzumab emtansine is an HER2 ADC that comprises 

a trastuzumab antibody linked to a tubulin polymerization 

inhibitor, mertansine (a maytansine derivative; also known 
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as DM1), and was launched as second-line monotherapy for 

relapsed HER2-positive metastatic breast cancer in February 

of 2013.42 Brentuximab vedotin, an ADC composed of an 

anti-CD30 antibody linked to MMAE, an anti-MT agent, 

was approved for the treatment of refractory Hodgkin 

lymphoma in August of 2011, for the treatment of patients 

with refractory Hodgkin lymphoma and systemic anaplastic 

large-cell lymphoma.43

Trastuzumab emtansine
Trastuzumab emtansine (T-DM1) is an ADC approved for 

use in treatment of HER2 overexpressed breast cancer. Its 

antibody component, trastuzumab, is a humanized mAb 

that targets the extracellular domain of the HER2 receptor 

and has been in widespread use since its initial approval in 

1998.44 It is linked using a nonreducible thioether bond to 

DM1. Trastuzumab is well known to be clinically efficacious 

in combination with taxane-based chemotherapy,45 and in 

preclinical models, trastuzumab enhanced antitumor activ-

ity in a paclitaxel-based regimen.46 Therefore, trastuzumab 

linked to an MT-targeted drug was an appealing model for 

ADC development.

HER2 is a transmembrane receptor protein that plays 

an important role in cell differentiation, proliferation, and 

survival. It is expressed at relatively low levels in normal 

adult tissues,47 but is overexpressed by 20%–30% of breast 

tumors.48 Expression of HER2 on the surface of involved 

breast cancer cells can be as dense as 1.5 million copies per 

cell.49 HER2 expression in breast cancer is generally homo-

geneous, with only 5%–15% of tumors having heterogeneous 

expression.50,51 After binding, the T-DM1–HER2 complex is 

endocytosed and degraded in lysosomes.52

A Phase I open-label dose-escalation study evaluated 

the safety and tolerability of T-DM1 in 24 patients with 

HER2-positive metastatic breast cancer who had previously 

progressed on trastuzumab-based therapy.53 Following an 

initial safety cohort of three patients treated at 0.3 mg/kg, 

single-subject dose escalation (0.6, 1.2, and 2.4 mg/kg) pro-

ceeded without grade 2 toxicity until 4.8 mg/kg was reached 

with cohort expansion. At this dose, two of three patients 

experienced grade 4 thrombocytopenia. Therefore, six 

patients were treated at an intermediate dose level (3.6 mg/

kg) without any dose-limiting toxicity, leading to the conclu-

sion that 3.6 mg/kg was the maximum tolerated dose (MTD). 

This cohort was expanded to a cohort of 15 patients, five of 

whom experienced objective partial response. Of the total 

24 patients in the study, six patients had an objective partial 

response, five of which occurred at the MTD. Clinical benefit 

rate (objective response + stable disease at 6 months) at the 

MTD was 73%, and cardiac toxicities were not observed.

On the basis of its efficacy and safety profile, T-DM1 

entered Phase III studies. The pivotal study, termed the 

EMILIA trial, compared the use of T-DM1 with capecitabine 

plus lapatinib in 991 women with metastatic HER2 

overexpressed breast cancer who had previously received 

a taxane and trastuzumab.54 T-DM1 significantly prolonged 

progression-free survival (9.6 vs 6.4 months; stratified hazard 

ratio of 0.65; 95% confidence interval, 0.55–0.77) and over-

all survival (30.9 months vs 25.1 months; stratified hazard 

ratio of 0.68; 95% confidence interval, 0.55–0.85), with less 

toxicity than lapatinib plus capecitabine. On the basis of 

these results, T-DM1 was approved by the FDA in February 

2013 for use in HER2 overexpressing breast cancer that had 

progressed on prior trastuzumab and taxane therapy.54 This 

represented the first ADC to be approved for use in solid 

tumors and was a significant advance in the treatment of 

HER2 overexpressing metastatic breast cancer.

Several ongoing trials will further define the use of 

T-DM1. T-DM1 is being evaluated in the MARIANNE trial 

for use in the frontline metastatic setting in a large Phase III 

trial comparing T-DM1 and pertuzumab with trastuzumab 

and a taxane in patients with untreated metastatic or recur-

rent breast cancer.55,56 TH3RESA, another Phase III trial, is 

comparing T-DM1 with physician’s choice of therapy after 

at least two prior regimens of HER2-targeted therapy.57 

T-DM1 is also being evaluated in both the adjuvant58–60 

and neoadjuvant61 breast cancer settings. T-DM1 combina-

tions are of interest, including T-DM1 in combination with 

cytotoxic chemotherapy,62,63 as well as an interesting study 

combining T-DM1 with pertuzumab.64 Additional work is 

also proceeding in other tumor types. Based upon efficacy 

in preclinical models of HER2-positive gastric cancer,65 it 

is being compared with taxane in an ongoing Phase II/III 

study in patients with advanced HER2-positive advanced 

gastric cancer.66

Brentuximab vedotin
Brentuximab vedotin is a CD30-directed ADC approved 

for relapsed/refractory Hodgkin lymphoma and anaplastic 

large-cell lymphoma. Brentuximab vedotin (SGN-35) is 

composed of the chimeric anti-CD30 mAb cAC10 conjugated 

by a protease-cleavable linker to four molecules of MMAE. 

CD30 is a member of the tumor necrosis factor receptor 

superfamily. In nonpathologic conditions, CD30 expression is 

found in activated T- and B-lymphocytes, natural killer cells, 

and Epstein–Barr virus-infected cells.67 CD30 is uniformly 
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expressed in Hodgkin lymphoma and anaplastic large-cell 

lymphoma, and is less consistently expressed in a number 

of other lymphomas.68 Despite their limited expression, 

anti-CD30 antibodies showed minimal clinical activity in 

CD30-positive malignancies.69,70

Brentuximab vedotin was shown to be highly effective, 

selective for CD30-positive tumor cells, and highly potent 

(IC
50

 ,10 ng/mL) in preclinical studies.31,71 In Phase I studies it 

was tolerable, did not reach MTD, and showed evidence of clini-

cal activity in Hodgkin lymphoma and anaplastic large-cell lym-

phoma but not peripheral T-cell lymphoma.72,73 Phase II studies 

used 1.8 mg/kg brentuximab vedotin every 3 weeks in patients 

with Hodgkin lymphoma who had relapsed after autologous 

stem cell transplant74 and in patients with relapsed or refractory 

anaplastic large-cell lymphoma.75 Overall response rates were 

75% and 88%, respectively. Brentuximab vedotin was given 

accelerated FDA approval in 2011 based on the results of these 

trials. It is approved for use in patients with Hodgkin lymphoma 

who have relapsed or have refractory disease after autologous 

stem cell transplant or two prior multiagent chemotherapy 

regimens, and for patients with systemic anaplastic large-cell 

lymphoma in the second-line setting.43

Brentuximab vedotin has also been shown to have activ-

ity as a bridge to allogeneic stem cell transplantation76 and 

in relapsed Hodgkin lymphoma after allogeneic stem cell 

transplantation.77 Several ongoing trials will evaluate the role 

of brentuximab vedotin patients with high risk of residual 

disease following autologous stem cell transplantation78 

as first-line monotherapy therapy and in combination with 

doxorubicin, vinblastine, and dacarbazine.79

Example of ADCs in clinical  
trials: PSMA
While the approved ADCs clearly allow delivery of cytotoxic 

drugs preferentially to tumor cells with a proven favorable 

risk:benefit ratio, neither HER2 nor CD30 are tumor-specific. 

One example of a tumor-restricted, highly expressed antigen 

is PSMA. In contrast to prostate-specific antigen, which is a 

secreted protein, PSMA is an integral cell-surface membrane 

protein. Expression is highly restricted and the limited expres-

sion on the luminal surface of normal prostate epithelium is 

not thought to be a clinical issue, as the prostate is a nones-

sential organ.80 Initially thought to be present only in prostate 

and prostate cancer tissue, low levels of expression were 

subsequently found in renal proximal tubules, astrocytes, and 

Schwann cells, and more weakly by the small bowel.80 Levels 

of PSMA in prostate tissue are 10- to 100-fold higher than 

those in membrane from extraprostatic tissues, and sites of 

expression are not typically accessible to circulating full-length 

mAb.80,81 PSMA expression is detected on approximately 90% 

of prostate tumors.80–83 Of particular relevance in the modern 

era of highly potent AR-targeted therapy, PSMA expression 

increases with AR dysregulation.83–85 Interestingly, PSMA 

expression on the neovasculature of approximately 85% of 

solid tumors, but not normal vasculature, makes PSMA an 

attractive target in other solid tumors as well.86,87

The initial anti-PSMA mAb 7E11 (capromab), though 

approved for clinical use as an imaging agent conjugated to 

indium-111, has been of limited clinical use based upon its 

recognition of an intracellular epitome on PSMA, leading to 

an inability to bind viable prostate cancer cells. The subse-

quent development of mAbs against the external domain of 

PSMA has been more successful in targeting tumors.87 The 

J591 mAb has demonstrated accurate tumor targeting as well 

as antitumor efficacy when radiolabeled with beta-emitting 

radionuclides.88–92 As discussed, PSMA is an ideal target of 

ADCs based upon its specificity and high level of expression. 

The existence of fairly readily available PSMA antibody-

based imaging also allows for in vivo assessment of tumor 

antigen assessment as well as drug distribution.92 The initial 

anti-PSMA ADC to complete Phase I and II studies utilized 

J591 and maytensinoid-1 conjugated with a thiopentanoate 

linker.93–95 Despite known specific tumor targeting with this 

mAb, the disulfide linker lability using older technology led 

to rapid deconjugation to free DM1 and a narrow therapeu-

tic window with significant neurotoxicity.95 More recently, 

another mAb against the external domain of PSMA linked via 

a more stable thioether bond has completed Phase II studies 

with encouraging results.33 Based upon the tumor-restricted 

expression of PSMA with increasing levels of expression 

seen with modern AR-targeted therapy, and the clinically 

proven sensitivity of prostate cancer to MT-targeted agents, 

additional anti-PSMA ADCs are in development.

Summary
ADCs have made significant progress in the treatment of 

Hodgkin lymphoma, anaplastic large-cell lymphoma, and 

metastatic breast cancer. MTs remain one of the most vali-

dated targets in oncology, and by utilizing the specificity of 

mAbs, anti-MT ADCs may be able to deliver a highly cyto-

toxic payload to selected tumor cells. A number of anti-MT-

based ADCs are currently undergoing active clinical trials 

(Table 2), and even more are in preclinical development. The 

ADC model, appealing for its specificity and limited toxicity, 

has historically proven to be a complex challenge in drug 

development. However, development of tumor-restricted 
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mAbs plus improved linker technology has led to clinical 

advancement. The success of ADCs in development will 

be driven by selection of targets that limit drug exposure 

to healthy tissues and thoughtful selection of each of the 

ADC components. In the effort to kill cancer cells while 

sparing patients from toxicities, ADCs remain a promising 

and novel approach to cancer therapy.
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