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Abstract 

Background:  Glycolysis affects tumor growth, invasion, chemotherapy resistance, and the tumor microenvironment. 
In this study, we aimed to construct a glycolysis-related prognostic model for ovarian cancer and analyze its relation-
ship with the tumor microenvironment’s immune cell infiltration.

Methods:  We obtained six glycolysis-related gene sets for gene set enrichment analysis (GSEA). Ovarian cancer data 
from The Cancer Genome Atlas (TCGA) database and two Gene Expression Omnibus (GEO) datasets were divided into 
two groups after removing batch effects. We compared the tumor environments’ immune components in high-risk 
and low-risk groups and analyzed the correlation between glycolysis- and immune-related genes. Then, we generated 
and validated a predictive model for the prognosis of ovarian cancer using the glycolysis-related genes.

Results:  Overall, 27/329 glycolytic genes were associated with survival in ovarian cancer, 8 of which showed predic-
tive value. The tumor cell components in the tumor microenvironment did not differ between the high-risk and low-
risk groups; however, the immune score differed significantly between groups. In total, 13/24 immune cell types dif-
fered between groups, including 10 T cell types and three other immune cell types. Eight glycolysis-related prognostic 
genes were related to the expression of multiple immune-related genes at varying degrees, suggesting a relationship 
between glycolysis and immune response.

Conclusions:  We identified eight glycolysis-related prognostic genes that effectively predicted survival in ovarian 
cancer. To a certain extent, the newly identified gene signature was related to the tumor microenvironment, espe-
cially immune cell infiltration and immune-related gene expression. These findings provide potential biomarkers and 
therapeutic targets for ovarian cancer.
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Background
Ovarian cancer is one of the most common malignant 
tumors of the female reproductive system. Because there 
is a void of information about the incidence of ovarian 
cancer and insufficient early detection methods, approxi-
mately 60–70% of diagnoses happen after the tumor has 
grown to an advanced stage (International Federation of 
Gynecology and Obstetrics stage III/IV) [1]. Thus, the 
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mortality rate due to ovarian cancer ranks first among 
gynecological malignancies, presenting a severe threat 
to women’s health. Despite significant progress in the 
treatment options and availability of therapeutics, espe-
cially with regard to emerging immunotherapies, the 
prognosis of ovarian cancer remains poor; approximately 
80% of patients with advanced ovarian cancer will enter 
remission and eventually succumb to the disease. Fur-
ther, the histological grade and stage of the tumor deter-
mine the prognosis of ovarian cancer; however, patients 
with tumors of similar stages may have different fore-
casts. Therefore, an urgent need exists to investigate the 
pathogenic mechanisms underlying ovarian cancer and 
establish a reliable predictive model for the prognosis of 
patients diagnosed with ovarian cancer.

The deregulation of cellular energetics or metabolic 
reprogramming is a key characteristic of tumor cells, 
closely related to tumor occurrence, progression, and 
drug resistance [2]. Normal cells rely on glycolysis, 
instead of oxygen-consuming β-oxidation, to provide 
energy during hypoxia. However, in tumor cells, glyco-
lysis tends to occur even in aerobic environments. War-
burg [3] first reported this phenomenon and termed it 
the “Warburg effect” or “aerobic glycolysis.” Although 
ATP production per molecule of glucose through glyco-
lysis is low, the ATP yield is much faster than oxidative 
phosphorylation and can meet cancer cells’ demands 
during rapid growth and proliferation. In many tumors, 
glucose metabolism reprogramming has been verified, 
and increased glycolysis reportedly promotes biomass 
biosynthesis [4].

Some glycolysis-related molecules are also closely 
related to tumor proliferation, invasion, and autophagy. 
For example, solute carrier family 2 member 1 (SLC2A1), 
also called GLUT1, a glucose transporter involved in 
the first step of glycolysis, is a direct target of miR-22 in 
breast cancer, and miR-22 dysregulation can inhibit cell 
proliferation and invasion via GLUT1 [5]. GLUT1 is a 
potential prognostic marker for colorectal cancer, with 
a predictive value for survival rates after liver metastasis 
resection [6]. Aldolase catalyzes the conversion of fruc-
tose-1,6-diphosphate to glyceraldehyde-3-phosphate and 
dihydroxyacetone phosphate in glycolysis. High levels of 
aldolase A in lung squamous cell carcinoma are related to 
various clinical parameters, including metastasis, grade, 
differentiation, survival rate, and prognosis [7].

Accumulating evidence indicates a relationship 
between glycolysis and the tumor microenvironment or 
immune evasion [8]. On the one hand, activated immune 
cells can induce glycolysis, similar to that of tumor 
cells. For instance, the proliferation of activated T cells 
is often glycolysis dependent [9]. On the other hand, if 
cancer cells primarily utilize glucose to fuel glycolysis, 

competition between cancer cells and immune cells for 
glucose is likely to limit the immune activity in tumor 
microenvironment.

Little is known regarding glycolysis-related genes with 
a predictive value and the relationship between glycoly-
sis and immune cell infiltration in ovarian cancer. In this 
study, we aimed to construct a glycolysis-related prog-
nostic model for ovarian cancer and analyze its relation-
ship with tumor microenvironment and immune cell 
infiltration. We obtained ovarian cancer datasets from 
TCGA and GEO and randomly divided data into training 
and test sets. Eight glycolytic genes related to prognosis 
were identified from the training set and verified in the 
test set.

Materials and methods
Data collection and preprocessing
The RNA-sequence profiles and corresponding clini-
cal data of 581 patients with ovarian cancer were down-
loaded from TCGA (https://​portal.​gdc.​cancer.​gov/) 
(n = 364) and GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
(GSE17260, n = 110; GSE73614, n = 107). Both GEO 
datasets were based on the GPL6480 platform (Agi-
lent-014850 Whole Human Genome Microarray 4 × 44 K 
G4112F). The ovarian cancer samples downloaded 
from the TCGA and GEO databases in this study are 
of primary ovarian tumors and do not contain border-
line tumors. To eliminate differences between batches, 
we used the “sva” package in R software for normaliza-
tion. We obtained 16,889 common genes for subsequent 
analyses. Additional file  2: Table  S1 shows the clini-
cal characteristics of 581 patients with ovarian cancer. 
We randomly assigned the cohort into a training set 
(n = 292), which we used to build our predictive model, 
and a test set (n = 289) to verify the model.

Glycolysis‑related gene sets
Molecular Signatures Database (MSigDB, http://​www.​broad.​
mit.​edu/​gsea/​msigdb/) is a collection of annotated gene sets 
for GSEA. Six glycolysis-related gene sets were extracted, 
including REACTOME_GLYCOLYSIS, KEGG_GLY-
COLYSIS_GLUCONEOGENESIS, GO_GLYCOLYTIC_ 
PROCESS, BIOCARTA_GLYCOLYSIS_PATHWAY, HALL-
MARK_GLYCOLYSIS, and BIOCARTA_FEEDER_PATH-
WAY. We identified 329 glycolysis-related genes from 581 
patients using the “limma” package in R software.

Glycolysis‑related prognostic gene signatures
We performed Univariate Cox regression analysis on 
the training set to identify genes significantly related to 
the overall survival time using the “survival” package in 
R software; a p-value < 0.05 indicated statistically sig-
nificance. We used lasso regression analysis to prevent 
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model overfitting. Subsequently, we determined the risk 
gene signatures were using multivariate Cox analysis.

Analyses of prognosis
Based on gene expression levels (expr) and regression 
coefficients (coef ) in the multivariate Cox regression 
analysis for the training cohort, a glycolytic risk model 
was constructed as follows:

Our group then used this formula to calculate the risk 
score for each patient. We divided patients into high-risk 
and low-risk groups by using the median risk score of 
1.03565 as the cut-off value,

We generated a heatmap of the glycolysis-related prog-
nostic signatures and survival curves using the “pheat-
map” and “survival” packages in R software, respectively. 
Then, we performed univariate and multivariate analyses 
on the histological grade, clinical stage, and risk score 
data. Receiver operating characteristic (ROC) curves 
were drawn to verify the model’s predictive validity, and 
the area under the curve (AUC) was calculated with the 
training and test sets using the “survivalROC” package in 
R software.

Mutation analyses of glycolysis‑related prognostic 
signatures
cBioPortal (http://​www.​cbiop​ortal.​org/) is a database that 
integrates various genomic data types, including somatic 
mutations, DNA copy number alterations, mRNA and 
miRNA expression levels, DNA methylation, protein 
abundance, and phosphoprotein abundance. We que-
ried the genes identified in the analysis of TCGA datasets 
against the cBioPortal database to explore the prognostic 
signatures’ genomic characteristics.

Association between the tumor microenvironment 
and glycolytic risk model
Cellular components in the tumor microenvironment 
consist of cancer cells, immune cells, and stromal cells. 
These cells form a continually evolving microenviron-
ment by secreting specific molecules and expressing a 
wide range of receptors. We calculated the stromal cell 
score and immune cell score for 581 samples using the 
“estimate” package in R software. A higher score indi-
cated a higher component frequency in the sample. The 
estimated score (the sum of the stromal cell and immune 
cell scores) is indicative of the abundance of cancer cell 
components in the sample. We evaluated tumor micro-
environment differences between the high- and low-risk 

Risk Score = expr_gene_1 × coef_gene_1

+ expr_gene_2 × coef_gene_2

+ . . . + expr_gene_n × coef_gene_n.

groups based on our risk model using t-tests. We also 
analyzed the relationship between the prognostic signa-
ture and tumor microenvironment.

Relationships between immune cell profiles 
and the glycolytic risk model
Immune cell abundance identifier (ImmuCellAI, http://​
bioin​fo.​life.​hust.​edu.​cn/​ImmuC​ellAI#​!/) is a web tool for 
the quantitative evaluation of 24 immune cells, includ-
ing 18  T-cell subtypes, B cells, natural killer (NK) cells, 
monocyte cells, macrophage cells, neutrophils, and den-
dritic cells (DCs). We used this tool to evaluate the RNA-
sequencing profiles for 581 cases and determine each 
sample’s immune cell components. Differences between 
the high-risk and low-risk groups were assessed, and cor-
relations between each immune cell type and the prog-
nostic signature were analyzed.

Further, an immune-related gene list was extracted 
from ImmPort (https://​www.​immpo​rt.​org/​home). The 
expression levels of glycolysis-related prognostic genes 
and immune-related genes in the complete set of 581 
cases were analyzed. An interaction network of immune-
related genes, immune cells, and prognostic signatures 
was generated using Cytoscape (version 3.8.2).

Statistical analysis
R software (version 4.0.3) was used for statistical analy-
ses and the visualization of results. A p-value < 0.05 was 
considered to indicate statistical significance. Correlation 
coefficients with an absolute value greater than 0.2 and 
p < 0.05 were deemed to be significant.

Results
Identification of eight glycolysis‑related prognostic genes 
using the training set
Based on the univariate analysis of the training set, 27 
genes were related to ovarian cancer prognosis (Table 1). 
After lasso regression (Additional file  1: Fig.  S1) and 
multivariate analyses, we obtained a prognostic signa-
ture composed of up to eight of the following genes: 
actinin alpha 3 (ACTN3), artemin (ARTN), CXC motif 
chemokine receptor 4 (CXCR4), decorin (DCN), estro-
gen-related receptor beta (ESRRB), fructose-bisphos-
phatase 1 (FBP1), GDP-mannose pyrophosphorylase 
B (GMPPB), and proteasome 26S subunit, ATPase 4 
(PSMC4). Among these, CXCR4, FBP1, ARTN, and 
GMPPB correlated with favorable prognoses, whereas 
ACTN3, ESRRB, DCN, and PSMC4 were associated with 
poor prognoses (Table 1).

Based on coefficients for the eight prognostic genes, 
the following risk model was established:

Risk score = (0.356 × ACTN3) + (0.341 × ESRRB) + 
(0.008 × DCN) + (0.002 × PSMC4) – (0.011 × CXCR4) 

http://www.cbioportal.org/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
https://www.immport.org/home
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– (0.036 × FBP1) – (0.109 × ARTN) – (0.149 × GMPPB). 
The risk score for each patient was calculated. Patients 
in the training set were divided into high-risk (n = 146) 
and low-risk (n = 146) groups (Fig. 1A) using a risk score 
of 1.03565 as a cut-off. Patients’ survival status and prog-
nostic signatures are summarized in Fig. 1B, C. Kaplan–
Meier survival analysis indicated a significant difference 
in survival rates between the high-risk and low-risk 
groups (p < 0.05) (Fig. 1D). The AUC of the risk model for 
the training set was 0.703 (Fig. 1E).

Validation of the risk model based on the eight 
glycolysis‑related genes using the test set
To test the robustness of the predictive value for the 
prognostic gene signature, we repeated the analyses 
described above using the test set. Of the 289 patients in 
the test set, 143 were assigned to the low-risk group and 
146 to the high-risk group based on the same median risk 
score of the training set (Fig. 1F). The survival status and 
heatmaps for the eight prognostic genes in the test set are 

summarized in Fig.  1G, H. In the survival analysis, the 
prognosis was worse in the high-risk group than in the 
low-risk group, similar to the results obtained using the 
training set (Fig. 1I). The AUC value was 0.67, indicating 
that the risk model had good predictive value (Fig. 1J).

Analyses of prognosis and the predictive accuracy 
of the prognostic gene signature based on the eight 
glycolysis‑related genes
Using the dataset obtained from TCGA, we analyzed cor-
relations between prognosis and clinical features, includ-
ing age, pathological grade, and clinical stage. The hazard 
ratios (HRs) for patient age, pathological grade, and clini-
cal stage returned risk scores of 1.018, 1.350, 1.295, and 
1.282, respectively, after univariate Cox analysis (Fig. 2A). 
In multivariate Cox analysis, the HRs for age, pathologi-
cal grade, clinical stage, and risk score were 1.015, 1.344, 
1.202, and 1.266, respectively (Fig. 2B). In both univariate 
and multivariate Cox analyses, the glycolytic risk model 
was an independent prognostic indicator (p < 0.05).

Table 1  Univariable and multivariable Cox analyses of glycolysis-related genes in ovarian cancer

Gene Univariable Cox analysis Multivariable Cox analysis

HR HR.95L HR.95H p-value Coef. HR HR.95L HR.95H p-value

GMPPB 0.835 0.730 0.954 0.008 − 0.149 0.862 0.754 0.984 0.028

ARTN 0.847 0.761 0.943 0.002 − 0.109 0.896 0.800 1.005 0.061

FBP1 0.965 0.944 0.987 0.002 − 0.0356 0.965 0.942 0.989 0.004

CXCR4 0.989 0.982 0.996 0.002 − 0.011 0.989 0.982 0.996 0.002

PSMC4 1.003 1.001 1.006 0.004 0.002 1.002 1.000 1.004 0.086

DCN 1.011 1.003 1.019 0.010 0.008 1.008 1.000 1.017 0.049

ESRRB 1.359 1.094 1.688 0.006 0.341 1.407 1.109 1.784 0.005

ACTN3 1.819 1.305 2.537 0.000 0.356 1.427 0.950 2.144 0.087

LDHB 1.003 1.001 1.005 0.007

CD44 0.955 0.921 0.989 0.010

TPST1 1.080 1.018 1.146 0.011

ALDH3B2 0.983 0.970 0.996 0.013

PYGB 1.025 1.005 1.046 0.014

ARNT 1.054 1.011 1.099 0.014

SLC37A4 0.921 0.861 0.985 0.017

B3GALT6 0.956 0.920 0.993 0.020

PGM2L1 0.904 0.827 0.987 0.024

TGFBI 1.011 1.001 1.021 0.030

ISG20 0.889 0.798 0.990 0.032

STC2 0.933 0.876 0.994 0.033

EGFR 1.077 1.006 1.153 0.034

VCAN 1.028 1.002 1.054 0.035

PRKAG3 1.582 1.031 2.428 0.036

NUP107 1.027 1.002 1.053 0.037

NSDHL 0.970 0.943 0.998 0.039

HS2ST1 0.891 0.798 0.994 0.039

TFF3 0.989 0.978 1.000 0.049
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A ROC analysis was performed to assess the specific-
ity and sensitivity of the risk score and clinical features 
to predict prognosis. As shown in Fig. 2C, the AUC for 
the risk score was better than that for other clinical fea-
tures at 1, 3, and 5 years, indicating that the risk model 

independently predicted the survival rate in ovarian 
cancer.

A nomogram was constructed by integrating the risk 
score and clinical features, including age, pathological 
grade, and clinical stage. The nomogram was used to 

Fig. 1  Establishment and verification of an eight glycolysis-related gene-based prognostic signatures in ovarian cancer. A Risk score distribution in 
patients classified as low-risk (n = 146) and high-risk (n = 146) in the training set. B Survival status of low-risk and high-risk patients in the training 
set. C Heatmap of eight glycolysis-related risk gene expression levels in the training set. D Kaplan–Meier curves for the high-risk and low-risk groups 
in the training set. E ROC analysis of the glycolytic risk model using the training set. F Risk score distribution for low-risk (n = 143) and high-risk 
(n = 146) patients in the test set. G Survival status for the high-risk and low-risk groups in the test set. H Heatmap of eight glycolysis-related risk 
gene expression levels in the test set. I Kaplan–Meier curves for the high-risk and low-risk groups in the test set. J ROC analysis of the glycolytic risk 
model using the testing set
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evaluate each variable score, and by calculating the total 
score, we estimated the 1-year, 3-year, and 5-year survival 
rates (Fig. 2D).

Alterations of the eight glycolysis‑related prognostic genes
We analyzed mutations in the eight prognostic genes 
using the cBioPortal database. The mutation frequen-
cies of these genes in ovarian cancer cases were not high 

Fig. 2  Predictive accuracy of the eight glycolysis-related gene-based prognostic signature. A Univariate Cox analysis of risk scores and clinical 
features associated with overall survival in the dataset from TCGA. B Multivariate Cox analysis of risk scores and clinical features associated with 
overall survival in the dataset from TCGA. C ROC analyses of the specificity and sensitivity of the risk score, age, pathological grade, and clinical stage 
in predicting prognosis in ovarian cancer. D Nomogram for predicting the 1-, 2-, and 3-year survival rates in ovarian cancer
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(Fig. 3A). In particular, alterations in the eight prognos-
tic genes were detected in 78 of 398 patients. The types 
of alterations included in-frame, missense, nonsense 
mutations, amplifications, and deep deletions, of which 
amplifications were the dominant type. Among the eight 
prognostic genes, PMSC4 had the highest alteration fre-
quency (i.e., 8%), followed by ARTN (6%) (Fig. 3B). Muta-
tions in GMPPB, CXCR4, and ARTN occurred in protein 
domains; although they may affect gene function, these 
mutations were rare (Fig. 3C). These results indicate that 
the sequences of glycolytic genes are relatively conserved 
in ovarian cancer.

Relationships between the glycolytic risk model 
and the tumor microenvironment
The tumor microenvironments of the entire cohort 
were analyzed. The stromal score was slightly higher in 
the high-risk group than in the low-risk group, but this 
difference was not statistically significant (Fig. 4A). The 
immune score was significantly lower in the high-risk 
group than in the low-risk group (Fig.  4B). There was 

no significant difference in the estimated score between 
the high-risk and low-risk groups (Fig.  4C), indicating 
that the two groups’ tumor compositions were similar. 
Among the eight glycolysis-related prognostic genes, 
the expression levels of DCN and FBP1 positively cor-
related with the immune score (Fig.  4D, Additional 
file 2: Table S2).

GSEA of low‑risk and high‑risk groups
GSEA was performed to investigate the relationship 
between the risk level in ovarian cancer and an array of 
immune functions. As expected, the low-risk group was 
significantly enriched in multiple immune-related gene 
sets (p < 0.05) (Fig. 5A).

Relationship between the glycolytic risk model 
and immune cell infiltration
Our results indicated that immune cell composition and 
immune-related genes in the tumors differed between the 
high-risk and low-risk groups. Accordingly, we evaluated 

Fig. 3  Alterations in the eight glycolysis-related prognostic genes. A Alteration frequencies in 398 patients with ovarian cancer in the cBioPortal 
database. B Alteration frequencies for the eight risk genes for ovarian cancer in the cBioPortal database. C Mutations in GMPPB, CXCR4, and ARTN in 
ovarian cancer cases in the cBioPortal database
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the relationship between glycolysis and immune cell infil-
tration. We uploaded the entire cohort’s transcriptome 
data to ImmuCellAI to analyze each group’s immune 
cell composition (Fig. 5B). In total, 13 of 24 immune cell 
types differed between the groups, including naive CD4 
T cells, naive CD8 T cells, cytotoxic T cells, exhausted T 
cells, inducible regulatory T cells (iTreg), helper T cells 
1 (Th1), follicular helper T cells (Tfh), central memory T 
cells (Tcm), mucosal‐associated invariant T cells (MAIT), 
DCs, Macrophages, Neutrophils, and gamma delta T 
cells (γδ T) (Fig.  5C). Correlations between the expres-
sion levels of the eight risk genes and immune cell com-
ponents were also evaluated (Additional file 2: Table S3). 
The expression of ARTN was related to cellular compo-
nents, including neutral and central_ memory, Gamma_ 
delta, Tr1, B_ Cell, and Tfh. Moreover, the risk score 
negatively correlated with the immune infiltration score 
(R = − 0.22) (Fig. 5D).

To further investigate the roles of the eight prog-
nostic genes in immune infiltration, the immune gene 
set was extracted from ImmPort. Among these eight 
genes, ARTN, PSMC4, and CXCR4 were identified to be 
involved in glycolysis and immune function. The correla-
tions between immune-related gene expression and eight 
glycolysis-related risk genes in ovarian cancer were ana-
lyzed (Additional file 2: Table S4). Many immune-related 
genes were co-expressed with DCN (130 genes), followed 
by FBP1 (114 genes). Further, a network diagram of 
immune cells, immune-related genes, and the eight prog-
nostic genes has been generated (Fig. 5E).

Discussion
Metabolic reprogramming is essential for tumor cell 
growth, survival, and proliferation. Recent research has 
focused on glycolytic processes in cell proliferation, inva-
sion, autophagy, and chemotherapy resistance in ovar-
ian cancer. For example, Zhao et  al. [10] have shown 

Fig. 4  Tumor microenvironment in the high-risk group and the low-risk group for the entire cohort. A Stromal score. B Immune score. C Estimate 
score. D Correlations between levels of DCN and FBP1 and immune scores (p < 0.05)
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that mitochondrial elongation factor 2 (MIEF2) over-
expression promotes growth and metastasis in ovar-
ian cancer by reprogramming glucose metabolism. The 
knockdown of DIO3 in high-grade serous ovarian cancer 
leads to a decrease in the Warburg effect and carcino-
genic signal transduction and tumor growth inhibition 
[11]. By reversing the Warburg effect, ABT737, a B cell 
lymphoma (BCL2) inhibitor, promotes H2O2-induced 
apoptosis and increases the antitumor effect of oxidative 
stress, sensitizing ovarian cancer cells to chemotherapy 
[12]. Aurora-A, a member of the Aurora kinase family, 
regulates glucose metabolism in ovarian cancer via the 
SOX8/FOXK1 signaling axis and induces cisplatin resist-
ance [13]. The inhibition of Anexelekto (AXL), a member 
of the tyro3-axl-mer family of receptor tyrosine kinases, 
impairs glycolysis in cisplatin-resistant ovarian cancer 
cells [14].

Despite extensive research on prognostic signatures in 
ovarian cancer, studies involving glycolysis-related genes 
with a predictive significance are lacking. To better pre-
dict survival rates, we analyzed TCGA and GEO datasets 
to establish a glycolysis-related risk model. Using multi-
ple datasets with random assignment to the training and 
test sets minimizes biases associated with individual data 
sources. Using univariate and multivariate Cox analy-
ses, we confirmed that the newly developed model was 
an independent prognostic indicator for ovarian can-
cer. The prediction ability of the model exceeded that of 
other clinical features, as evaluated by ROC curves. The 
results were verified using the test set. Risk scores for all 
cases were calculated and analyzed concerning the tumor 
microenvironment and immunity in both groups.

Various glycolysis-related prognostic genes in ovarian 
cancer, including ACTN3, ARTN, CXCR4, DCN, ESRRB, 
FBP1, GMPPB, and PSMC4, were identified in this 
study. Most of these genes have been studied in a vari-
ety of tumors. ACTN3 encodes actinin 3, a cytoskeletal 
molecule of actin filament cross-linked protein 5, mainly 
occurring in the skeletal muscle. In tumors, it interacts 
with parafibromin tumor suppressor protein, which is 
involved in the hypermethylation and inhibition of many 
oncogenes [15].

As a member of the glial cell line-derived neurotrophic 
factor ligand family, ARTN is associated with many 
malignant tumors [16, 17]. In liver cancer, artemin-pos-
itive, tumor-inducible, erythroblast-like cells (Ter-cells) 
could promote tumor progression, whereas an artemin 
deficiency abolishes the tumor-promoting effect [18]. 
Besides, ARTN is associated with chemoresistance in a 
variety of tumors. For example, in endometrial cancer, 
ARTN specifically regulates CD24 to stimulate endome-
trial cancer cell resistance to doxorubicin and paclitaxel 
[19].
CXCR4 is a member of the CXC chemokine recep-

tor family, involved in regulating cancer progression by 
binding to unique ligands in the tumor microenviron-
ment. The anti-CXCR4 single-chain variable fragment 
antibody isolated by Liang et  al. [20] inhibits prolifera-
tion and angiogenesis and increases apoptosis in tumor 
cells. Compared to healthy renal cells, the expression of 
CXCR4 is significantly increased in clear cell renal cell 
carcinoma, and this increased expression is significantly 
correlated with tumor stage or grade, thus indicating sig-
nificant predictive value [21].
DCN is a leucine-rich proteoglycan in the extracellular 

matrix. It inhibits tumor growth and migration in hepa-
tocellular carcinoma [22], colon cancer [23], and prostate 
cancer [24]. However, in gastric cancer [25], head and 
neck cancer [26], bladder cancer [27], and endometrial 
cancer [28], DCN is a predictor of poor prognosis, as 
determined by bioinformatics analyses.
ESRRB, a stem cell marker, plays a crucial role in 

regulating the immature pluripotent state. It is highly 
expressed in colon cancer, prostate cancer, and bladder 
cancer [29]. Furthermore, in glioblastoma, its activation 
limits tumor migration and intracranial tumor growth 
[30]. However, similar to DCN, ESRRB has antitumor 
effects in some tumors. For example, it is a negative regu-
lator of the cell cycle in breast cancer, and its expression 
is negatively related to the expression of transcription 
inhibitor enhancer of zeste 2 polycomb repressive com-
plex 2 subunits [31].
FBP1 is an enzyme involved in the catalytic conversion 

of fructose-1,6-diphosphate to fructose-6-phosphate. The 

(See figure on next page.)
Fig. 5  Immune analysis of between the high-risk group and the low-risk group. A Multiple immune-related gene sets significantly enriched in the 
low-risk group determined by GSEA. The immune-related gene sets included: O_ADAPTIVE_IMMUNE_RESPONSE, GO_INNATE_IMMUNE_RESPONSE, 
GO_NEGATIVE_REGULATION_OF_IMMUNE_EFFECTOR_PROCESS, GO_POSITIVE_REGULATION_OF_IMMUNE_RESPONSE, GO_REGULATION_
OF_HUMORAL_IMMUNE_RESPONSE, GO_REGULATION_OF_IMMUNE_EFFECTOR_PROCESS, GO_REGULATION_OF_IMMUNE_RESPONSE, 
GO_REGULATION_OF_INNATE_IMMUNE_RESPONSE, and REACTOME_IMMUNE_SYSTEM, REACTOME_INNATE_IMMUNE_SYSTEM. B Heatmap 
of the immune cell composition in the entire cohort. C Comparison of the immune cell composition between the high-risk and low-risk 
groups. D Correlation analysis of immune infiltration scores and risk scores (p < 0.05). E Network of immune-related genes, immune cells, and 
eight glycolysis-related prognostic genes. (Blue rectangles: glycolysis-related prognostic genes, yellow circles: immune cells, purple triangles: 
immune-related genes)
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abnormal expression or loss of function of FBP1 has been 
observed in breast [32] and esophageal cancer [33]. FBP1 
deletion leads to steatosis, accompanied by the activa-
tion and senescence of hepatic stellate cells, which show 
senescence-related secretory phenotypes [34]. Low FBP1 
expression has been found in patients with postoperative 
recurrence of prostate cancer [35].
GMPPB is an important enzyme affecting the O-gly-

cosylation of alpha-dystroglycan and N-glycosylation 
of beta-dystroglycan, and little is known about its role 
in tumor biology. Only two related studies indicate that 
GMPPB could predict prognosis in endometrial cancer 
[28].

The glycolytic gene PSMC4 is also an immune-related 
gene. In previous bioinformatics studies, PSMC4 has 
been identified as part of the immune gene signature for 
predicting prognosis in endometrial cancer [36]. Moreo-
ver, Ayakannu et  al. [37] confirmed that PSMC4 is one 
of the most “stable” endogenous control genes in type I 
endometrial cancer using geNorm Qbase + 2 and Nor-
mFinder software package. However, none of the eight 
prognostic genes have been studied in ovarian cancer.

The lactic acid produced by glycolysis accumulates out-
side the cells, which reduces tissue pH and affects the 
tumor microenvironment. The acidic tumor microenvi-
ronment confers the tumor with resistance to treatment 
and remains the main obstacle to the successful treat-
ment of cancer [38]. In this study, the high-risk group’s 
immune score was significantly lower than that of the 
low-risk group, suggesting a greater potential for immune 
escape in the high-risk group than in the low-risk group. 
Furthermore, through concentration gradient-depend-
ent inhibition, excessive lactic acid in the tumor micro-
environment inhibits T cells from releasing lactic acid, 
thereby affecting T cells’ function and proliferation [39]. 
Our results revealed that 13 types of immune cells dif-
fered between the low-risk and high-risk groups, among 
which 10 were T cells, including CD4_naive, iTreg, 
Th1, Tfh, CD8_naive, exhausted, MAIT, cytotoxic, cen-
tral_meno, and Gamma_delta. In addition to T cells, 
NK cells and myeloid-derived suppressor cells (MDSCs) 
are affected by lactic acid, resulting in significant activ-
ity changes [40]. MDSCs are precursors of DCs, mac-
rophages, and granulocytes. In ovarian cancer, we found 
that the composition of DCs, macrophages, and neutro-
phils differed significantly between high-risk and low-
risk groups. These findings suggest that glycolysis affects 
the composition of immune cell populations in ovarian 
cancer.

Although considerable research supports the rela-
tionship between tumor glycolysis and immune escape 
from the tumor microenvironment, the specific mol-
ecules contributing to this relationship have not been 

determined. This study found that the expression levels 
of the glycolytic genes DCN and FBP1 positively cor-
related with the ovarian tumor microenvironment’s 
immune score. Several immune-related genes are asso-
ciated with the expression of these two glycolytic genes 
involved in macrophages infiltration. Also, the glycolytic 
genes ARTN, PSMC4, and CXCR4 are immune-related. 
In particular, ARTN correlates with the infiltration of six 
immune cell types. Although there is limited research on 
how these molecules regulate immune processes in ovar-
ian cancer, our findings revealed the molecules involved 
in both glycolysis and immune processes in ovarian 
cancer might represent potential targets for developing 
novel treatment strategies. In particular, future studies 
should evaluate the effectiveness of a “two-hit” method 
integrating glycolysis and immune escape or infiltration 
characteristics.

To our knowledge, our study is the first to establish a 
model for predicting the prognosis of ovarian cancer, 
depending on the expression of glycolysis-related genes. 
In clinical settings, one can easily measure the expression 
of these eight prognostic signature genes in ovarian can-
cer samples to calculate patients’ risk score and predict 
their survival rate. The prognostic model and nomogram 
established herein are not only easy to use, economical, 
and practical, but also have good prospects for clinical 
application. It is also the first to explore the relationship 
between glycolysis-related genes and immune genes in 
the ovarian cancer microenvironment. However, this 
study was limited by the lack of healthy tissue samples 
in the TCGA and GEO datasets and the lack of data on 
the precise mechanisms by which these eight glycolytic 
genes regulate glycolysis and immunity in ovarian can-
cer. In our future research, we plan to focus on these 
mechanisms.

Conclusions
In conclusion, we identified eight glycolysis-related prog-
nostic genes in ovarian cancer, establishing a predictive 
model for the practical estimation of survival rates. Our 
results also revealed a correlation between glycolysis and 
immune function in ovarian cancer, indicating that the 
eight prognostic genes may also contribute to immune 
processes. These findings provide potential biomarkers 
and therapeutic targets for ovarian cancer.
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