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Exceptional non-Hermitian topological edge mode
and its application to active matter
Kazuki Sone 1✉, Yuto Ashida1,3 & Takahiro Sagawa1,2

Topological materials exhibit edge-localized scattering-free modes protected by their non-

trivial bulk topology through the bulk-edge correspondence in Hermitian systems. While

topological phenomena have recently been much investigated in non-Hermitian systems with

dissipations and injections, the fundamental principle of their edge modes has not fully been

established. Here, we reveal that, in non-Hermitian systems, robust gapless edge modes can

ubiquitously appear owing to a mechanism that is distinct from bulk topology, thus indicating

the breakdown of the bulk-edge correspondence. The robustness of these edge modes ori-

ginates from yet another topological structure accompanying the branchpoint singularity

around an exceptional point, at which eigenvectors coalesce and the Hamiltonian becomes

nondiagonalizable. Their characteristic complex eigenenergy spectra are applicable to realize

lasing wave packets that propagate along the edge of the sample. We numerically confirm the

emergence and the robustness of the proposed edge modes in the prototypical lattice

models. Furthermore, we show that these edge modes appear in a model of chiral active

matter based on the hydrodynamic description, demonstrating that active matter can exhibit

an inherently non-Hermitian topological feature. The proposed general mechanism would

serve as an alternative designing principle to realize scattering-free edge current in non-

Hermitian devices, going beyond the existing frameworks of non-Hermitian topological

phases.
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S ince topological materials exhibit robust scattering-free
currents along the edges of samples, the notion of topology
has attracted much interest both in fundamental physics

and in device engineering. The first discovery of such a topolo-
gical material dates back to the integer quantum Hall effect1,
where it has been established that the gapless edge modes pre-
cisely correspond to the bulk topological number2. This phe-
nomenon has revealed a fundamental principle known as the
bulk-edge correspondence. Nowadays, the topological materials
have been found in much broader situations especially in the
presence of symmetry, such as the time-reversal symmetry in
topological insulators3,4. In such situations, the bulk-edge corre-
spondence is still valid and predicts the presence or absence of
robust edge modes4, from which a periodic table has been
obtained5. These discoveries have opened up a stream of material
designs on the basis of the bulk band topology4,6.

Although the conventional notion of topological materials is
based on Hermitian Hamiltonians, effective Hamiltonians can
become non-Hermitian in nonconservative systems including
both quantum and classical ones, such as photonics7–10, ultracold
atoms11,12, optomechanics13,14, electronic circuits15,16, mechan-
ical lattices17,18, and biophysical systems19. For example, in
photonic systems, non-Hermiticity can be introduced by engi-
neering optical gain and loss through semiconductor amplifiers or
acoustic modulators. Classification of non-Hermitian topological
materials has been explored in terms of bulk band topology10,20–32,
and a periodic table has been proposed in the same spirit as in the
Hermitian case23,30,31. However, the bulk-edge correspondence is
more subtle in non-Hermitian systems than in Hermitian systems,
as a hitherto unknown non-Hermitian effect may protect unpre-
dicted edge modes or destabilize edge modes in topologically
nontrivial systems.

In this article, we reveal a ubiquitous mechanism for realizing
robust gapless edge modes, which emerge independently of the
bulk topology and instead are protected in an unconventional
manner unique to non-Hermitian systems. This indicates that the
bulk-based classification cannot conclusively predict the existence
or absence of edge modes in the non-Hermitian case, thus
implying the breakdown of the bulk-edge correspondence. In the
conventional topologically nontrivial systems, the proposed
mechanism can further stabilize the gapless edge modes, even
against symmetry-breaking disorder. These edge modes inher-
ently exhibit large positive imaginary parts of the eigenenergies
and thus are naturally applicable to topological insulator laser33–35,
where the amplified unidirectional wave packet propagates along
the edge of the sample. We demonstrate the emergence of the
proposed gapless edge modes and the lasing wave packets by
analyzing the prototypical tight-binding models.

Our edge modes owe their robustness to the distinct topolo-
gical structure of exceptional points (EPs), and thus here we term
these modes as exceptional edge modes. The EP36 is a singular
point in the parameter space at which two or more eigenvectors
and eigenvalues coalesce and a parameterized Hamiltonian
becomes nondiagonalizable. The EP is unique to non-Hermitian
systems and induces intriguing phenomena, such as inter-
changing eigenvectors after encircling an EP37, coherent perfect
absorption38, and unidirectional invisibility39. The existence of
EPs is supported by the nontrivial topology of the branchpoint
singularity in intersecting Riemann surfaces around them.37,40 In
one-dimensional systems, such as the edge modes of two-
dimensional bulk systems, the emergence of EPs can be guaran-
teed by satisfying certain symmetries, including the PT symmetry,
the CP symmetry, the pseudo-Hermiticity, and the chiral sym-
metry41–43. EPs can disappear if either the symmetry is broken or
a pair of EPs coalesce; the latter is reminiscent of the pair-
annihilation of Weyl points44,45 in Hermitian systems. We

discover a general mechanism that EPs join two edge dispersions
like glue and make them robust against disorder, which cannot be
predicted by the existing periodic tables of topological
phases23,30,31.

Furthermore, we explicitly show the existence of exceptional
edge modes in a more realistic system based on active matter46,
which is a collection of self-propelled particles and has recently
attracted much interest as a useful platform to study biological
and out-of-equilibrium physics. Recent studies47–52 have
explored the existence of the edge modes in active matter pro-
tected by the bulk topology. Some of them49,50,52 have utilized
chiral active matter, which moves in a circular path or self-rotates.
Chiral active matter has been experimentally realized, for exam-
ple, in bacteria53 and artificial L-shaped particles54. The
hydrodynamics55,56 and the phase separation57 of chiral active
matter have also been analyzed in recent studies. The effective
Hamiltonian of the linearized hydrodynamic equations in active
matter is, in general, non-Hermitian because of inherent dis-
sipations and energy injections therein. We demonstrate that this
type of non-Hermitian chiral active matter provides an ideal
platform to experimentally realize the proposed exceptional
edge modes.

Results
Exceptional edge modes in two-layered non-Hermitian
Bernevig-Hughes-Zhang model. We first construct and analyze a
minimal tight-binding model. For a Hermitian Hamiltonian H,
time-reversal symmetry means that there exists a unitary operator
T satisfying TH(k)T−1=H*(−k), where H(k) is the Bloch
Hamiltonian constructed from H4. The definition of time-reversal
symmetry can be extended to non-Hermitian systems and it has
been pointed out21,23,30,31 that there are two types of time-reversal
symmetry, i.e., TH(k)T−1=H*(−k) and TH(k)T−1=HT(−k),
which are equivalent in Hermitian systems while not in non-
Hermitian cases. One can construct the conventional time-
reversal-symmetric topological insulator by coupling a Chern
insulator with its time-reversal counterpart3,58. The bulk bands of
a time-reversal-symmetric insulator are topologically character-
ized by the Z2 index3,4, which corresponds to the parity of the
number of the edge modes across the Fermi energy. If we con-
struct a time-reversal-symmetric system from Chern insulators
with even numbers of edge modes, we obtain a topologically trivial
bulk. However, we reveal that such a trivial bulk can still
accompany robust gapless edge modes by introducing non-
Hermitian coupling between the two Chern insulators (see
Fig. 1a).

To construct the minimal model for demonstrating the
emergence of such edge modes, we consider the two-layered
Qi-Wu-Zhang (QWZ) model, H0= I2 ⊗ HQWZ+ cσx ⊗ I2, which
exhibits two chiral modes per edge in the bulk energy gap. Here,
HQWZ is the Hamiltonian of the QWZ model59, which can be
described as HQWZðkÞ ¼ sin kxσx þ sin kyσy þ ðuþ cos kx þ
cos kyÞσz in the wavenumber space (see Supplementary Methods
for the real-space description). Here, I2 is the 2 × 2 identity matrix
and σi is the ith component of the Pauli matrices. Also, we assume
that c is real, and thus the Hamiltonian is still Hermitian. By
coupling H0 and its time-reversal counterpart H�

0 with a non-
Hermitian term, iΣ ¼ iðβþ β0ÞI2 � σx=2þ iðβ� β0Þσz � σx=2
with β, β0 being real parameters, we obtain the following non-
Hermitian Hamiltonian

H ¼
H0 iΣ

iΣ H�
0

� �
: ð1Þ

We note that this model resembles the Bernevig-Hughes-Zhang
model58 but differs from it since our model has two layers of the
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QWZ model and two other layers of the time-reversal
QWZ model, which are coupled by the non-Hermitian term.
Furthermore, as this Hamiltonian has the pseudo-Hermiticity
defined as ηH(k)η−1=H†(k) which can lead to another
topological classification characterized by the Z invariant30,31,
we add a Hermitian coupling and consider the Hamiltonian
H0 ¼ H þ γσx � σy � σx , to break the pseudo-Hermiticity. The
additional Hermitian coupling corresponds to the spin coupling in
condensed matter and thus can open an energy gap in the
conventional trivial insulator. We can confirm that this Hamilto-
nian has time-reversal symmetry TH0ðkÞT�1 ¼ H

0�ð�kÞ, and
thus have to consider Z2 indices as in Hermitian systems (see
Supplementary Note 10). Below we focus on the parameter
regimes in which the bulk bands are trivial in the conventional
sense, i.e., the number of the edge modes in H0 is even.

To reveal the existence of robust edge modes, we calculate the
band structure of our model with open (periodic) boundaries in
the x (y) direction. Figure 1b shows the band structure for the
wavenumber in the y direction. There, gapless edge bands exist in
the bulk energy gap and they accompany EPs, where both the
eigenenergies and the eigenstates coalesce. The EPs act as a glue
that holds the edge band structures together and thus stabilize the
existence of exceptional edge modes. This gluing is reminiscent of
the branchpoint structure in non-Hermitian bulk bands42,60,
which remains until the EPs coalesce. In general models including
the present one, the edge modes between two EPs exhibit the
large imaginary parts of the eigenenergies, whereas all the bulk
modes can have zero imaginary parts of the eigenenergies. As
discussed below, this property finds a possible application to
realize a topological insulator laser33,34.

To explicitly demonstrate that the appearance of EPs is
independent of the bulk topology and thus violates the bulk-edge
correspondence, we numerically calculate the edge band struc-
tures for different strengths of the non-Hermitian coupling. By

modifying the strengths of the non-Hermitian coupling β, β0, we
can control the existence of edge modes and EPs in the bulk gap
as shown in Fig. 2. On the other hand, during this modification,
the bulk energy gap remains open. Therefore, the bulk topology
should remain trivial at arbitrary strength of the non-Hermitian
coupling and thus have no relation to the exceptional edge modes.
This result indicates that while the bulk band topology still can
predict the existence of the ordinary edge modes without EPs, it
fails to predict the existence of robust exceptional edge modes.

Although we have concentrated on time-reversal-symmetric
systems so far, time-reversal symmetry is not the prerequisite for
realizing exceptional edge modes. If the sum of the Chern
numbers of the bulk bands below the energy gap is zero, a system
without relevant symmetries cannot exhibit gapless edge modes
protected by bulk topology. However, combining the topological
systems with the opposite Chern numbers by the non-Hermitian
coupling, we can obtain not only a trivial bulk but also robust
exceptional edge modes.

We can also realize exceptional edge modes in topologically
nontrivial systems. We construct the non-Hermitian Bernevig-
Hughes-Zhang model,

H ¼
HQWZ iΣ0

iΣ0 H�
QWZ

 !
; ð2Þ

where iΣ0 is the non-Hermitian coupling iΣ0 ¼ iβσx , and β is real.
This model satisfies the time-reversal symmetry and associates
with a nontrivial Z2 invariant. We calculate the edge band
structure and confirm the existence of the exceptional edge modes
(see Supplementary Note 2). We note that the exceptional edge
modes can also exist robustly against time-reversal-symmetry-
breaking disorder and thus can be more advantageous than
conventional edge modes.
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Fig. 1 Schematic figure and prototypical band structure of exceptional edge modes. a The system consists of two Chern insulators, which have the Chern
numbers with the same absolute values and the opposite signs. If we consider Chern insulators with even Chern numbers, the bulk of the combined system
becomes topologically trivial. However, when we use a non-Hermitian coupling to combine two Chern insulators, robust gapless modes can appear at the
edge of the sample. b Two-layered non-Hermitian Bernevig-Hughes-Zhang model is considered to demonstrate the prototypical band structure of
exceptional edge modes. We numerically calculate the edge band structure of the 1 × 50 ribbon-shaped system under the open boundary condition in the x
direction and the periodic boundary condition in the y direction. The parameters used are u=−1, c= 0.2, β= 0.14, β0 ¼ 0:06, and γ= 0.05. Four gapless
bands per edge exist in the bulk energy gap (they are doubly degenerate) and thus imply the topologically trivial bulk of the system. In the edge bands, we
also find exceptional points (EPs) (indicated by red points in the insets), which are the wavenumbers at which the edge eigenstates coalesce and the
Hamiltonian becomes nondiagonalizable. We can confirm that the imaginary parts of the eigenenergies appear from the EPs. These EPs play the role of the
glue of the edge modes and thus prevent gap opening by perturbations or disorders, which is shown in Fig. 3.
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Effective edge Hamiltonian and robustness of exceptional edge
modes. Robustness against the perturbation and the disorder is
an important feature of topological edge modes. We note that
conventional topological edge modes are fragile under the per-
turbations breaking the symmetry. To see what types of pertur-
bations can sustain stable exceptional edge modes, we introduce a
general one-dimensional effective Hamiltonian parametrized by
wavenumber ky,

HedgeðkyÞ ¼
E0 þ ky þ α iβþ γ

iβ� γ E0 � ky � α

 !
; ð3Þ

which describes the generic behavior of the low-energy dispersion
of edge modes. The diagonal elements represent the linear dis-
persion of two edge modes without couplings, and the off-
diagonal parts represent the non-Hermitian coupling. The case of
α ¼ γ ¼ Im β ¼ 0 represents exceptional edge modes in the
disorder-free system (Re β≠ 0 is necessary to generate EPs in
exceptional edge modes). The effective Hamiltonian has the

eigenenergy E ± ðkyÞ ¼ E0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky þ αÞ2 � β2 � γ2

q
and EPs at

ky ¼ �α±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
. The topological index associated with EPs

can guarantee their presence in the complex wavenumber space
in this case (see Supplementary Note 3).

As we consider the bulk gaps for the real parts of eigenenergies,
the gapless edge modes remain when there exists a real

wavenumber ky that satisfies Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky þ αÞ2 � β2 � γ2

q
¼ 0. Thus,

we can conclude that jIm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
j≤ jIm αj is a necessary and

sufficient condition to realize robust edge modes (see Methods).

Meanwhile, the exceptional edge modes remain when

�α±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
is real, i.e., (i) Im α ¼ 0, (ii) Im ðβ2 þ γ2Þ ¼ 0,

and (iii) Re ðβ2 þ γ2Þ> 0. From conditions (ii), (iii), we can

derive Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
¼ 0 and thus can confirm that the condition

for gapless edge modes must be satisfied under the condition for
exceptional edge modes. We note that conditions (i), (ii) are
equivalent to the condition for pseudo-Hermiticity61, which
ensures that the eigenenergies are either real or pairs of complex
conjugate values (i.e., ðky þ αÞ2 � β2 � γ2 is real in the present
case). In general, disorder in the existing terms satisfies this
condition. Meanwhile, nonzero Re α breaks the time-reversal
symmetry defined as T= σy, TH(ky)T−1=H*(−ky). However,
perturbation to Re α does not affect the stability of exceptional
edge modes even if they accompany nontrivial bulk topology of a
time-reversal-symmetric system.

We can also relate the robustness of the exceptional edge
modes to the symmetry and the topology of EPs. In one-
dimensional systems, EPs can robustly exist under the PT
symmetry, the CP symmetry, the pseudo-Hermiticity, or the
chiral symmetry41–43. In the case of E0 ¼ α ¼ γ ¼ Im β ¼ 0, the
effective edge Hamiltonian exhibits the PT symmetry PT= σz,
PTH(ky)(PT)−1=H*(ky), the CP symmetry CP= σx, CPH(ky)
(CP)−1=−H*(ky), the pseudo-Hermiticity η= σz, ηH(ky)η−1=
H†(ky), and the chiral symmetry Γ= σx, ΓH(ky)Γ−1=−H†(ky).
We note that the pseudo-Hermiticity here is in a narrower class
than that considered in the previous paragraph, that is, the
operator η is restricted to a local operator that only acts on the
inner degrees of freedom. To preserve the PT symmetry and/or
the chiral symmetry, we need Im α ¼ Im β ¼ Re γ ¼ 0. We can
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Fig. 2 Emergent exceptional edge modes through a non-Hermitian coupling. a–d Non-Hermiticity is increased from a to d. The upper two figures show
the real and imaginary parts of the edge dispersions. The lowest figure represents the bulk band structure of the homogeneous system under the periodic
boundary conditions. We set the parameters u=−1, c= 0.2, and γ= 0.8 throughout the calculations in this Figure. a Without non-Hermitian coupling
(β ¼ β0 ¼ 0), there is a large energy gap even in the edge band structure. Therefore, the bulk topology is trivial in this Hermitian system. b With increased
non-Hermiticity (β= 0.81, β0 ¼ 0:63), the upper and lower edge dispersions approach to each other. c At the critical strength of the non-Hermitian
coupling (β= 0.9, β0 ¼ 0:7), the upper and lower edge dispersions coalesce. However, there are no gap closings in the bulk band structure. Thus, the bulk
topology should remain trivial. d With a stronger non-Hermitian coupling than the critical value (β= 0.909, β0 ¼ 0:707), pairs of EPs appear. These edge
modes are robust against disorder and thus exceptional edge modes robustly appear even with trivial bulk topology.
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also confirm that the preservation of the CP symmetry and/or the
pseudo-Hermiticity requires Im α ¼ Im β ¼ Im γ ¼ 0. From
these equations, we can derive conditions (i), (ii) for realizing
the exceptional edge modes discussed above and thus confirm
that the exceptional edge modes robustly exist under sufficiently
small jIm γj and one of the following symmetry: the PT
symmetry, the CP symmetry, the chiral symmetry, or the
pseudo-Hermiticity. If we increase jIm γj, two EPs coalesce at
critical strength of jIm γj, and the exceptional edge modes
disappear under larger jIm γj. We can expect that the symmetry
in the effective edge Hamiltonian is the same as that in the bulk
and thus can utilize the symmetry as the guiding principle to
predict what types of disorders remain exceptional edge modes.

To confirm the robustness of the exceptional edge modes in
our model, we calculate the band structure with adding disorder
(see Fig. 3). We show that the exceptional edge modes still exist
robustly under certain types of disorders, i.e., the random real on-
site potential and the imaginary noise in the coupling terms (see
Methods for details). These disorders preserve the modified PT

symmetry P0THðkx; kyÞðP0TÞ�1 � H�ð�kx; kyÞ that has the same
role as the PT symmetry in the edge band structure. Thus, the
result is consistent with the discussion in the previous paragraph.
Also, the on-site non-Hermitian term, igσz ⊗ I ⊗ I, recovers the
robustness of the edge modes against the real noise in the
coupling terms, which lifts the degeneracy in the edge bands
without on-site terms. With the on-site non-Hermitian term, as
the two edge modes avoid each other in the imaginary part of the
energy, they are not degenerate and thus are prohibited to open
the real gaps (similar feature has been observed in the previous
study10 at the interface between gain and loss regions). This
avoidance protects the edge modes from opening gaps as
understood from the perturbation theory (see Supplementary
Note 4 for details). These results are consistent with the analysis
of the effective edge Hamiltonian. In Supplementary Notes 11
and 12, we further discuss the symmetry of the disordered
Hamiltonian and clarify its relation to the robustness of the
exceptional edge modes in both topologically trivial and
nontrivial systems. Especially, we demonstrate the existence of
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Fig. 3 Edge modes in disordered systems and their robustness. a–d Each inset shows the EPs (black crosses) and the curve of the degeneracy of the real
(blue wave curves) and imaginary (red curves) parts of the edge eigenenergies in the complex wavenumber plane. Each inset corresponds to all the pairs of
the edge modes with positive and negative group velocities. Because of the periodicity in the y direction, the band structure corresponds to the behavior on
the Re ky axis in the insets, whereas the EPs and the degeneracy curves in the complex wavenumber space are useful for predicting the behavior of the
edge modes. a The main panel shows the obtained exceptional edge modes in the system without disorder. The parameters used are u=−1, c= 0.2, β=
0.14, β0 ¼ 0:06, and γ= 0.05. b The main panel shows the edge dispersion with on-site random real potentials and imaginary disorder in the coupling term.
There still exist EPs and edge modes in the bulk energy gap. The noise widths are set to be W= 0.5 (W= 0.02) for the random real on-site potential (the
imaginary noise in the non-Hermitian coupling). c The gap is opened and the edge modes no longer exist in the system with random Hermitian couplings.
The noise width is set to be W= 0.1. d When we add imaginary on-site potentials, the edge modes are recovered even under the random Hermitian
couplings. This is because the wavenumber should be real due to the periodic boundary condition in the y direction and the real axis of the wavenumber
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the chiral-symmetry-protected exceptional edge modes and the
importance of the modification of the PT symmetry and the CP
symmetry for the protection of the exceptional edge modes.

In general, in Hermitian systems, the physical significance of
the periodic table obtained from the bulk band topology is
guaranteed by the bulk-edge correspondence that consistently
predicts the presence or absence of robust gapless edge modes at
open boundaries4. In contrast, in non-Hermitian cases, our
findings force us to fundamentally alter this point of view. In
particular, when g ≠ 0 and γ= 0 in our model, there exist the
robust gapless edge modes as in Fig. 3d (g ≠ 0 and γ ≠ 0), whereas
the bulk topological invariant is trivial as inferred from the
topological classification23,30,31 (see Supplementary Note 10 for
details). In other words, the robust gapless edge modes found
here violate the bulk-edge correspondence and cannot be
captured by the existing periodic tables23,30,31 of non-Hermitian
topological phases, thus challenging the conventional classifica-
tion based on Bloch Hamiltonians.

Application to amplifying edge modes. Next, we show that
amplified exceptional edge modes with nonzero group velocity
can be realized. Specifically, we find that the general form of
effective edge Hamiltonians is given by

Hedge ¼
E0 � ia∂y iβ

iβ0 E0 þ i∂y

 !
; a≠ 1; ββ0 > 0: ð4Þ

We derive the dispersion relation of this effective Hamiltonian,

EðkyÞ ¼ E0 þ ½ða� 1Þky ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þ2k2y � 4ββ0

q
�=2, which exhi-

bits EPs at ky ¼ ± 2
ffiffiffiffiffiffiffi
ββ0

p
=ðaþ 1Þ and nonzero group velocity.

Although this Hamiltonian describes the generic behavior of
lasing edge modes utilizing exceptional edge modes, we construct
a concrete tight-binding model represented by the following
Hamiltonian:

H ¼
2HQWZ iβσx
iβ0σx H�

QWZ

 !
; ð5Þ

where HQWZ is the Hamiltonian of the QWZ model. Figure 4a
shows the edge band structure of this system. Nonzero imaginary
parts of the eigenenergies appear only in the edge modes as in our
first model. Also, the edge modes exhibit nonzero slopes of the
real energy dispersion ∂ReE=∂k, which correspond to nonzero
group velocities. Thus, we can observe the amplified wave packet
propagating along the edge of the sample, which allows us to
stably transfer the energy and thus may find potential applica-
tions. We note that this Hamiltonian is neither time-reversal
symmetric nor pseudo-Hermitian. The sum of the Chern num-
bers for the bands under the energy gap is zero in our model,
which indicates the bulk triviality in the conventional sense.
Therefore, the edge modes are protected not by the bulk band
topology but by the EPs.

In general, exceptional edge modes are essential for this
construction of a topological insulator laser. To obtain lasing edge
modes, we must utilize a pair of edge modes localized at the same
side whose dispersion relations cross each other without coupling
terms. Also, to accomplish nonzero group velocity, the absolute
values of the slopes of the edge energy bands must be different.
Therefore, the degeneracy is not protected by the bulk band
topology or the symmetry and thus can be resolved by Hermitian
couplings as shown in Fig. 4b. On the contrary, non-Hermitian
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Fig. 4 Band structure for realizing lasing edge modes with nonzero group velocities. a Combining the Qi-Wu-Zhang (QWZ) model with large hoppings
and the time-reversal QWZ model by a non-Hermitian coupling, we obtain the model with the edge band structure shown in the main panels. The edge
dispersions between the pairs of EPs (red points) exhibit the nonzero imaginary part of the energy and the nonzero slope of the real part of the energy.
Since the slope of the real part of the energy corresponds to the group velocity of the edge mode, these lasing edge modes have nonzero group velocity and
propagate along the edge of the sample. The inset presents the enlarged view of the low momentum region indicated by the green dashed box and the red
points represent the EPs in the edge dispersions. The parameters used are u=−1, β= 0.2, and β0 ¼ 0:1. b To obtain the lasing edge modes with nonzero
group velocity, we utilize two edge modes which have opposite signs and different absolute values of the slope of the dispersion relation. By combining
these edge modes by a non-Hermitian coupling term, we obtain exceptional edge modes, which can be applied to construct a topological insulator laser
while Hermitian couplings open the gap owing to the avoided crossing.
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couplings lead to both the enhancement and the robustness of the
edge mode. Thus, the lasing edge mode must be an exceptional
edge mode.

We demonstrate the real-space dynamics of our topological
insulator laser (Eq. (5)) by numerical calculations (see Supple-
mentary movies 1-3). Figure 5 shows the snapshots for the real-
space distributions of the probability densities of the wave
functions. Without non-Hermitian coupling, β ¼ β0 ¼ 0, the bulk
oscillation survives. With non-Hermitian coupling, β; β0 ≠ 0, the
bulk oscillation becomes much smaller than the edge oscillation
in a short time, and only the edge mode remains even if we start
with the random initial state. Also, we can confirm that the edge
mode has nonzero group velocity. Furthermore, we introduce
disorder on the edge and excite only one edge site. Then, we
obtain the propagating edge mode without backscattering. This
implies the robustness of the exceptional edge mode against the
disorder at the edge. In contrast to the previous research33,34, we
do not need to introduce judicious gain along the edge. This
difference can potentially facilitate the realization of topological
insulator laser in various physical setups.

Active matter realization of exceptional edge modes. Analogous
to the conventional topological edge modes62, the exceptional
edge modes can also exist in continuum systems. We construct a
continuum toy model and confirm the existence of exceptional
edge modes by calculating the band structure (see Methods and
Supplementary Note 7 for the detail of the model). Figure 6
represents the edge band structure of the continuum model.
Although the bulk bands are topologically trivial as in the tight-
binding model (Eq. (1)), it exhibits the robust exceptional edge
modes.

To show that exceptional edge modes are indeed realizable in
realistic systems, we focus on a continuum active matter model.
We consider chiral active matter without the left-right symmetry
in which each particle moves on a clockwise (or counter-
clockwise) circular trajectory (Fig. 7a). We mix clockwise and
counterclockwise moving particles. We also assume that the
chirality of active particles flips occasionally and the flipping rate
γ is symmetric between clockwise and counterclockwise moving
particles. The active particles have long and narrow shapes. We
assume that polar interaction acts on them, which aligns the
neighboring particles and effectively appears in some self-
propelled rods63. Anti-polar interaction is also allowed to exist
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Fig. 5 Real-space simulation of the lasing edge modes. a–c The color represents the probability amplitude at each site, which is normalized so that the
sum of squares gives unity. We set the parameter u=−1 throughout the calculations in this figure. aWithout the non-Hermiticity (β ¼ β0 ¼ 0), all the bulk
modes can survive for a long time and thus lasing of edge modes fails to happen. b With the non-Hermitian coupling (β= 0.2, β0 ¼ 0:1), only the edge
mode is enhanced even if we start from a random initial state. We can also confirm the propagation of the wave packet. c Starting from the excitation of
one site at the edge, we confirm that a wave packet propagates along the edge of the sample. Even in the presence of distortion at the edge (represented
by the gray sites), the edge wave packet avoids it and propagates without dissipation. The parameters used are β= 0.9 and β0 ¼ 0:8.
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between particles with opposite chirality. This setup can possibly
be experimentally realized by utilizing bacteria53, artificial L-
shaped particles54, or robotic rotors52. To be concrete, we expect
that exceptional edge modes can appear in bacteria swimming
between the two plates at the distance shorter than the bacteria
length and in L-shaped active particles that are occasionally
turned over (see Supplementary Note 8 for further details). Here,
the crucial requirements for the experimental realization of
exceptional edge modes are the flippable chirality and the
momentum coupling.

In Fig. 7b, we show the existence of exceptional edge modes by
numerically diagonalizing the effective Hamiltonian of our active
matter model, which is derived by linearizing the hydrodynamic
equations46,64 (see Methods and Supplementary Methods). We
confirm that a pair of EPs appear at the frequency ω= 0 and
support the robustness of the edge modes. Meanwhile, at a glance,
there are degeneracies in the bulk gap. However, the edge modes
avoid each other in the imaginary part of the frequency as in
Fig. 3d, and thus these apparent degeneracies are robust against
the disorder. We obtain two other crossings on the Re E ¼ 0 axis,
which correspond to the points where unprotected edge bands
appear from the bulk bands around the axis (see Supplementary
Note 9 for the detail on the function of these crossing). In realistic
experimental situations, we expect that the oscillation of the
fluctuation of the density or the velocity field propagates at the
edge of the sample in the direction depending on the chirality of
particles (i.e., clockwise or counterclockwise) when we apply the

perturbation with a small frequency compared to the bulk
bandgap, which is almost equal to the frequency of rotation ω.
The imaginary parts of the eigenvalues are all nonpositive, and
thus we need further modification of the active system to apply
the proposed setup to lasing devices.

Discussion
We revealed the existence of robust gapless edge modes unique to
non-Hermitian systems by utilizing EPs. These edge modes,
which we called exceptional edge modes, can exist even when the
bulk topology is trivial. We also analyzed and confirmed the
robustness of the edge modes by constructing the effective edge
Hamiltonian. By utilizing these edge modes, we proposed a
topological insulator laser whose edge modes were amplified and
propagate along the edge. We also showed that the chiral active
particles with chirality flipping can exhibit the exceptional edge
modes and thus they can be realized in the upcoming experi-
mental techniques of active matter, whereas the model analyzed
here has only nonpositive imaginary parts of the eigenfrequencies
and thus exhibits no lasing behavior.

The edge modes found here provide an alternative design
principle to realize scattering-free edge current intrinsic to non-
Hermitian systems, which is not based on the bulk topology and
thus indicates that the conventional arguments on bulk topology,
including the periodic tables23,30,31, are insufficient to predict the
presence or absence of robust edge modes in non-Hermitian
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the left (right) direction as shown in the blue (red) arrow. These two types of chiral active matter are mixed and the chirality can flip at a constant rate.
b The edge band structure calculated for the cylindrical system is shown. The negativity of the imaginary part of eigenenergies implies the linear stability of
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systems. Exceptional edge modes in higher-dimensional systems
are important to further elucidate a nontrivial role of open
boundaries in non-Hermitian systems. Furthermore, our active
matter model demonstrates that hydrodynamics of active matter
can be applied to non-Hermitian topological phenomena, indi-
cating that active matter provides a useful platform for exploring
non-Hermitian topology.

Methods
QWZ model and numerical calculations of the tight-binding model. The
Hamiltonian of the QWZ model in the wavenumber space can be described as
HðkÞ ¼ sin kxσx þ sin kyσy þ ðuþ cos kx þ cos kyÞσz59. This model exhibits the
two bulk bands with the Chern number C= ±1 and a bandgap around E= 0. By
transforming it to the real-space basis via the inverse Fourier transformation, we
obtain the Hamiltonian in the real space (see Supplementary Methods for the
detailed description). To calculate the edge band structures, we transform only
sin kx and cos kx , and obtain the Hamiltonian of our model with the hybrid
boundary conditions, i.e., the open boundary conditions in the x direction and the
periodic boundary conditions in the y direction. We arrange the 50 unit cells in the
x direction and consider the 1 × 50 super-ribbon structures. Diagonalizing the
obtained Hamiltonians, we calculate the edge band structures of our model.

We also introduce the disorder terms in Fig. 3. We use a(x){I2, σz}⊗ {I2, σz}⊗ {I2, σz}
and b(x){σx, iσy} ⊗ {I2, σz} ⊗ {σx, iσy} as the random real on-site potential and the
imaginary and real noise in the non-Hermitian coupling for each, where brackets
mean that we introduce all the combinations made by choosing either one in each
bracket. a(x) and b(x) are random values for each x from uniform distributions
ranging ½�W;W� 2 R or i½�W;W� 2 iR. We set a(x) to be real and W= 0.5 in
Fig. 3b. Also, we set b(x) to be imaginary (real) for the imaginary (real) noise in the
non-Hermitian coupling and W= 0.02 (W= 0.1) in Fig. 3b (Fig. 3c, d). We also
consider on-site imaginary potential igσz ⊗ I2 ⊗ I2 and set g= 0.2 in Fig. 3d.

To calculate the real-space dynamics of lasing modes in the finite system, we
perform the inverse Fourier transformation for all the terms in H(k) and impose
the open boundary conditions both in the x and y directions. We arrange the 20 ×
20 sites, which have four sublattices for each of the sites. We calculate the time
evolution under the Hamiltonian by using the fourth-order Runge-Kutta method.
We set the time step dt= 0.001 and use the parameters u=−1. The parameters of
the non-Hermitian coupling are set to be β ¼ β0 ¼ 0 in Fig. 5a, β= 0.2, β0 ¼ 0:1 in
Fig. 5b, and β= 0.9, β0 ¼ 0:8 in Fig. 5c.

Derivation of the condition for remaining gapless edge modes. From the
analysis of the effective edge Hamiltonian (Eq. (3)), we conclude that

jIm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
j≤ jIm αj is the necessary and sufficient condition for the existence of

gapless edge modes. To show this, we start from the equation

Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky þ αÞ2 � β2 � γ2

q
¼ 0, which leads to the eigenenergy E±= E0 ± iδ with δ

being a real number. For a wavenumber satisfying this equation, the real parts of
the two eigenenergies become the same, and thus we obtain the gapless edge
modes. Then, we prove that the existence of such a wavenumber is equivalent to

the condition jIm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
j≤ jIm αj. We consider α0 ¼ Im α and k0 ¼ ky þ Re α,

and obtain ðky þ αÞ2 ¼ k
02
y � α

02 þ 2ik0α0 . Similarly, if we describeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
¼ l þ iβ0 , we obtain β2 þ γ2 ¼ l2 � β

02 þ 2ilβ0. To makeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky þ αÞ2 � β2 � γ2

q
a real or a pure imaginary number, we have to set

Im½ðky þ αÞ2 � β2 � γ2� ¼ 0 and thus consider k0 ¼ lβ0=α0 . Then, Re½ðky þ αÞ2 �
β2 � γ2� ¼ ðl2 þ α

02Þðβ02 � α
02Þ=α02 and this is zero or negative if and only if

β
02 ≤ α

02. Thus jIm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2

q
j≤ jIm αj is the necessary and sufficient condition for

the existence of a wavenumber satisfying Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðky þ αÞ2 � β2 � γ2

q
¼ 0.

Continuum model of the exceptional edge modes. To construct the continuum
model of the exceptional edge modes, we consider the 2 × 2 continuum Hamilto-
nian Hcont analyzed in the previous paper62 (see Supplementary Note 7 for details),
which describes the low-energy dispersion of a higher-Chern-number insulator
(the Chern number C= 2). We combine it and its time-reversal counterpart H�

cont
by a non-Hermitian coupling. The obtained Hamiltonian is described as below:

H ¼

M � β∇2 að�i∂x � ∂yÞ
2 0 ib

að�i∂x þ ∂yÞ
2 �M þ β∇2 ib0 0

0 ib M � β∇2 aði∂x � ∂yÞ
2

ib0 0 aði∂x þ ∂yÞ
2 �M þ β∇2

0
BBBBB@

1
CCCCCA; ð6Þ

where M, β, a, b, and b0 are real parameters. To numerically calculate the band
structure, we must discretize the space and modify the derivative in the Hamil-
tonian into the difference between the neighboring sites. Here, we use central

differences to discretize the first- and second-order x derivatives, ∂x and ∂2x , in the
Hamiltonian. We impose the open boundary condition in the x direction. On the
contrary, we consider the periodic boundary condition in the y direction and
convert the derivative ∂y into iky to obtain the effective Bloch Hamiltonian. We
discretize the space into 50 sites in the x direction and set the discretization step to
be unity. As in the tight-binding model, by numerically diagonalizing the obtained
Hamiltonian, we calculate the edge band structure for the continuum model. We
use the parameters M= 0.5, a= 1, b= 0.5, b= 0.3, and b0 ¼ 0:2 in the numerical
calculation.

Derivation of the effective Hamiltonian for two-component chiral active
matter. We start with the Vicsek-type model65 with a constant rotational force on
each chiral particle. We can derive hydrodynamic equations from such a particle
model via the Boltzmann-Ginzburg-Landau approach66,67. First, we derive the
Boltzmann equation of our particle model. Then, we consider the Fourier modes of
the density function and only keep the leading order terms. The obtained equations
can be interpreted as the hydrodynamic equations of active matter considered here.
As a further step, we consider fluctuations of the density and the velocity fields
from the unordered steady state. By linearizing the hydrodynamic equation with
respect to those fluctuations, we finally obtain the linearized eigenequation. The
coefficient matrix corresponds to the effective Hamiltonian of our model and is
described as,

H ¼
H0 þ A C

�C� H�
0 þ A

� �
; ð7Þ

with H0, A, and C being

H0 ¼
0 �i∂x �i∂y

�i∂x 0 �iðω0 þ νoΔÞ
�i∂y iðω0 þ νoΔÞ 0

0
B@

1
CA; ð8Þ

A ¼
�iγ 0 0

0 �iβ 0

0 0 �iβ

0
B@

1
CA; ð9Þ

C ¼
iγ 0 0

0 iβ 0

0 0 iβ

0
B@

1
CA: ð10Þ

Further details are provided in Supplementary Methods.
To numerically calculate the band structure, we must modify the derivative in

our effective Hamiltonian into the difference between the neighboring sites in the
discretized space as in the continuum model. Here, we use central differences to
discretize the first- and second-order x derivatives, ∂x and ∂2x , in our effective
Hamiltonian. We impose the open boundary condition in the x direction. On the
contrary, we consider the periodic boundary condition in the y direction and
convert the derivative ∂y into iky to obtain the effective Bloch Hamiltonian. We
discretize the space into 50 sites in the x direction and set the discretization step to
be unity. As in the tight-binding model, by numerically diagonalizing the obtained
Hamiltonian, we calculate the edge band structure of our active matter model. The
parameters used in the numerical calculation are ω0= 1, νo= 0.5, γ= 0.3, and β=
0.5.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author on request.
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