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Abstract: Cystinosin is a lysosomal transmembrane protein which facilitates transport of the
disulphide amino acid cystine (CySS) from the lysosomes of the cell. This protein is encoded
by the CTNS gene which is defective in the lysosomal storage disorder, cystinosis. Because of
the apparent involvement of cystinosin in the intermediary thiol metabolism, its discovery has
fuelled investigations into its role in modulating cellular redox homeostasis. The kidney proximal
tubular cells (PTCs) have become the focus of various studies on cystinosin since the protein is
highly expressed in these cells and kidney proximal tubular transport dysfunction is the foremost
clinical manifestation of cystinosis. The lysosomal CySS pool is a major source of cytosolic cysteine
(Cys), the limiting amino acid for the synthesis of an important antioxidant glutathione (GSH)
via the γ-glutamyl cycle. Therefore, loss of cystinosin function is presumed to lead to cytosolic
deficit of Cys which may impair GSH synthesis. However, studies using in vitro models lacking
cystinosin yielded inconsistent results and failed to establish the mechanistic role of cystinosin in
modulating GSH synthesis and redox homeostasis. Because of the complexity of the metabolic
micro- and macro-environment in vivo, using in vitro models alone may not be able to capture the
complete sequence of biochemical and physiological events that occur as a consequence of loss of
cystinosin function. The coexistence of pathways for the overall handling and disposition of GSH, the
modulation of CTNS gene by intracellular redox status and the existence of a non-canonical isoform
of cystinosin may constitute possible rescue mechanisms in vivo to remediate redox perturbations
in renal PTCs. Importantly, the mitochondria seem to play a critical role in orchestrating redox
imbalances initiated by cystinosin dysfunction. Non-invasive techniques such as in vivo magnetic
resonance imaging with the aid of systems biology approaches may provide invaluable mechanistic
insights into the role of cystinosin in the essential intermediary thiol metabolism and in the overall
regulation cellular redox homeostasis.
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1. Introduction

Cystinosin is a lysosomal transmembrane protein whose chief function is to transport CySS from
the lysosomal compartment to the cytosol [1–6]. CySS is a disulfide amino acid that is generated
from the oxidation of the sulfhydryl groups of two Cys molecules via the formation of disulphide
bonds. The discovery of cystinosin and its function in 2001 [4,7] has attracted many researchers to
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further investigate its regulation, interaction with other proteins and its role in cellular homeostasis,
especially in kidney PTCs. Cystinosin is more widely known for its key involvement in the molecular
pathogenesis of the lysosomal storage disorder, cystinosis (MIM 21,980). Cystinosis is a rare autosomal
recessive disorder characterized by the excessive accumulation of a CySS in the lysosomes of the
cell [1,2,8]. The estimated incidence of cystinosis is 1 in 100,000 to 200,000 live births and has been
documented worldwide [1,2]. The disease is caused by mutations in the CTNS gene which encodes
for cystinosin [1–3,8]. The discovery of the CTNS gene has provided the fundamental basis for
various molecular groundwork in cystinosis. These include the identification of different mutations in
CTNS gene associated with different clinical variants of cystinosis and the molecular characterization
of cystinosin.

The multi-systemic effects of the loss of cystinosin function or its deficiency in cystinosis patients
fuelled investigations into the role of cystinosin in cellular homeostasis, most especially in the kidneys
being the most vulnerable organ in the natural evolution of the disease [1,2,9,10]. Kidney dysfunction
associated with cystinosis clinically manifests as excessive wasting of water, electrolytes, minerals
and essential nutrients into the urine, a clinical condition known as renal Fanconi syndrome [1,2,8,9].
Infants with the classic nephropathic cystinosis show signs of renal Fanconi syndrome as early as six
months of age which leads to failure to thrive in affected children [1,2]. Despite the plethora of studies
on the molecular characteristics and function of cystinosin, its role in maintaining cellular integrity
and tissue function remains to be established. This review article examines the current status of our
understanding on the role of cystinosin in the cellular intermediary thiol metabolism. Towards this
goal, the potential role of cystinosin in modulating cellular redox homeostasis (or vise versa) and
its impact on cellular integrity and tissue function are discussed, with special emphasis on kidney
proximal tubules.

2. Historical Aspects

The probable existence of a lysosomal CySS transporter was first recognized in the late 1960s
through the differential centrifugation studies performed on cystinotic leukocytes [11,12] and
fibroblasts [13] which demonstrated that large amounts of CySS co-sedimented with lysosomal
enzymes. Since no CySS-reducing systems were known to exist in the lysosomes at that time,
it was hypothesized that defective CySS transport may have been the cause of CySS accumulation
in cystinosis patients. This hypothesis was reinforced in the 1980’s through the studies performed
on whole lysosomes artificially loaded with high concentrations of CySS using a lysomotropic agent
CySS dimethyl ester. Various studies independently demonstrated rapid CySS egress from normal
lysosomes, whereas this activity was abolished in cystinotic lysosomes [14–16]. Furthermore, the latter
studies have provided clues into the existence of an unknown CySS transporter because CySS efflux
exhibited saturation kinetics [16] and CySS counter transport was demonstrated across the lysosomal
membrane [17]. It thus became apparent that the excessive accumulation of CySS in the lysosomes,
associated with cystinosis, was due to a defective lysosomal transporter that facilitates CySS exodus
from the lysosomal compartment.

3. Molecular Characterization of Cystinosin

The Mendelian pattern of inheritance was already recognized in the first cases of cystinosis that
were reported but the causative gene was not identified until 1998 by positional cloning [7]. The gene
responsible for cystinosis, known as CTNS, was mapped to the short arm of chromosome 17 (17p13)
using linkage analysis [18]. To determine the precise genomic organization of CTNS, the region of
human chromosome 17p13 encompassing the CTNS gene was mapped and sequenced [19]. The gene
contains 12 exons distributed across approximately 23 kb of genomic DNA, first two of which are
noncoding [7] (Figure 1). The remaining 10 exons encode the 367 amino acids that make up cystinosin
(Figure 1).
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Figure 1. The CTNS gene and the predicted molecular structure of cystinosin. The CTNS gene was 
mapped to the short arm of chromosome 17 (17p13) using linkage analysis (A). The gene contains 12 
exons distributed across approximately 23 kb of genomic DNA (B). The first two of which are 
noncoding. The remaining 10 exons encode the 367 amino acids that make up cystinosin. Using the 
open-source tool for visualization of proteoforms, PROTTER [20], the two cystinosin isoforms were 
visualized (C). The canonical cystinosin isoform (UniProt #O60931-1) is predicted to contain seven 
transmembrane domains, a 128 amino acid N-terminal region bearing seven potential 
N-glycosylation sites (green-colored circles), a non-cleavable signal peptide, and a 10 amino acid 
cytosolic C-terminal tail. Targeting of cystinosin to the lysosomes requires a signal peptide. At least 
two lysosome-targeting motifs have been identified. The cytosolic C-terminal domain of cystinosin 
resides a tyrosine-based GYDQL motif (red-colored circles, residue 362–366). The second motif, 
termed YFPQA (red-colored circles, residues 281–285), was mapped to the third predicted 
cytoplasmic loop. Some of the identified mutations are shown (yellow circles). These mutations 
include missense mutations, in-frame deletions, and insertions which account for  different clinical 
variants of cystinosis. An alternative splicing of the exon 12 that removes the GYDQL motif 
generates the second isoform of cystinosin (UniProt #O60931-2). This second cystinosin isoform is 
termed cystinosin-LKG based on its last three amino acids. Cystinosin-LKG differs from the 
canonical isoform in the carboxy-terminal sequence (cyan-colored circles) and its proposed motif 
critical for the protein sorting to the plasma membrane, SSLKG (purple-colored circles). Both (A,B) 
were generated using the open-source visualization tool, Ensembl 2018 [21]. 

Figure 1. The CTNS gene and the predicted molecular structure of cystinosin. The CTNS gene was
mapped to the short arm of chromosome 17 (17p13) using linkage analysis (A). The gene contains
12 exons distributed across approximately 23 kb of genomic DNA (B). The first two of which are
noncoding. The remaining 10 exons encode the 367 amino acids that make up cystinosin. Using the
open-source tool for visualization of proteoforms, PROTTER [20], the two cystinosin isoforms were
visualized (C). The canonical cystinosin isoform (UniProt #O60931-1) is predicted to contain seven
transmembrane domains, a 128 amino acid N-terminal region bearing seven potential N-glycosylation
sites (green-colored circles), a non-cleavable signal peptide, and a 10 amino acid cytosolic C-terminal
tail. Targeting of cystinosin to the lysosomes requires a signal peptide. At least two lysosome-targeting
motifs have been identified. The cytosolic C-terminal domain of cystinosin resides a tyrosine-based
GYDQL motif (red-colored circles, residue 362–366). The second motif, termed YFPQA (red-colored
circles, residues 281–285), was mapped to the third predicted cytoplasmic loop. Some of the identified
mutations are shown (yellow circles). These mutations include missense mutations, in-frame deletions,
and insertions which account for different clinical variants of cystinosis. An alternative splicing
of the exon 12 that removes the GYDQL motif generates the second isoform of cystinosin (UniProt
#O60931-2). This second cystinosin isoform is termed cystinosin-LKG based on its last three amino acids.
Cystinosin-LKG differs from the canonical isoform in the carboxy-terminal sequence (cyan-colored
circles) and its proposed motif critical for the protein sorting to the plasma membrane, SSLKG
(purple-colored circles). Both (A,B) were generated using the open-source visualization tool, Ensembl
2018 [21].
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To date, more than 90 mutations have been described in all forms of cystinosis [3]. Some of
the mutations in the CTNS gene are shown in Figure 1 which account for different clinical variants
and severity of cystinosis. These include missense mutations, in-frame deletions and insertions.
There are no mutational hotspots but, by far, the most prevalent is the 57-kb deletion [3,6,7,19].
This mutation accounts for approximately of 50% of individuals with nephropathic cystinosis in
the United States and Northern European populations [1,2]. This founder mutation encompasses
the first nine exons and introns of CTNS gene and interrupts exon 10 leading to the complete loss
ofof cystinosin expression [1–3,6,19]. Within the group of individuals with nephropathic cystinosis,
truncating CTNS mutations, as well as the 57-kb deletion, result in a severe, infantile form of the
disease [1,2]. In individuals with intermediate and non-nephropathic cystinosis, the 57-kb deletion
may be present in heterozygous state, along with a more benign mutation [1,22–24]. Presumably,
these mutations allow some residual CySS transport, accounting for mild clinical presentation of the
disease [1,6].

The crystal structure of cystinosin has not been generated to date. Human cystinosin is predicted
to contain seven putative transmembrane domains, a large 128-amino acid N-terminal domain, which
is oriented towards the lysosomal lumen, and a short 10-amino acid C-terminal tail, which resides in
the cytosol (Figure 1). The N-terminal domain possesses seven potential N-glycosylation sites and a
non-cleavable signal peptide, while the C-terminal domain contains a tyrosine-based sorting motif
required for its delivery to lysosomes [1,7,19].

Transfection and co-localization studies of a cystinosin-enhanced green fluorescent protein
(pCTNS-EFGP) fusion plasmid construct revealed that cystinosin is localized to the lysosomes [4].
Furthermore, immunohistochemical studies using anticystinosin antibodies demonstrated abundance
of cystinosin in kidney PTCs, which appeared microgranular and diffusely distributed within the
cytoplasm [25]. In contrast, lower expression of cystinosin was only observed in distal tubules and
glomeruli. This differential localization pattern suggests that cystinosin is highly required in PTCs but
not in glomeruli and may explain why proximal tubulopathy generally manifests at a very early stage
of cystinosis, whereas glomerular dysfunction appears only later in the course of the disease [3].

Targeting of cystinosin to the lysosomes requires a signal peptide. At least two lysosome-targeting
motifs have been identified (Figure 1). The cytosolic C-terminal domain of cystinosin contains
a tyrosine-based GYDQL motif (residue 362–366) [4], which resembles the classic tyrosine-based
lysosomal targeting motif GY-XX-Φ (X is any amino acid; Φ is a hydrophobic amino acid) [26].
Mutation or deletion of the GYDQL motif, in particular of tyrosine (Y) or leucine (L) residues, results
only in the partial redirection of cystinosin to the plasma membrane. The second motif YFPQA (residue
281–285) was mapped to the third predicted cytoplasmic loop by site-directed mutagenesis [4]. Point
mutations in the YFPQA motif did not affect the localization of cystinosin, suggesting that the YFPQA
sequence may not be obligatory for the targeting of cystinosin to the lysosomes [6]. It appears that
the GYDQL and YFPQA motifs follow a co-dependency relationship since deletion of the YFPQA
pentapeptide, coupled to the deletion of the GYDQL motif, resulted in a complete relocalization of
cystinosin to the plasma membrane [4]. Although the YFPQA motif appears to be not critical in the
lysosomal targeting of cystinosin, it was suggested that this motif forms a novel conformational motif
in the fifth inter-transmembrane loop, likely as a part of its secondary structure [6].

Another cystinosin isoform was identified and termed cystinosin-LKG based on its last three
amino acids (Figure 1). This isoform is generated by an alternative splicing of exon 12 that
removes the GYDQL motif [27]. Unlike the canonical isoform, transient transfection experiments
of cystinosin-LKG-GFP fusion plasmids in a kidney PTC line, HK-2, revealed that cystinosin-LKG
is not only restricted to the lysosomes but is also expressed in the plasma membrane and in other
cytosolic structures [27]. Site-directed mutagenesis experiments showed that the carboxyl-terminal
SSLKG sequence of cystinosin-LKG is essential for the efficient targeting of this protein to the
plasma membrane where it mediates H+-coupled CySS transport [28]. Cystinosin-LKG expression is
ubiquitous and represents 5–20% of CTNS transcripts, with the exception of the testis in which both
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isoforms are expressed in equal proportions [29]. Cystinosin-LKG was found to be highly expressed
in renal PTCs, pancreatic islets of Langerhans, Leydig cells of the testis, mucoserous glands of the
bronchial wall, melanocytes and keratinocytes [29]. The high expression of cystinosin-LKG in these
cells and tissues appears to coincide with the clinical features of cystinosis such as renal Fanconi
syndrome, male infertility, diabetes mellitus, and hypopigmentation [29].

4. Function of Cystinosin

The molecular function of cystinosin was determined by deleting the C-terminal GYDQL sorting
motif (cystinosin-∆GYDQL), therefore redirecting cystinosin to the plasma membrane of COS cells [5].
Using this strategy, the ability of cystinosin to transport CySS could be examined in whole cells
resembling a giant ‘inside-out’ lysosomes [5]. These cells expressing cystinosin-∆GYDQL was
demonstrated to selectively take up L-CySS from the extracellular medium at acidic pH. However,
CySS transport activity was abolished when the transmembrane pH gradient is disrupted between
the acidic extracellular medium and neutral cytosol. These observations indicate that cystinosin
co-transports CySS and H+, hence, cystinosin operates as a CySS-H+ symporter [5]. Thus, this cellular
model strongly supports previous studies on lysosomal CySS transport in which the lysosomal
H+-translocating ATPase promotes the acidification of lysosomal lumen which actively drives the
cystinosin-mediated CySS transport in the efflux direction [14,30,31]. Furthermore cystinosin-∆GYDQL
were shown to be highly specific for L-CySS and do not transport other amino acids, including the
Cys, which distinguishes it from known plasma membrane CySS transporters, 4F2hc/xCT [32] and
b0,+AT-rBAT [33]. The absence of homology to any known transporters and the predicted seven
transmembrane domain topology suggest that cystinosin defines a novel family of transporters.

5. Cystine Metabolism in the Kidney Proximal Tubules

CySS is normally generated inside the lysosomes via endoproteolysis of disulphide-containing
proteins [34]. Wilmer et al. provided an excellent illustration of CySS metabolism in kidney PTCs [35].
In the kidney, almost all of the protein reabsorption takes place in the kidney proximal tubule
via receptor-mediated endocytosis from the brushborder membrane of the kidney PTCs (Figure 2).
Fusion of protein-containing transport vesicles with the lysososomes allows internalization of the
CySS-containing proteins by the lysosomes. These proteins undergo cathepsin-catalyzed degradation
which generates CySS in the lysosomes. Cystinosin facilitates the proton-driven efflux of CySS into
the cytosol. CySS is rapidly reduced to Cys by cytosolic reducing systems with the concomitant
oxidation of GSH to glutathione disulphide (GSSG). The Cys generated in the cytosol can be used
for the synthesis of GSH or intracellular proteins. Experimental data on cystinotic leukocytes and
fibroblasts showed that part of the lysosomal CySS pool originates from the uptake of extracellular
non-protein CySS [12,36]. In kidney PTCs, the uptake of non-protein CySS from the extracellular
lumen is primarily mediated by a heterodimeric exchanger, b0,+AT-rBAT, encoded by the SLC7A9 and
SLC3A1 genes, respectively [33,37] (Figure 2). Mutations in these genes cause cystinuria, which is
characterized by excessive wasting of CySS and dibasic amino acids into the urine [33,37]. Proteolysis
of CySS-containing proteins within the lysosomes contributes largely to the lysosomal CySS pool.
An interesting example is bovine serum albumin (containing 17 mol CySS/mol protein), which has been
reported to stimulate CySS accumulation in cystinotic fibroblasts when present in culture medium [34].
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Figure 2. Intermediary thiol metabolism in renal proximal tubular cells. CySS-containing proteins are 
reabsorbed from the brushborder membrane (BBM) of the PTCs via receptor-mediated endocytosis 
(A). The CySS-containing proteins enter the lysosomal compartment via fusion of protein-loaded 
transport vesicles with the lysosomes (B). These proteins undergo cathepsin-catalyzed degradation 
which generates CySS (C). Cystinosin facilitates the proton-driven efflux of CySS from the lysosomes 
into the cytosol (D). Cystinosin-LKG can also facilitate exodus of CySS from other cytosolic 
compartments (E). Non-protein CySS can be taken up by PTCs through heterodimeric CySS 
transporters, b0,+AT-rBAT and AGT1rBAT, and  contributes to the cytosolic CySS pool (F). In the 
cytosol, CySS is rapidly reduced to Cys by cytosolic reducing systems (G). Alternatively, Cys can also 
be produced via trans-sulfuration pathway (H). The Cys generated in the cytosol can be used for the 
synthesis of GSH via γ-glutamyl cycle (I) or synthesis intracellular proteins (J). Most of the GSH in 
the mitochondrial matrix is obtained from the cytosolic GSH pool via oxoglutarate carrier (OGC) or 
dicarboxylate carrier (DCC) (K). In the mitochondria, superoxide radicals (O2−•) generated from 

Figure 2. Intermediary thiol metabolism in renal proximal tubular cells. CySS-containing proteins are
reabsorbed from the brushborder membrane (BBM) of the PTCs via receptor-mediated endocytosis (A).
The CySS-containing proteins enter the lysosomal compartment via fusion of protein-loaded transport
vesicles with the lysosomes (B). These proteins undergo cathepsin-catalyzed degradation which
generates CySS (C). Cystinosin facilitates the proton-driven efflux of CySS from the lysosomes into the
cytosol (D). Cystinosin-LKG can also facilitate exodus of CySS from other cytosolic compartments (E).
Non-protein CySS can be taken up by PTCs through heterodimeric CySS transporters, b0,+AT-rBAT
and AGT1rBAT, and contributes to the cytosolic CySS pool (F). In the cytosol, CySS is rapidly reduced
to Cys by cytosolic reducing systems (G). Alternatively, Cys can also be produced via trans-sulfuration
pathway (H). The Cys generated in the cytosol can be used for the synthesis of GSH via γ-glutamyl
cycle (I) or synthesis intracellular proteins (J). Most of the GSH in the mitochondrial matrix is obtained
from the cytosolic GSH pool via oxoglutarate carrier (OGC) or dicarboxylate carrier (DCC) (K). In the
mitochondria, superoxide radicals (O2

−•) generated from oxidative phosphorylation are converted
to hydrogen peroxide (H2O2) by superoxide dismutase 2 (SOD2). H2O2 is eventually neutralized to
water (H2O) by glutathione peroxidase (GPx) which requires GSH as a cofactor. The kidney extracts
approximately 80% of GSH from the plasma. Approximately 50% of this GSH enters the PTCs via
sodium–dicarboxylate cotransporter 2 (SDCT2) and organic anion transporters 1 and 3 (OAT1/3) at
the BLM (L). Glomerular filtration accounts for approximately 30% of the GSH extraction via BBM
route. GSH can also undergo turnover by efflux into the lumen via either organic anion transporting
polypeptide 1 (OATP1) or multidrug resistance proteins 2 and 4 (MRP2/4) (M). The high activity of
γ-glutamyltransferase (GGT) and dipeptidase (DP) in the BBM of PTC facilitates degradation of GSH
to its constituent amino acids (N). The constituent amino acids are then taken up by their respective
transporters (AAT) (O) and are used for the cytosolic re-synthesis of GSH. Enzymes of the γ-glutamyl
cycle: γ-glutamylcysteine synthetase (1); GSH synthase (2); γ-glutamyl transpeptidase (3); γ-glutamyl
cyclotransferase (4); 5-oxoprolinase (5).
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Although identification and characterization of amino acid transporters in renal PTCs appear
to be almost settled, transporters involved in CySS reabsorption remain to be completely elucidated.
Most recently, a novel CySS transporter in renal proximal tubule was identified as the ‘missing partner’
of cystinuria-associated apical b0,+AT-rBAT [38]. This transporter AGT1, encoded by the SLC7A13
gene, has long been postulated as the second CySS transporter in the S3 segment of proximal tubules
and a possible candidate involved in isolated cystinuria [38]. The AGT1-rBAT heterodimer was shown
to transport CySS and as well as aspartate and glutamate [38].

The discovery of cystinosin-LKG adds to the complexity of the intermediary thiol metabolism
in renal PTCs. This cystinosin isoform maintains the H+-mediated CySS transport activity of the
canonical isoform [28]. Cystinosin-LKG localizes to other cytosolic organelles and is expressed
in the plasma membrane [28]. Moreover, cystinosin-LKG widespread distribution across various
cellular structures suggests that this isoform can participate in the regulation of intermediary thiol
metabolism. Of particular note was the observation that CySS depletion can promote upregulation of
cystinosin-LKG in the plasma membrane [28]. Therefore, it can be hypothesized that cystinosin-LKG
could facilitate CySS uptake from the extracellular medium during conditions when the cystolic Cys
becomes depleted. Despite these important discoveries of various transport systems that facilitate
CySS reabsorption in renal proximal tubule, the actual physiological contribution of each of this
transport system to the thiol availability and their influence on intermediary thiol metabolism remain
to be elucidated.

6. Cystinosin Is Modulated by Intracellular Thiol Availability and Redox Status

Previous seminal work on purified lysosomes from cystinotic cells [16,17] and, more recently,
the direct demonstration of the ability of cystinosin to transport CySS in the presence of a proton
gradient [5] have restricted the function of cystinosin to facilitating CySS efflux from the lysosomes.
Studies conducted by Bellomo et al. [39] demonstrated that cystinosin expression is modulated by
intracellular thiol availability and redox status. Under thiol-free conditions, HK-2 cells had reduced
intracellular Cys and GSH levels, accompanied by an increase in reactive (ROS) production [39].
These alterations correlated with a significant oxidation of Cys/CySS and GSH/GSSG couples with
progressive increase in CTNS mRNA levels [39]. The authors also observed a strong correlation
between intracellular Cys and CTNS gene expression (r2 = 0.85, p < 0.001) [39]. Moreover,
inhibition of GSH synthesis and induction of oxidative stress using L-buthionine sulfoximine and
tertbutylhydroperoxide, respectively, both stimulated CTNS mRNA expression in HK-2 cells [39].
Conversely, the effects of thiol depletion on CTNS mRNA levels could be reverted by Cys and GSH
precursors, N-acetyl-L-cysteine (NAC) and glutathione ethyl ester, respectively [39].

In another study, chronic CySS deprivation of HK-2 cells resulted in an increase in the CTNS
promoter activity and CTNS mRNA levels with significant stabilization of CTNS mRNA [40]. These
were associated with alterations in the intracellular redox potential of Cys/CySS and GSH/GSSG
couples toward a more oxidized state. Consistent with Bellomo et al. study [39], treatment of HK-2
cells with NAC successfully reversed all these effects.

The data above suggest that intracellular thiol availability and redox status may constitute
primary stimuli for the activation of cystinosin expression. That is, the cell may sense changes in its
intracellular thiol levels or redox state which, in turn, may respond to these changes by modulating
cystinosin expression [39,40]. Cystinosin activation may also be crucial to mobilize lysosomal CySS
stores under stressful conditions to provide sufficient Cys in the cytosol in an attempt to maintain
a normal cellular redox state. The mechanisms behind the thiol- and redox-mediated modulation
of cystinosin expression are not completely understood. It appears that it involves enhancement of
CTNS promoter activity with subsequent stabilization of CTNS mRNA [40]. However, because of
the complex regulatory elements and molecular crosstalks in vivo, it is very likely that it involves
coordinated action of a set of genes that encode for transcription factors, enzymes, or cell transporters
that are sensitive to cell stress induced by amino acid depletion or redox perturbations [40].
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The identification of the cystinosin-LKG isoforms again adds further complexity to the regulation
CySS efflux from various intracellular organelles. As stated previously, cytosolic CySS depletion can
promote upregulation of cystinosin-LKG in the plasma membrane [28]. Therefore, this non-canonical
form of cystinosin may also actively participate in sensing thiol/disulfide redox status. However, the
actual physiological contribution of this cystinosin isoform in maintaining a healthy cellular redox
state remains to be established. Recently, it was demonstrated that cystinosin-LKG appears to have
similar functional activity as the canonical cystinosin isoform and is essential in the viability of renal
PTCs [28].

7. Role of Cystinosin in Cellular Glutathione Homeostasis

GSH is a tripeptide consisting of the amino acids glutamate (Glu), Cys and glycine (Gly).
Unlike most proteins and peptides, the Glu and Cys residues of GSH are linked through a non-canonical
amide bonding between the γ-carboxyl group of Glu and the α-amino group of Cys. This isopeptide
bond is resistant to proteases making GSH practically ubiquitous in biological systems [41]. GSH is
the most abundant intracellular redox buffer and the main antioxidant that protects cells against
oxidative stress [35,42–44]. GSH plays numerous roles such as a substrate or cofactor for ROS and
drug metabolizing enzymes [41,45]. For example, GSH serves as an important cofactor for the GSH
peroxidase family of enzymes which metabolize hydrogen peroxide and lipid peroxides, preventing
oxidative damage to cellular components. GSH also plays an important role in regulation of cell
growth, proliferation and stress responses [41].

Cys is the rate-limiting amino acid in de novo synthesis of GSH [35,41]. A significant part of the
intracellular Cys pool is utilized for the synthesis of GSH through the γ-glutamyl cycle (Figure 2).
This process takes place in the cytoplasm and is catalyzed by two sequential ATP-dependent enzymes,
namely, γ-glutamylcysteine synthetase and GSH synthetase [41,45]. While most cells can synthesize
GSH, the rates of GSH production may not be sufficient to maintain normal cellular concentrations of
GSH during certain disease or stressful state. The observation of elevated urinary levels 5-oxoproline,
an intermediate of γ-glutamyl cycle, in untreated cystinosis patients [46] have prompted cystinosis
researchers to focus on perturbations in GSH synthesis in an attempt to explain the pathophysiology
of cystinosis.

Assuming that the CySS originating from the lysosomes supplies the majority of Cys in the
cytosol which, in turn, is used for the synthesis of GSH, a deficiency or absence of cystinosin may,
in theory, result in cytosolic deficit in GSH. However, the measurement of GSH levels in various
in vitro models of cystinosis has yielded inconsistent results. Earlier studies on the role of cystinosin
on GSH metabolism were conducted in various cell types obtained from cystinosis patients. Reduced
total GSH content was observed in cystinotic skin fibroblasts [47] and kidney PTCs [48]. In contrast,
Manucci et al. [49] reported normal basal GSH levels in human cystinotic fibroblasts but these cells
exhibited a more pronounced increase in pyroglutamate levels while GSH decreased to lower levels
compared to normal cells. In addition, human cystinotic fibroblasts had decreased capacity for
GSH synthesis following exposure to oxidative stress and upon inhibition of ATP synthesis [49].
These results suggest that the activity of ATP-dependent γ-glutamyl cycle may be compromised
under conditions of cystinosin deficiency. On the other hand, we and others reported that transient
silencing of CTNS gene in kidney PTC line, HK-2, resulted in a dramatic reduction of total intracellular
GSH and altered GSH/GSSG redox potential towards a more oxidized state [39,50]. Interestingly,
in one study, although no reduction in GSH was observed in cultured cystinotic fibroblasts, GSH
levels were reported to be inversely correlated with total intracellular CySS levels [51], suggesting
that CySS in the lysosomes may possibly be a limiting factor for the synthesis of GSH in the cystosol.
Conversely, examination of the fetal and non-fetal skin and lung-derived fibroblasts obtained from
cystinosis patients revealed normal [GSH]/[GSSG] ratio under steady-state conditions and following
inhibition of trans-sulfuration pathway and CySS/Glu antiporter system xc− [52], suggesting that the
loss of cystinosin function does not lead to cytosolic redox perturbations, at least in cystinotic cells in
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culture. GSH levels were found to be normal in cystinotic HPV 16 E6/E7-immortalized PTC line [53].
Similarly, total GSH content in simian virus 40 T antigen/human telomerase reverse transcriptase
(SV40 T/hTERT) conditionally immortalized renal PTCs obtained from the urine of cystinosis patients
was comparable with healthy controls [54]. Interestingly, GSSG were significantly increased in these
cells and correlated with intracellular CySS levels, which resulted in the alteration of GSH redox status.
In several other studies, no substantial alterations were observed in either GSH levels or γ-glutamyl
cycle enzyme activities in cystinotic fibroblasts [55–58]. These contradicting observations suggest that
alternative mechanisms exist to circumvent cystinosin dysfunction in an attempt to maintain cellular
redox homeostasis. However, the metabolic interconnections in vivo may add a daunting complexity
to a scenario where cells try to cope with disruption ofredox homeostasis as a consequence of loss of
cystinosin function.

Inconsistencies in the observations using in vitro models may be attributed to metabolic
differences between various cell types studied and differences in experimental conditions [35].
For example, differences in cell culture conditions pertaining to the composition of culture medium
(i.e., levels of thiols and serum) may cause discrepancies in thiol metabolism, hence, may affect the
intracellular GSH levels. However, in majority of the in vitro studies cited, the levels of thiols in cell
culture medium were not indicated. In one study, however, CTNS mRNA levels and GSH/GSSG and
Cys/CySS redox potentials were significantly altered in HK-2 cells in the absence thiols in cell culture
medium [39], which indicates that intracellular thiol availability can modulate CTNS gene expression
and redox status.

Different cells and tissues may also respond differently to changes in intracellular thiol or redox
status by modulating a set of genes that encode for amino acid transporters to compensate for the loss
of cystinosin. The protein expression overview of the Human Protein Atlas [59] indicates the kidneys
represent one of the tissues with the highest expression of disulphide-linked CySS transporters, b0,+AT
and rBAT, encoded by the SLC7A9 and SLC3A1 genes, respectively, while skin, liver, lung, muscles,
thyroid and other tissues minimally or do not express the same transporters (Figure 3). It is possible
that the levels of expression of different Cys/CySS transporters in various cell types and tissues may
produce differential responses to intracellular thiol depletion and/or redox perturbations.

Differences in the techniques employed in the measurement of GSH concentration may also
impact estimation of GSH content. Majority of the in vitro studies cited employed high performance
liquid chromatography (HPLC) for the measurement of GSH in cell lysates. HPLC is regarded as the
‘gold standard’ for the measurement of GSH and GSSG in biological samples and is more sensitive than
colorimetric techniques. A HPLC method coupled with UV detection employed for the measurement
of GSH species in A549 cells yielded a detection limit of 1 µM [60]. On the other hand, measurement
of GSH species using an enzyme recycling method coupled with microplate-based UV detection had a
detection limit of 103 µM [44]. The differences in sensitivity and specificity of these techniques may
present discrepancies in the estimation of GSH concentration in biological samples.
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Figure 3. Protein expression overview of known CySS transporters in various tissues. Using the
Human Protein Atlas [59], the protein expression overview of CySS transporters b0,+AT and rBAT,
encoded by the SLC7A9 (A) and SLC3A1 (B) genes, respectively, were visualized. The kidneys (orange
bar) represent one of the tissues with the highest expression of SLC7A9 and SLC3A1. The skin, liver,
lung, muscles, thyroid and other tissues minimally or do not express the same transporters. Only CySS
transporter genes with available protein data for which a knowledge-based annotation gave conclusive
results were included.

8. Alternative Rescue Mechanisms to Remediate Absence of Cystinosin

The use of in vitro models may underestimate the high metabolic activity of kidney PTCs
in vivo which almost exclusively depends from mitochondrial oxidative phosphorylation for ATP
production [35]. This results in a higher ROS production in vivo and may render cystinosin-deficient
cells more vulnerable to oxidative stress. Furthermore, because of the complex metabolic macro- and
micro-environment in vivo, it is also likely that other mechanisms may be involved to rescue the cells
from GSH deficiency as a consequence of reduction or absence of cystinosin function.

The kidneys highly depend on adequate supply of GSH to maintain a normal GSH/GSSG ratio
which is critical to protection against damaging ROS and to maintenance of normal function. Central to
the unique physiology of the kidney, in particular the proximal tubule, with respect to GSH homeostasis
lies in the coexistence of pathways for synthesis, degradation, efflux and uptake of GSH [45].
Intracellular GSH synthesis alone may not be sufficient to maintain intracellular GSH concentrations
especially during pathological states, such as cystinosis. Aside from the intracellular synthesis, renal
PTCs can obtain GSH from the extracellular space, via transport across the basolateral membrane
(BLM) (Figure 2). The organic ion transporters OA1 and OAT3 and the sodium–dicarboxylate 2
exchanger SDC2 represent major transport systems for the uptake of GSH from BLM of renal PTCs
which help in maintaining intracellular GSH levels [41,45].

As with many tightly regulated compounds, GSH degradation in the kidney occurs separately
from its synthesis and occurs primarily in the proximal tubule. The enzymes required for GSH
degradation are found extracellularly, specifically in the luminal or brush border membrane
(BBM) of renal PTCs. As shown in Figure 2, a part of the intracellular GSH undergoes turnover
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by being transported into the lumen via organic anion transporting polypeptide 1 (OATP1) or
multidrug resistance proteins 2 and 4 (MRP2/4). The BBM of renal PTCs possesses an ectoenzyme
γ-glutamyltransferase (GGT) which catalyzes the initial cleavage of the γ-glutamyl peptide bond
between the Gluand Cysresidues of GSH. This is followed by the hydrolysis of peptide bond between
the Cysand Glyresidues, which is catalyzed by the enzyme dipeptidase (DP). The constituent amino
acids are then reabsorbed into the renal PTCs by various amino acid transporters. Cys can then be
used for the synthesis of intracellular proteins or for the intracellular re-synthesis of GSH. In theory,
the high GGT activity in renal PTCs will practically degrade all luminal GSH and should supply the
PTCs with sufficient Cys for intracellular GSH synthesis [45]. Therefore, under pathological conditions
such as cystinosin dysfunction, PTCs may resort to redirecting GSH towards the renal circulation to
effectively enable its turnover.

The high energy demands and chronic exposure of the kidney to ROS necessitate a continuous
supply of antioxidants to maintain its normal function. Indeed, the kidneys extract approximately
80% of the plasma GSH pool during a single pass of the blood through the renal circulation [45].
Approximately 50% of GSH removal from renal plasma occurs via BLM route with the aid of GSH
transporters, OAT1/3 and SDC2 (Figure 2) [45]. Glomerular filtration accounts for approximately 30%
of GSH removal via the BBM route through the action of GGT and DP [45]. Moreover, the inter-organ
translocation and turnover process of GSH is seen as strategic as this allows transport of Cys in its
stable form and its regeneration inside the cell facilitates re-synthesis of GSH. These mechanisms
occurring in proximity with each other is critical as Cys constitutes the limiting precursor for the
de novo synthesis of GSH. Cys is also relatively unstable in aqueous solutions at physiological pH,
undergoing relatively facile autooxidation to CySS, which is relatively insoluble.

These rescue mechanisms may compensate for the lack of cystinosin by orchestrating GSH
uptake, efflux and degradation to maintain cellular redox homeostasis. However, under pathological
conditions, it is also possible that the rate of GSH turnover in vivo may not be adequate or sufficient
to maintain redox homeostasis and sustain high energy demands of renal PTCs where solute and
nutrient reabsorption depend on cell energy and redox state. This may depend on the nature of redox
imbalance and other key players in vivo that may be involved in the cascade of events initiated by loss
of cystinosin function. Therefore, to shed light on the complexity of the metabolic interconnections
in vivo, it may be useful to conduct genetic manipulation studies such as knockout of specific amino
acid transporters and other genes involved in the thiol metabolic network to determine their precise
contribution and mechanistic involvement in the modulation of intermediary thiol metabolism
and cellular redox homeostasis in health and pathological conditions. Indeed, it was previously
demonstrated that CySS deprivation induces the transcription of the CySS/Glu transporter through a
specific amino acid responsive element (AARE) sequence located in its promoter [61]. Interestingly, the
same AARE exists in the second intron of the CTNS gene and may play a crucial role in the regulation
of the CTNS gene [40].

9. The Role of Cysteamine

Cysteamine is a small aminothiol endogenously derived from the degradation of coenzyme A via
a highly conserved pathway [62]. In mammals, the membrane-associated enzyme pantetheinase
catalyzes the hydrolysis of the pantetheine moiety of coenzyme A to produce cysteamine and
pantothenic acid [62]. For decades, cysteamine, in the form of cysteamine bitartrate, has been employed
for the treatment of cystinosis. The CySS depletion therapy with cysteamine has revolutionized the
management and prognosis of nephropathic cystinosis and has greatly improved the quality of
life of cystinosis patients [63]. Cysteamine therapy has been shown to retard renal and non-renal
complications associated with cystinosis and has improved linear growth in cystinotic children [1,2].

Cysteamine enters the lysosomes through a distinct transporter which is still unknown to date [63].
In the lysosomes, cysteamine breaks down CySS and combines with Cys to form a mixed disulfide
cysteamine-Cys which exits the lysosomes through a cationic amino-acid exporter PQLC2 [1,63].
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The cysteamine-Cys disulfide is then reduced to cysteamine and free Cys by cytosolic reducing
systems. This process permits the cycling of cysteamine between the lysosomes and cytoplasm, with
each cycle removing 1 mole of half CySS per mole of cysteamine [1].

The mechanisms of protection by cysteamine remains unclear. In our previous study, treatment
with cysteamine dramatically increased the intracellular GSH levels and reduced the oxidative stress
index in HK-2 cells following small interfering RNA (siRNA)-mediated CTNS gene inhibition [50].
Consistent with our findings, cysteamine also increased the GSH content in conditionally immortalized
PTCs exfoliated from the urine of cystinosis patients [54]. It appears that aside from the CySS
depletion afforded by cysteamine, it can augment intracellular thiol availability which can promote
GSH synthesis and enhance the cells’ antioxidant capacity. Indeed, a related aminothiol, NAC, can alter
the GSH/GSSG and Cys/CySS couple toward a more reduced state in cultured PTCs [39], presumably
by increasing Cys availability which enhances GSH synthesis.

Although cysteamine remains the institution of therapy for cystinosis and has revolutionized the
clinical management of cystinosis patients, it does not treat the proximal tubulopathy associated with
the disease and renal Fanconi syndrome still occurs [64]. This suggests that cystinosin may have other
roles critical to the function and integrity of renal PTCs.

10. The Role of Mitochondria in Modulating Redox Homeostasis

The high rates of aerobic metabolism in the kidney, particularly in the proximal tubules, makes it
chronically exposed to high levels of ROS which can potentially induce cellular damage, particularly
in the mitochondria. The mitochondria generate high levels of ROS during oxidative phosphorylation
which necessitates high concentration of GSH in the mitochondrial matrix. This has important
implications for cellular energetics and in regulation of cellular and mitochondrial redox status.
The mitochondria obtain most, if not all, of its GSH supply from the cytoplasmic GSH pool to
maintain normal function. In the renal proximal tubule, the mitochondrial GSH pool represents
approximately 15–30% of the total cellular GSH content [45]. GSH transport into the mitochondrial
matrix is mediated by the dicarboxylate and 2-oxoglutarate transporters in exchange for oxoglutarate
(2-OG) or inorganic phosphate (Pi) (Figure 2) [41,45]. Mitochondrial GSH transport is discussed in
great detail elsewhere [41,45].

Mitochondrial anomalies have long been implicated in the pathogenesis of cystinosis. A striking
degree of abnormal mitochondrial morphology, mitochondrial autophagy and augmented oxidative
stress were observed in cystinotic kidney PTCs [65]. Most recently, it was demonstrated that
Ctns −/− mice and the PTCs isolated from them exhibit extensive mitochondrial oxidative stress [66].
The mitochondria-targeted superoxide dismutase mimetic, mito-TEMPO, repaired dysfunctional
mitochondria and improved epithelial function and integrity in these mice, presumably by attenuating
the overproduction of ROS in the mitochondria. In agreement with these observations, we observed
a dramatic reduction in the mitochondrial transmembrane potential and ATP content in Ctns −/−
murine PTCs [67].

The role of mitochondria in apoptosis is well established through the mitochondrial dependent
pathways of cell death. These observations underscore the role of mitochondria in orchestrating cellular
demise as a consequence of cystinosin dysfunction. We hypothesize that cystinosin deficiency may
lead to compensatory increases in mitochondrial GSH transport and content but may be insufficient to
counteract the overwhelming oxidative stress induced by cystinosin dysfunction. If this is not rectified,
it may lead to a cascade of events that will ultimately result to mitochondrial dysfunction and cell
death. Interestingly, it appears that the swan-neck lesions in the renal proximal tubule associated
with cystinosis is an adaptation to oxidative stress and these lesions develop concurrently with the
loss of mitochondria with increased mitochondrial superoxide production [68]. These aberrations
can be delayed by treatment with a mitochondria-targeted antioxidant, MitoQ. This suggests that
maintenance of mitochondrial GSH pool is critical for cell survival since solute transport across the
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apical membrane of renal PTCs depend on the cellular redox and energy state which concurrently allow
the cells to reabsorb essential solute and nutrients to generate energy and sustain normal function [35].

11. Conclusions and Future Directions

Although in vitro model systems lacking cystinosin function have shed some light on the role
of cystinosin in cellular redox homeostasis, the complexity of metabolic interconnections that occur
in vivo suggests that the level and activity of cystinosin can be impacted by several intracellular
and extracellular stimuli. In particular, with respect to GSH homeostasis, the kidney PTCs possess
an intricate mechanism for the overall disposition and handling of GSH primarily because of the
coexistence of pathways for synthesis, degradation, efflux and uptake of GSH. Although cystinosin
can respond as necessary to alterations in Cys/Cyss and GSH/GSSG redox couples, the complexity of
intracellular redox state and the interactions between these two redox couples suggest a more detailed
molecular approach is required to understand the mechanistic role of cystinosin in regulating cellular
intermediary thiol metabolism and redox homeostasis. Furthermore, the existence of cystinosin-LKG
isoform presents a highly intricate CySS transport system that modulates CySS exodus from various
intracellular organelles and may be involved in the overall modulation of thiol metabolism and redox
status in kidney PTCs.

The elaborate network of interconnected metabolic pathways and the possible crosstalk between
them in vivo suggest that a more robust model, such as Ctns −/− mice [69], is crucial to fully
understand the mechanistic role of cystinosin in modulating the overall redox status and functional
integrity of renal PTCs. Systems biology approaches based on realistic kinetic data [70] and
non-invasive magnetic resonance imaging techniques [71,72] have recently been utilized to gain
invaluable insights into the dynamics of thiol metabolism in complex biological systems. The same
approaches may be used to better understand the role of cystinosin in the intermediary thiol metabolism
and in the overall regulation of redox homeostasis in renal PTCs. Emerging evidences indicate that
cystinosin is not merely a CySS transporter. Most recently, it was demonstrated that cystinosin
facilitates intracellular trafficking and localization of the autophagy receptor, LAMP2A [73] and
loss of cystinosin function leads to altered lysosomal dynamics and autophagy and, ultimately,
epithelial dysfunction [66]. Therefore, cystinosin plays a crucial role in the ‘housekeeping’ function of
autophagy in renal PTCs, which is critical for the timely removal of dysfunctional or damaged cellular
organelles and misfolded or aggregated proteins to maintain cellular integrity. Finally, it appears that
mitochondria can receive signals from redox perturbations initiated by cystinosin dysfunction and
may orchestrate cell fate. Therefore, cystinosin may have the capacity to influence various key players
and cellular pathways that maintain cellular integrity, thus, exploration of these pathways and their
interconnections would be a promising challenge for future research and would be of great importance
to understanding of the full spectrum of cystinosin function.
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